
Hummingbird's Fulcrum SearchServer at TREC-9 – Page 1 of 14

Hummingbird's Fulcrum SearchServer at TREC-9
Stephen Tomlinson1, Tom Blackwell

Hummingbird
Ottawa, Ontario, Canada

February 6, 2001

Abstract

Hummingbird submitted ranked result sets for the Main Web Task (10GB of web data) and Large Web
Task (100GB) of the TREC-9 Web Track, and for Stage 2 of the TREC-9 Query Track (43 variations of 50
queries). SearchServer's Intuitive Searching produced the highest Precision@5 score (averaged over 50
web queries) of all Title-only runs submitted to the Main Web Task. SearchServer's approximate text
searching and linguistic expansion each increased average precision for web queries by 5%. Enabling
SearchServer's document length normalization increased average precision for web queries by 10-30% and
for long queries by 100%. Squaring the importance of the inverse document frequency (relevance method
'V2:4') increased average precision in the query track by 5%. Blind query expansion decreased average
precision of highly relevants for web queries by almost 15%; the same method was neutral when counting
all relevants the same.

1 Introduction

Hummingbird's Fulcrum SearchServer kernel is an indexing, search and retrieval engine which runs on
Windows and UNIX platforms. SearchServer, originally a product of Fulcrum Technologies, was acquired
by Hummingbird in 1999. The SearchServer kernel is embedded in 5 Hummingbird products, including
SearchServer, an application toolkit used for knowledge-intensive applications that require fast access to
unstructured information.

The SearchServer kernel supports a variation of the Structured Query Language (SQL), called SearchSQL,
which has extensions for text retrieval. Almost 200 document formats are supported, such as Word,
WordPerfect, PDF and HTML. Many character sets and languages are supported, including the major
European languages, Japanese, Korean, Greek and Arabic. SearchServer's Intuitive Searching algorithms
were updated for version 4.0 which shipped in Fall 1999, and in subsequent releases of other products. The
next major kernel release works in Unicode internally and supports many more languages [4].

2 System Description

All experiments were conducted on a single-cpu desktop system, OTWEBTREC, with a 600MHz Pentium
III cpu, 512MB RAM, 186GB of external disk space on one e: partition, and running Windows NT 4.0
Service Pack 6.

For most official TREC runs, an experimental version of SearchServer 5.0 was used (a different
experimental version was used for the Query Track runs in September than the Web Track runs in July and

1 Core Technology, Research and Development, stephen.tomlinson@hummingbird.com

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 2 of 14

August). Commercial release SearchServer 4.0 was used for one Main Web Task run and one Query Track
run.

3 Setup

We describe how SearchServer was used to handle the Main Web Task (10GB of web data) and Large Web
Task (100GB) of the TREC-9 Web Track, and Stage 2 of the TREC-9 Query Track (1GB of news and
government documents).

3.1 Data

The WT10g collection of the Main Web Task was distributed on 5 CDs. We copied the contents of each
CD onto the OTWEBTREC e: drive (e:\data\wt10g\cd1 - e:\data\wt10g\cd5). The cd5\info subdirectory,
containing supporting information not considered part of WT10g, was removed to ensure it wasn't indexed.
The 5157 .gz files comprising WT10g were uncompressed. No further pre-processing was done on the
data. Uncompressed, the 5157 files consist of 11,032,691,403 bytes (10.3GB), about 2MB each. Each file
contains on average 328 "documents", for a total of 1,692,096 documents.

The WT100g collection of the Large Web Task was distributed on 2 DLT-4000 tapes. We copied the
contents onto a "compressed NTFS" area of OTWEBTREC's e: drive (e:\data\compressed\wt100g). The
BASE10 and BASE1 subsets are not considered part of WT100g and were stored elsewhere. We
uncompressed the 50,023 files comprising WT100g from .gz format (and Windows NT internally
recompressed them on the compressed NTFS drive), which took 5 hours. No further pre-processing was
done on the data. Uncompressed, the 50,023 files consist of 107,828,665,842 bytes (100.4GB). Based on
the change in bytes free on the drive, we estimate the files occupied about 58.8 billion bytes (54.8GB) on
the compressed NTFS drive. Hence, NTFS compression saved about 46GB of space, poor compared to
gzip compression (which saved 71GB), but still worthwhile. Each file contains on average 371
"documents", for a total of 18,571,671 documents. (For more information on the WT100g collection, see
[3].)

Text Research Collection Volume 1, Revised March 1994, more commonly known as "TREC Disk 1", was
used in Stage 2 of the Query Track, and consists of a single CD. We copied its contents to
e:\data\TREC\Vol1. The various README files and the DTD directory were removed because they are
not considered part of the collection. The 1265 .Z files comprising the collection were uncompressed. No
further pre-processing was done on the data. Uncompressed, the 1265 files consist of 1,265,137,373 bytes
(1.2GB), about 1MB each. Each file contains on average 404 "documents", for a total of 510,637
documents. (For more information on the TREC Disk 1 collection, see [10].)

3.2 Text Reader

To index and retrieve data, SearchServer requires the data to be in Fulcrum Technologies Document
Format (FTDF). SearchServer includes "text readers" for converting most popular formats (e.g. Word,
WordPerfect, HTML, PDF, Excel, PowerPoint, etc.) to FTDF. A special class of text readers, "expansion"
text readers, can insert a row into a SearchServer table for each logical "document" inside a container, such
as directory or library file. Users can also write their own text readers in C for expanding proprietary
container formats and converting proprietary data formats to FTDF.

