NIST Special Publication 500-207:
The First Text REtrieval Conference (TREC-1)

Return to the TREC home page TREC home    Return to the TREC Publications home page Publications home Return to the TREC Document Help home page Help          National Institute of Standards and Technology Home Page

The inclusion or omission of a particular company or product implies neither endorsement nor criticism by NIST. Any opinions, findings, and conclusions or recommendations expressed in the individual papers are the authors' own and do not necessarily reflect those of the sponsors.
PREFACE, page iii


ABSTRACT, page viii


  1. Overview of the First Text REtrieval Conference (TREC-1), page 1
    D. Harman (National Institute of Standards and Technology)
  2. Okapi at TREC, page 21
    S. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, M. Lau (City University, London)
  3. Query Improvement in Information Retrieval Using Genetic Algorithms - A Report on the Experiments of the TREC Project, page 31
    J. Yang, R. Korfhage, B. Rasmussen (University of Pittsburgh)
  4. Automatic Retrieval With Locality Information Using SMART, page 59
    C. Buckley, G. Salton, J. Allan (Cornell University)
  5. Probabilistic Retrieval in the TIPSTER Collections: An Application of Staged Logistic Regression, page 73
    W. Cooper, F. Gey, A. Chen (University of California, Berkeley)
  6. Optimizing Document Indexing and Search Term Weighting Based on Probabilistic Models, page 89
    N. Fuhr, C. Buckley (Universitaet Dortmund)
  7. TIPSTER Panel -- The University of Massachusetts TIPSTER Project, page 101
    W. B. Croft (University of Massachusetts, Amherst)
  8. TIPSTER Panel -- HNC's MatchPlus System, page 107
    S. Gallant, R. Recht-Nielson, W. Caid, K. Qing, J. Carleton, D. Sudbeck (HNC, Inc.)
  9. TIPSTER Panel -- DR-LINK's Linguistic-Conceptual Approach to Document Detection, page 113
    B. Liddy, S. Myaeng (Syracuse University)
  10. WORDIJ: A Word Pair Approach to Information Retrieval, page 131
    J. Danowski (University of Illinois at Chicago)
  11. LSI meets TREC: A Status Report, page 137
    S. Dumais (Belleore)
  12. Retrieval Experiments with a Large Collection using PIRCS, page 153
    K. Kwok, L. Papadopoulos, K. Kwan (Queens College, CUNY)
  13. Natural Language Processing in Large-Scale Text Retrieval Tasks, page 173
    T. Strzalkowski (New York University)
  14. OCLC Online Computer Library Center, Inc, page 189
    R. Thompson (Online Computer Library Center, Inc.)
  15. A Single Language Evaluation of a Multi-lingual Text Retrieval System, page 193
    T. Dunning, M. Davis (New Mexico State University)
  16. The QA System, page 199
    J. Driscoll, J. Lautenschlager, M. Zhao (University of Central Florida)
  17. Classification Trees for Document Routing, A Report on the TREC Experiment, page 209
    R. Tong, A. Winkler, P. Gage (Advanced Decision Systems)
  18. Compression, Fast Indexing, and Structured Queries on a Gigabyte of Text, page 229
    A. Kent, A. Moffat, R. Sacks-Davis, R. Wilkinson, J. Zobel (CIThI, Royal Melbourne Institute of Technology)
  19. Application of the Automatic Message Router to the TIPSTER Collection, page 245
    R. Jones, S. Leung, D. L. Pape (Australian Computing and Communications Institute)
  20. CLARIT TREC Design, Experiments, and Results, page 251
    D. Evans, R. Lefferts, G. Grefenstette, S. Handerson, W. Hersh, A. Archbold (Carnegie Mellon University)
  21. Site Report for the Text REtrieval Conference, page 287
    P. Nelson (ConQuest Software, Inc.)
  22. A Boolean Approximation Method for Query Construction and Topic Assignment in TREC, page 297
    P. Jacobs, 0. Krupka, L. Rau (GE Research and Development Center)
  23. Text Retrieval with the TRW Fast Data Finder, page 309
    M. Mettler (TRW Systems Development Division)
  24. Combining Evidence fmm Multiple Searches, page 319
    E. Fox, M. Koushik, J. Shaw, R. Modlin, D. Rao (VPI&SU)
  25. Multilevel Ranking in Large Text Collections Using FMRS, page 329
    S-C. Chang, H. Dediu, H. Azzam, M-W. Du (GTh Laboratories)
  26. Description of the PRC CEO Algorithm for TREC, page 337
    P. Thompson (PRC, Inc.)
  27. Vector Expansion in a Large Collection, page 343
    E. Voorhees, Y-W. Hou (Siemens Corporate Research, Inc.)
  28. Pmximity-Correlation for Document Ranking: The PARA Gmup's TREC Experiment, page 353
    M. Zimmerman (PARA Group)


  1. Use of Natural Language Processing at TREC, page 365
  2. Automatically Generating Adhoc and Routing Queries, page 367
  3. Machine Learning and Relevance Feedback, page 369
  4. Evaluation Issues, page 371


A. TREC-1 Results, page 373
B. TIPSTER Panel Results, page 431
C. System Features, page 435
Last updated: Monday, 15-Apr-2019 10:52:05 EDT
Date created: Tuesday, 01-Aug-00