The library files of WT10g and WT100g consisted of several logical documents, each starting with a
<DOC> tag and ending with a </DOC> tag. After the <DOC> tag, the unique id of the document, e.g.
WTX104-B01-1, was included inside <DOCNO>..</DOCNO> tags. Other HTTP header information,
such as the URL of the document, appeared inside <DOCHDR>..</DOCHDR> tags. The content of the

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 3 of 14

web document started after the </DOCHDR> tag and ended at the already-mentioned </DOC> tag. Most
document's content were HTML format because only documents with mime type "text/html" were included
in the collections, but on the web, some servers mislabel binaries and other file types as text/html. We
made no attempt to screen out such mislabeled documents.

We wrote a custom text reader called cTREC to handle expansion of the library files of the WT10g and
WT100g collections and to make a few conversions to the HTML format.

In expansion mode (/E switch), cTREC scans the library file and for each logical document determines its
start offset in the file (i.e. offset of <DOC> tag), its length in bytes (i.e., distance to </DOC> tag), and
extracts its document id (from inside <DOCNO>..</DOCNO> tags). SearchServer is instructed to insert a
row for each logical document. The filename column (FT_SFNAME) stores the library filename. The text
reader column (FT_FLIST) includes the start offset and length for the logical document (e.g.
cTREC/w/100000/30000). The document id column (controllable with the /d switch), contains the
document id.

In web track format translation mode (/w switch), cTREC would insert control sequences around the header
to turn off indexing (i.e. from <DOC> down to the </DOCHDR> tag was not indexed). Indexing was also
turned off around HTML tags, except for the content of META NAME/HTTP-
EQUIV="DESCRIPTION/KEYWORDS/SUBJECT/TITLE" tags. Some entities were converted: the ones
listed in the DTDs for the TREC disks 1-5, e.g. é to e, and numeric entities, e.g. é to e.
Because we knew the queries were all English, we didn't try to take advantage of SearchServer's rich
character support capabilities, such as accent-indexing and recognition of semantically equivalent forms of
Unicode.

The library files of TREC Disk 1 also consisted of several logical documents delineated by
<DOC>..</DOC> tags and identified by a <DOCNO>, so the cTREC /E switch also handled expansion of
these files. When invoked without the /w or /E switch, cTREC assumes it is reading a document from
TREC disks 1-5 and by default inserts control sequences to turn off indexing around all tags listed in the
TREC disk 1-5 DTDs, and converts all entities listed in the DTDs. By default, cTREC also turns off
indexing for data delineated by tags indicating keyword fields (namely IN, CO, G, GV, RE, MS, NS,
DESCRIPT or SUBJECT tags) because the original TREC guidelines did not permit using those fields (a /k
option exists for overriding this guideline). Some other tagged data is not indexed by default (nor with the
/k option) because its content isn't considered helpful (for TREC Disk 1, data delineated by DOCNO,
FIRST, SECOND, FILEID, NOTE, UNK, BYLINE, C, CODE-213, DOCID, NOTE, T2, T4, AUTHOR,
DATE, SO, ADDRESS, AUTHOR and JOURNAL tags is not indexed by default; a longer list exists to
cover the other disks). cTREC currently doesn't differentiate its tag handling by collection type; for
example, the <G> tag is a keyword field in the Wall Street Journal documents, but not in the Federal
Register documents, but cTREC treats it as a keyword field in both, a minor limitation. cTREC looks
ahead at most 8000 bytes for an end tag when it encounters a tag indicating indexing should be turned off;
if the end tag is not found, indexing is not turned off.

3.3 Indexing

WT10g was indexed in one table in most runs, created with the following SearchSQL statement:

CREATE SCHEMA WT10GW CREATE TABLE WT10GW
(DOCNO VARCHAR(256) 128) PERIODIC
BASEPATH 'E:\DATA' STOPFILE 'MYTREC.STP' APPROX_ZONES '32';

The APPROX_ZONES '32' parameter specifies that an approximate search index should be built on the
external text column (32). The STOPFILE parameter specified a file containing a list of 101 stopwords to
not index, including all letters and single-digit numbers. The PERIODIC parameter prevents immediate

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 4 of 14

indexing of rows at insertion time. The BASEPATH parameter specified the directory from which relative
filenames of insert statements would be applied. The DOCNO column was assigned number 128 and a
maximum length of 256 characters.

After creating the table, we added the string "IND:x16384;b4096;" to the wt10gw.cfg file to ensure an
obscure internal dictionary limit wouldn't be encountered at index-time. This step is not necessary as of
SearchServer 5.0 Beta2.

Into this table, we just inserted one row, specifying the top directory of WT10g, with this Insert statement:

INSERT INTO WT10GW (FT_SFNAME, FT_FLIST)
VALUES ('WT10G', 'cTREC/E/d=128:s!cTREC/w/@:s');

To index the table, we just executed this Validate Index statement:

VALIDATE INDEX WT10GW VALIDATE TABLE
TEMP_FILE_SIZE 2000000000 BUFFER 256000000;

The VALIDATE TABLE option of the VALIDATE INDEX statement causes SearchServer to review
whether the contents of container rows, such as directory rows and library files, are correctly reflected in
the table. In this particular case, SearchServer initially validated the directory row by inserting each of its
sub-directories and files into the table. Then SearchServer validated each of those directory and library file
rows in turn, etc. Validating library file rows invoked the cTREC text reader in expansion mode to insert a
row for each logical document in the library file, including its document id.

After validating the table, SearchServer indexed the table, in this case using up to 256MB of memory for
sorting (as per the BUFFER parameter) and using temporary sort files of up to 2GB (as per the
TEMP_FILE_SIZE parameter), to produce a dictionary of the unique words and reference file with the
locations of the word occurrences (mostly unused in our experiments because we did no proximity searches
nor search term highlighting). By default, SearchServer stores the original words, not just the stems.

For one of our Main Web Task runs (hum9td4), we used commercial release SearchServer 4.0, which is
limited to 2GB reference files. Hence for that run we indexed WT10g in 2 tables. The first table contained
CD1, CD2, and the first 4 directories of CD5 (WTX097-WTX100). The second table contained CD3, CD4
and the last 4 directories of CD5 (WTX101-WTX104).

Because of various internal limits in the experimental SearchServer version used for WT100g, we indexed
WT100g in 12 tables (more than proved to be necessary). No approximate search index was built;
however, some Large Web Task runs re-used the approximate search index of WT10g as a spell-corrector.

For the Query Track, we indexed TREC Disk 1 three times, once filtering keywords as per the traditional
TREC guidelines, a second time with keyword fields included in the index, and a third time using
commercial release SearchServer 4.0 (including keywords).

4 Search Techniques

For the Main Web Task, the 50 "topics" were in a file called "topics.451-500". The topics were numbered
from 451-500, and each contained a Title (which was an actual web query taken from a search engine log),
a Description (NIST's interpretation of the query, with spelling and grammar errors fixed), and a Narrative
(a more detailed set of guidelines for what a relevant document should or should not contain).

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 5 of 14

For the Large Web Task, the 10000 web queries were in a file called "queries_10000". Queries were
numbered from 20001-30000. There was no separate Title, Description or Narrative, just the original web
queries, one per line.

For Stage 2 of the Query Track, there were 43 separate files of 50 queries each (variants of TREC topics
51-100).

We modified the example stsample.c program included with SearchServer to parse the TREC topics files,
construct and execute corresponding SearchSQL queries, fetch the top 1000 or top 20 rows, and write out
the rows in the results format requested by NIST. (The modified stsample.c was called
QueryToRankings.c.)

SELECT statements were issued with the SQLExecDirect api call. Fetches were done with SQLFetch
(typically 1000 SQLFetch calls per query in the Main Web Task and Query Track, and 20 SQLFetch calls
per query in the Large Web Task).

4.1 Intuitive Searching

All queries used SearchServer's Intuitive Searching, i.e. the IS_ABOUT predicate of SearchSQL, which
accepts unstructured text. For example, for topic 451 of the Main Web Task, the Title was "What is a
Bengals cat?". A corresponding SearchSQL query would be:

SELECT RELEVANCE('V2:3') AS REL, DOCNO
FROM WT10GW
WHERE FT_TEXT IS_ABOUT 'What is a Bengals cat?'
ORDER BY REL DESC;

This query would create a working table with the 2 columns named in the SELECT clause, a REL column
containing the relevance value of the row for the query, and a DOCNO column containing the document's
identifier. The ORDER BY clause specifies that the most relevant rows should be listed first. Typically a
statement such as "SET MAX_SEARCH_ROWS 1000" was previously executed so that the working table
would contain at most 1000 rows. In cases where the data was indexed in more than one table, the FROM
clause would specify a UNION of the tables, e.g. SearchServer 4.0 queries contained "FROM WT10GW1
UNION WT10GW2".

Our QueryToRankings program removed a short list of words from the given topics before presenting them
to SearchServer: "documents", "document", "items", "item", "relevant". This was originally done for
internal TREC-5 experiments based on the TREC-5 topics frequently containing these words (e.g. "A
relevant item will mention..."). It was found to make almost no difference to the scores whether these
words were excluded or not, so we didn't bother to expand the list further for the TREC-9 Main Web Task.
For the Large Web Task, in which most queries were known to be phrased as questions, we additionally
removed the words "do", "does", "find", "how", "me", "show", "tell", "what" and "why".

4.1.1 Secondary Term Selection

The IS_ABOUT predicate by default expands each word to a "superterm" comprising all the linguistic
variants of the term, e.g. "run" is added for "ran" (linguistic expansion can be disabled with the
VECTOR_GENERATOR parameter). Some of these superterms may be subsequently discarded when
searching the table (secondary term selection). For example, the RELEVANCE_METHOD setting has an
optional document frequency parameter for discarding all terms which occur in more than a specified
percentage of the rows (based on the most frequently occurring variant of the term). Secondary term
selection improves performance and prevents highlighting of unimportant terms.

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 6 of 14

In the SearchServer 5.0 web track runs, we experimented with a different term selection approach based on
an estimate of how many rows the terms would bring into the search and which involved a different
formula for term importance which incorporated the vector length. In the SearchServer 4.0 runs, in which
the experimental approach wasn't available, a document frequency cutoff of 15% was normally used,
because that cutoff in past experiments didn't hurt quality, but significantly improved performance.

4.1.2 Statistical Relevance Ranking

To calculate a relevance value for a row of a table with respect to the vector of terms (actually, superterms)
resulting from secondary term selection, the inverse document frequency of the term and the number of
occurrences of the term in the row (term frequency) are determined from the index. The length of the row
(based on the number of indexed characters in all columns of the row, which is typically dominated by the
external document), is optionally incorporated, and the number of occurrences of the term in the vector is
also used. The full details of synthesizing this information into a relevance value are proprietary, but draws
from [7] (particularly the Okapi approach to term frequency dampening) and [9]. SearchServer's relevance
values are always an integer in the range 0 to 1000.

SearchServer's RELEVANCE_METHOD setting can be used to optionally square the importance of the
inverse document frequency (by choosing a RELEVANCE_METHOD of 'V2:4' instead of 'V2:3').
Experiments on past TREC ad hoc topics found that V2:4 often worked better than V2:3, but past TREC ad
hoc topics didn't contain spelling errors, which could be over-emphasized when squaring the idfs.

SearchServer's RELEVANCE_DLEN_IMP parameter controls the importance of document length (scale of
0 to 1000) to the ranking. We found 200 worked best on TREC-8 small web experiments and used 200 for
most submitted TREC-9 runs.

4.2 Approximate Text Searching

The Title-only queries of the Main Web Task and the queries of the Large Web Task were unedited web
queries from search engine logs which appeared to sometimes contain spelling errors; for example, a query
containing "vanila ice creem" probably meant to say "vanilla ice cream".

SearchServer's approximate text searching is based on edit distance, also known as the Levenshtein
distance, which is the minimum number of insertions, deletions and/or replacements needed to transform
one pattern into another. SearchServer's approximate text searching is fast for error ratios up to at least
one-third, i.e. when the allowed edit distance is one-third the length of the search term. An excellent
overview of approximate text searching techniques may be found in [6].

We experimented with using SearchServer's approximate text searching to fix some spelling errors. The
first step was to look up the closest matches of each term in the web query by increasing edit distance and
decreasing number of rows containing the term. For example, the SearchSQL to find the closest matches to
"vanila" is

SELECT TERM, FT_DISTANCE(TERM) AS NUMERRORS,
MAX(ROW_COUNT) AS NUMROWS

FROM SEARCH_TERMS
WHERE TABLE_NAME CONTAINS 'WT10GW'
AND COLUMN_NAME CONTAINS 'FT_TEXT'
AND TERM CONTAINS 'vanila' BEST_MATCHES 1000

GROUP BY TERM
ORDER BY NUMERRORS, NUMROWS DESC;

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 7 of 14

The results in the case of "vanila" were

('VANILA', 0, 8)
('VANILLA', 1, 2427)
('MANILA', 1, 1763)
('VANIA', 1, 47)
('VANITA', 1, 21)
('VAXILA', 1, 11)
('DANILA', 1, 10)
('VANINA', 1, 9)
('VANNILA', 1, 5)
...

We used the default error ratio of 34% for all approximate searches, e.g. 2 errors were allowed in the 6-
letter vanila query. The WT10G collection contained 5,792,772 distinct words. SearchServer used an in-
memory approximate search index to substantially reduce the time needed to find the close matches.

If the original term appeared in fewer than 10 rows, then the closest matches were added to the query until
the sum of the row counts was 10 or more, with the following adjustments:

• On the first pass through the list of close matches, only matches with the same Soundex code [5] were
considered. For example, "vanilla" has the same Soundex code as "vanila", but "manila" does not. If
the Soundex matches didn't sum to 10 or more rows, then the closest non-Soundex matches were added
until the sum was 10 or more rows. (Note: Soundex was implemented in the QueryToRankings
program, not SearchServer.)

• If the row sum was still less than 10 after adding all close matches, the last character of the term was
dropped, and the process repeated. For example, after "vanila", the next search would be for "vanil",
then "vani", etc.

In the case of "vanila", the term occurred in just 8 rows, fewer than 10 , so the next term, "vanilla" was
considered. It was a Soundex match, so it was added to the query, and adding its row count of 2427
exceeded the sum requirement, so the search for more close matches ended.

In the case of "creem", the heuristic didn't work because "creem" appeared in 43 rows, more than our
arbitrary parameter of 10. In retrospect, we probably should have added the first Soundex match which
occurred in more rows than the original term (if any), making an arbitrary parameter unnecessary. The
closest match to "creem" is "creek" (17,521 rows), which Soundex would filter out. The next closest match
is "cream" (10,692 rows), which is the term we wanted. Also, it may be better to just sort close matches by
decreasing number of rows and not differentiate by edit distance. This change would have properly
handled the case of "australai" (4 rows); our heuristic generated "australi" (99 rows, 1 difference), but
probably the best match was "australia" (75,297 rows, 2 differences).

The truncation heuristic was an attempt to deal with words stuck together, e.g. "londonengland", but it
wasn't very successful. A better solution may be to include phrases in the word list.

We kept the original terms in the query, e.g. the query "vanila ice cream" was changed to "vanila ice cream
vanilla". A downside of this approach is that the ranking algorithm treats vanila and vanilla as separate
terms, hence over-weighting documents which happen to contain both terms. If we integrated this
approach into SearchServer, we could treat the terms as variants of one term, like we do for linguistic
variations of the term.

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 8 of 14

4.3 Row Expansion

In past TRECs, "query expansion" was considered necessary to produce top results [11]. We experimented
with using row expansion to indirectly expand the query in 2 of our Main Web Task submissions. The
approach was built on top of SearchServer. An optimized version may be implemented inside
SearchServer in a future release.

After running the initial query (possibly already expanded by approximate text searching in the Title-only
case), we retrieved the top 1000 rows (unless SearchServer returned fewer, which sometimes happened for
Title-only queries). For each of the top 5 rows, we asked SearchServer's Intuitive Searching to "find more
rows like this" (we call these row expansion queries), retrieving the top 1000 rows. We then combined the
relevance values from each of the 6 result sets, giving a weight of 5 to the original query results, and
weights of 1 to each of the 5 row expansion results. We did not include any negative information.
Mathematically, this approach works out to be similar to Rocchio expansion. (A detailed description of a
good Rocchio feedback technique is in [1].)

We always used the same parameters in row expansion queries as were used in the initial query, e.g. the
same document length importance. We used the top 5 rows because in experiments on the TREC-8 small
web we found somewhere from 3 to 8 rows usually gave best results.

5 Results

The evaluation measures are explained in an appendix of the conference proceedings. Briefly: Precision is
the percentage of retrieved documents which are relevant. Precision@n is the precision after n documents
have been retrieved. Average precision for a topic is the average of the precision after each relevant
document is retrieved (using zero as the precision for relevant documents which are not retrieved). Recall
is the percentage of relevant documents which have been retrieved. Interpolated precision at a particular
recall level for a topic is the maximum precision achieved for the topic at that or any higher recall level.
For a set of topics, the measure is the average of the measure for each topic (i.e. all topics are weighted
equally).

Below we present an analysis of our results, including results of several unofficial "diagnostic" runs. Table
1 summarizes the "official" web track runs we submitted for judging in August 2000:

Run hum9te hum9tde hum9td4 hum9tdn hum9w1 hum9w2 hum9w3
Task Main Main Main Main Large Large Large
Topic Fields T-only T+D T+D T+D+N web web web
SearchServer Ver. 5.0Tr12 5.0Tr1 4.0 5.0Tr1 5.0Tr1 5.0Tr1 5.0Tr1
Approx. Search Y N N N Y N Y
Row Expansion Y Y N N N N N
Linguistic Exp. Y Y Y Y Y Y N
REL...METHOD V2:3 V2:3 V2:3:15 V2:4 V2:3 V2:3 V2:3
REL...DLEN_IMP 200 200 200 200 200 200 0
REL...AVG_DLEN 10000 10000 10000 10000 10000 10000 n/a
Exp'l Sec. Term Sel. Y Y N Y Y Y Y

Table 1: Summary of Runs submitted for the TREC-9 Web Track

2 Build 5.0.0.61 with experimental changes for TREC

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 9 of 14

5.1 Main Web Task

The Main Web Task was to run 50 queries against 10GB of web data and submit a list of the top-1000
ranked documents to NIST for judging.

Topics were broken into 3 categories: automatic runs which used only the original Excite web query (called
Title-only runs), automatic runs which used some other part of the topic statement (called Full Topic runs),
and manual runs. We did not submit any manual runs, just automatic runs.

NIST produced a "qrels" file: a list of documents judged to be highly relevant, relevant or not relevant for
each topic. From these, the scores were calculated with Chris Buckley's trec_eval program, which counts
all relevants the same, including highly relevants. To produce scores which just counted highly relevants
as relevant, we ran trec_eval a 2nd time on a modified version of the qrels file which had the ordinary
relevants filtered out, then multiplied by 50/46 (in 4 of the 50 topics, there were no highly relevants).
Hence the scores focused on highly relevants are averaged over just 46 topics.

The medians were derived from the statistics provided in the draft conference proceedings at the
conference, which counted all relevants the same. For the Title-only category, the medians are the 9th-
highest score of the 18 groups, just counting the highest score from each group in each measure. For the
Full Topic category, the median is the 10th-highest score of the 19 groups.

5.1.1 Title-only runs

Table 2 shows Title-only runs produced with the experimental SearchServer 5.0 in July 2000. The only
differences between these runs were the relevance method (V2:3 or V2:4) and whether or not row
expansion post-processing was applied. Run 2b was the official "hum9te" run, which had the highest
Precision@5 score and highest interpolated precision at the 10%, 20%, 30% and 40% recall levels of the 40
submitted Title-only runs from 18 groups:

SearchServer run AvgP P@5 P@10 P@20 Rec0 Rec30 AvgH H@5 H0
2a: V2:33 0.1949 32.0% 26.2% 22.0% 0.5223 0.2696 0.1948 15.7% 0.3264
2b: V2:3 + exp 0.1970 32.4% 25.4% 21.5% 0.4802 0.2808 0.1703 13.5% 0.2732
2c: V2:4 0.1931 29.6% 25.0% 21.5% 0.5170 0.2674 0.2078 15.7% 0.3441
2d: V2:4 + exp 0.1909 29.6% 23.8% 21.1% 0.4756 0.2774 0.1778 14.8% 0.2618

Median (18 grps) 0.1464 21.6% 21.2% 17.4% 0.4015 0.1993 n/a n/a n/a

Table 2: Precision of Title-only runs
Glossary:
AvgP: Average Precision (defined above)
P@5, P@10, P@20: Precision after 5, 10 and 20 documents retrieved, respectively
Rec0, Rec30: Interpolated Precision at 0% and 30% Recall, respectively
AvgH: Average Precision just counting Highly Relevants as relevant
H@5: P@5 just counting Highly Relevants as relevant
H0: Rec0 just counting Highly Relevants as relevant

3 Scores for diagnostic runs may differ slightly from those given in the notebook paper because, for this
paper, ties in relevance values were broken according to SearchServer's ordering in the result list.

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 10 of 14

Impact of Relevance Method (compare 2a to 2c, or 2b to 2d): V2:3 was modestly better at finding relevant
documents (columns AvgP through Rec30), but V2:4 was modestly better at finding highly relevant
documents (columns AvgH through H0, except in 1 H0 case).

Impact of Row Expansion (compare 2a to 2b, or 2c to 2d): Our experimental row expansion post-
processing made little difference for relevants, but hurt the scores when focusing on highly relevants.
Perhaps the finding of past TRECs that query expansion is usually necessary for top results is not valid
when just focusing on highly relevants. However, the results of many groups will have to be considered,
not just ours.

To measure the impact of approximate text searching and linguistic expansion, Table 3 shows runs which
were done in January 2001 with a more recent SearchServer build (5.0.500.14). This version contained a
new linguistic package and did not use the experimental secondary term selection (instead, terms in more
than 15% of documents were discarded (relevance method V2:3:15)). No row expansion was done, and
document length importance was increased to 750:

SearchServer Run AvgP P@5 P@10 P@20 Rec0 Rec30 AvgH H@5 H0
3a: ling only 0.1919 30.4% 25.6% 21.5% 0.5265 0.2686 0.2343 15.7% 0.3548
3b: apx, ling 0.2019 32.0% 27.2% 22.9% 0.5516 0.2769 0.2509 16.5% 0.3647
3c: apx only 0.1914 32.4% 28.0% 22.8% 0.5586 0.2693 0.2273 17.0% 0.3898
3d: neither 0.1805 30.4% 26.4% 21.6% 0.5258 0.2562 0.2089 15.7% 0.3535

Table 3: Impact of Approximate Text Searching and Linguistic Expansion (Title-only runs)

Impact of Approximate Text Searching (compare 3a to 3b, or 3d to 3c): The spell-correction heuristics
increased most precision scores by just 1-2 points. Almost all of the improvement was in 2 topics: 487
("angioplast7", for which "angioplasty" was added) and 463 ("tartin", for which "tartan" was added). 2
topics became a little worse, 481 and 495, because "1920" was unnecessarily added for "1920's", apparently
over-weighting that term.

Impact of Linguistic Expansion (compare 3c to 3b, or 3d to 3a): Linguistic expansion improved average
precision, but slightly lowered Precision@10. In average precision, topic 469 was helped ("steinbach
nutcracker") as was 490 ("motorcycle safety helmets"), but topic 492 was hurt ("us savings bonds") as was
458 ("fasting"). Note that all topics were English. SearchServer's linguistic expansion is likely to be more
useful for languages with more noun forms, such as German and Finnish.

Table 4 shows additional runs just varying in the setting of document length importance
(RELEVANCE_DLEN_IMP parameter). These runs used build 5.0.500.14, approximate text searching
and linguistic expansion were both on, and the relevance method was 'V2:4:15':

DLen Importance AvgP P@5 P@10 P@20 Rec0 Rec30 AvgH H@5 H0
4a: 0 0.1595 26.0% 21.2% 17.7% 0.4393 0.2222 0.1521 10.9% 0.2554
4b: 250 0.1908 29.6% 24.2% 21.2% 0.4960 0.2677 0.1926 14.8% 0.3084
4c: 500 0.2050 31.2% 26.0% 21.8% 0.5410 0.2828 0.2282 16.1% 0.3427
4d: 750 0.1992 30.0% 24.6% 21.7% 0.5539 0.2788 0.2528 16.1% 0.3878
4e: 1000 0.1744 27.6% 20.8% 18.7% 0.4892 0.2341 0.2350 16.1% 0.3318

Table 4: Impact of Document Length Normalization (Title-only runs)

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 11 of 14

Impact of Document Length Normalization: Ignoring document length (row 4a) hurt all scores; average
precision was 10-30% higher in the other rows. The impact on highly relevants was even larger.
Generally, we find that settings of 200 or higher all work pretty well for average precision, but higher
settings appear to be better for finding highly relevants. The setting of 750 was probably the best overall in
Table 4. See Table 6 for another document length experiment.

5.1.2 Full Topic runs

The other category for automatic runs were runs which included any part of the topic besides the Title field.
The median precision scores were higher for this category, as were SearchServer's scores, which makes
sense because the queries had the more detailed Description and/or Narrative fields included.

Table 5 shows Full Topic runs produced in July 2000. The differences between these runs were the
relevance method (V2:3 or V2:4), whether or not row expansion post-processing was applied, whether or
not commercial release SearchServer 4.0 was used, and whether or not the Narrative was included. Runs
5b, 5c and 5h were submitted (official runs "hum9tde", "hum9td4" and "hum9tdn" respectively). All runs
were above the median in average precision:

SearchServer run AvgP P@5 P@10 P@20 Rec0 Rec30 AvgH H@5 H0
5a: T+D, V2:3 0.2374 39.2% 30.8% 25.3% 0.6202 0.3336 0.2397 17.0% 0.3930
5b: 5a + exp 0.2217 37.2% 29.4% 24.0% 0.5217 0.3082 0.1783 14.8% 0.2722
5c: SS4, V2:3:15 0.2115 37.6% 30.8% 24.8% 0.5990 0.3051 0.2053 15.2% 0.3628
5d: 5a + Narr 0.2184 39.2% 34.0% 26.3% 0.6059 0.3201 0.2005 15.2% 0.3313
5e: T+D, V2:4 0.2347 36.0% 30.6% 25.2% 0.5617 0.3190 0.2372 17.8% 0.3635
5f: 5e + exp 0.2228 34.0% 28.6% 24.9% 0.4895 0.3114 0.1862 14.3% 0.2675
5g: SS4, V2:4:15 0.2380 36.0% 30.8% 25.0% 0.5735 0.3197 0.2301 17.4% 0.3659
5h: 5e + Narr 0.2335 42.0% 35.2% 27.4% 0.6391 0.3341 0.2158 16.5% 0.3790

Median (19 grps) 0.1948 36.0% 31.4% 24.6% 0.6029 0.2692 n/a n/a n/a

Table 5: Precision of Full Topic runs

Impact of Row Expansion (compare 5a to 5b, or 5e to 5f): Row expansion post-processing hurt all scores,
especially for highly relevants, as in the Title-only case.

Impact of Relevance Method (compare 5a to 5e, 5b to 5f, 5c to 5g, or 5d to 5h): More often than not, V2:4
was a little better, including for highly relevants, but it made little difference.

Impact of including the Narrative (compare 5a to 5d, or 5e to 5h): Including the Narrative hurt average
precision scores. It increased relevants early in the result list, but not highly relevants.

Difference from SearchServer 4.0 (compare 5a to 5c, or 5e to 5g): SearchServer 4.0, which split the data
into 2 tables and used the simpler secondary term selection, produced scores which were a little lower than
SearchServer 5.0's with V2:3, and about the same with V2:4.

Table 6 shows a dramatic result when re-doing the runs of Table 4 (RELEVANCE_DLEN_IMP
experiment) with the Description and Narrative included:

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 12 of 14

DLen Importance AvgP P@5 P@10 P@20 Rec0 Rec30 AvgH H@5 H0
6a: 0 0.1136 20.8% 18.4% 15.9% 0.3684 0.1672 0.1077 7.8% 0.1846
6b: 250 0.2233 40.0% 34.8% 28.0% 0.6320 0.3219 0.2007 16.5% 0.3628
6c: 500 0.2435 44.8% 35.2% 29.5% 0.6833 0.3330 0.2447 19.1% 0.4264
6d: 750 0.2569 43.2% 36.8% 30.1% 0.6958 0.3384 0.2843 20.9% 0.4845
6e: 1000 0.2454 42.0% 36.6% 28.0% 0.6894 0.3388 0.2908 20.9% 0.4825

Table 6: Impact of Document Length Normalization (T+D+N runs)

Impact of Document Length Normalization: Ignoring the document length (row 6a) significantly hurt all
scores; average precision was about 100% higher in the other rows. Many irrelevant long documents (e.g.
500KB or more) were brought into the search result by the numerous, relatively unimportant terms in the
long queries when there was no document length adjustment. It appears that even a low setting, such as
250, was enough to overcome the issue. As in the Title-only case, the impact was even larger for highly
relevants, and higher settings were better. Again, probably 750 was the best setting overall in Table 6.

5.2 Large Web Task

Results of our Large Web Task runs are summarized in Table 7. Only 84 of the 10000 queries were
judged, and only the top 10 documents submitted for each query were judged:

SearchServer
Run

Reciprocal Rank of
First Satisfactory

Precision@1 Precision@5 Precision@10

hum9w1 0.4381 30.95% 32.62% 32.50%
hum9w2 0.4262 30.95% 31.43% 31.67%
hum9w3 0.4174 28.57% 30.24% 29.40%

Table 7: Precision of Large Web Task runs

The use of approximate text searching for handling misspelled terms (used in hum9w1 but not hum9w2, the
only difference) improved most precision scores by 1 point. The benefit primarily came from query 28616
("where can i find a good deal on a mothermoard") for which the term "motherboard" was helpfully added.

Turning off document length normalization and linguistic expansion (as done in hum9w3, the only
differences from hum9w1) lowered precision scores by just 2-3 points. This result is in line with what one
would expect from the Main Web Title-only findings for Precision@5 and Precision@10, which suggest
that removing the document length adjustment hurt 3-4 points, but disabling linguistics helped 0-1 points.
Unfortunately, the pool of documents submitted per topic is too small for this task for us to run meaningful
experiments on isolated factors after the fact like we could for the Main Web, e.g. perhaps the individual
impact of document length and linguistics is actually higher in this task.

We divided WT100g into 12 tables, each with their own set of inverse document frequencies. This need
not lower the scores: AT&T found that Precision@10 scores were actually a little higher when they split
WT100g into 20 tables in TREC-8 (see [8]). However, our preliminary experiments with global idfs
suggest that the table-splitting may have cost us several points of precision; e.g. with global idfs, we get
30% in precision@10 with 30% unjudged, and many of the unjudged appear to be satisfactory. Our
experimental secondary term selection was set more aggressively for this task than in the Main Web, and
there would have been some inconsistencies in the terms discarded for different tables in our official runs.

mailto:Precision@1
mailto:Precision@10

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 13 of 14

For query 27028 ("s3 patches"), we regret that 's' and '3' were stop words. Perhaps we should enable
SearchServer's option of parsing numbers as if they were letters.

5.3 Query Track

The Query Track is for evaluating not just retrieval systems, but the effect of query variations on such
systems. For background on this track, see [2].

In Stage 1 of the Query Track, participants created variations of old TREC topics 51-100, including very
short queries (2-3 words), natural language sentence queries, and queries based on reading system results
without consulting the original topics. In all, 43 sets of 50 queries were produced by 6 different groups.
We did not submit any queries for Stage 1.

In Stage 2, all groups, including those which did not submit queries, were asked to run all the query sets on
their systems. The more systems, the more reliable the conclusions about varying queries. We contributed
7 runs. The overall average precision scores for each of these runs (averaged over all 43*50 queries) are in
Table 8:

Run AvgP Experiment (i.e. what was different from baseline)
humB* 0.1732 baseline
humK* 0.1713 keyword fields were not indexed

(/k option of cTREC text reader was not used, see section 3.2)
humD* 0.17714 document length importance was set low

(RELEVANCE_DLEN_IMP was set to 200 (baseline was 750))
humV* 0.1648 inverse document frequency not squared

(RELEVANCE_METHOD was 'V2:3:15' (baseline was 'V2:4:15'))
humA* 0.1741 approximate text searching added fixes for spelling errors (algorithm of section 4.2

except the table used to index TREC Disk 1 with keywords was used)
hum4* 0.1713 SearchServer 4.0 was used (baseline used experimental SS 5.0 which contained a

new linguistic expansion package which was known to still have a few glitches)
humI* 0.1736 terms in more than 15% of rows not discarded

(RELEVANCE_METHOD was 'V2:4:100' (baseline was 'V2:4:15'))

Table 8: Average Precision of Query Track runs

These results suggest that excluding keyword fields makes little difference. Decreasing the document
length importance was modestly helpful. SearchServer's relevance method 'V2:4', which squared the
importance of the inverse document frequency, produced modestly better results. The attempt at handling
spelling errors was of only minor benefit, though probably relatively few queries contained spelling errors
(compared to the web queries). The experimental SearchServer 5.0 scores were slightly higher than those
of SearchServer 4.0, despite some known glitches in the new linguistic package, such as expanding "in" to
"Indiana" (since ironed out).

Perhaps the most interesting result is that excluding terms which occur in more than 15% of the documents,
which helps search-time performance, didn't decrease average precision significantly. This result is
consistent with other experiments we have done, but differs from the finding reported in Managing
Gigabytes that discarding frequent terms "greatly reduces retrieval effectiveness" [12] (page 427).

4 We received corrections to the humD and humV results after submitting the notebook paper.

Hummingbird's Fulcrum SearchServer at TREC-9 – Page 14 of 14

References

[1] Chris Buckley, Amit Singhal and Mandar Mitra. Using Query Zoning and Correlation Within SMART:
TREC 5. In E.M. Voorhees and D.K. Harman, editors, Proceedings of the Fifth Text REtrieval Conference
(TREC-5). NIST Special Publication 500-238. http://trec.nist.gov/pubs/trec5/t5_proceedings.html

[2] Chris Buckley and Janet Walz. The TREC-8 Query Track. In E.M. Voorhees and D.K. Harman,
editors, Proceedings of the Eighth Text REtrieval Conference (TREC-8). NIST Special Publication 500-
246. http://trec.nist.gov/pubs/trec8/t8_proceedings.html

[3] David Hawking, Nick Craswell and Paul Thistlewaite. Overview of the TREC-7 Very Large Collection
Track. In E.M. Voorhees and D.K. Harman, editors, Proceedings of the Seventh Text REtrieval Conference
(TREC-7). NIST Special Publication 500-242. http://trec.nist.gov/pubs/trec7/t7_proceedings.html

[4] Andrew Hodgson. Converting the Fulcrum Search Engine to Unicode. In Sixteenth International
Unicode Conference, Amsterdam, The Netherlands, March 2000.

[5] Donald E. Knuth. The Art of Computer Programming, Vol. 3: Sorting & Searching, 2nd edition
Revised, January 1998. Addison Wesley Longman.

[6] Gonzalo Navarro. Approximate Text Searching, PhD Thesis, Dept. of Computer Science, University of
Chile, December 1998.

[7] S.E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford. (City University.) Okapi
at TREC-3. In D.K. Harman, editor, Overview of the Third Text REtrieval Conference (TREC-3). NIST
Special Publication 500-226. http://trec.nist.gov/pubs/trec3/t3_proceedings.html

[8] Amit Singhal, Steve Abney, Michiel Bacchiani, Michael Collins, Donald Hindle and Fernando Pereira.
AT&T at TREC-8. In E.M. Voorhees and D.K. Harman, editors, Proceedings of the Eighth Text REtrieval
Conference (TREC-8). NIST Special Publication 500-246.

[9] Amit Singhal, John Choi, Donald Hindle, David Lewis and Fernando Pereira. AT&T at TREC-7. In
E.M. Voorhees and D.K. Harman, editors, Proceedings of the Seventh Text REtrieval Conference (TREC-
7). NIST Special Publication 500-242. http://trec.nist.gov/pubs/trec7/t7_proceedings.html

[10] Ellen M. Voorhees and Donna Harman. Overview of the Eighth Text REtrieval Conference (TREC-
8). In E.M. Voorhees and D.K. Harman, editors, Proceedings of the Eighth Text REtrieval Conference
(TREC-8). NIST Special Publication 500-246. http://trec.nist.gov/pubs/trec8/t8_proceedings.html

[11] Ellen M. Voorhees and Donna Harman. Overview of the Seventh Text REtrieval Conference (TREC-
7). In E.M. Voorhees and D.K. Harman, editors, Proceedings of the Seventh Text REtrieval Conference
(TREC-7). NIST Special Publication 500-242. http://trec.nist.gov/pubs/trec7/t7_proceedings.html

[12] Ian H. Witten, Alistair Moffat and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. 2nd edition, 1999. Morgan Kaufmann Publishers.

Hummingbird, Fulcrum, SearchServer, SearchSQL and Intuitive Searching are the intellectual property of
Hummingbird Ltd. All other company and product names are trademarks of their respective owners.

http://trec.nist.gov/pubs/trec7/t7_proceedings.html
http://trec.nist.gov/pubs/trec7/t7_proceedings.html
http://trec.nist.gov/pubs/trec7/t7_proceedings.html
http://trec.nist.gov/pubs/trec3/t3_proceedings.html
http://trec.nist.gov/pubs/trec7/t7_proceedings.html
http://trec.nist.gov/pubs/trec7/t7_proceedings.html
http://trec.nist.gov/pubs/trec7/t7_proceedings.html

	Hummingbird's Fulcrum SearchServer at TREC-9
	Stephen Tomlinson�, Tom Blackwell
	Hummingbird
	Ottawa, Ontario, Canada
	February 6, 2001
	Abstract
	1 Introduction
	2 System Description
	3 Setup
	3.1 Data
	3.2 Text Reader
	3.3 Indexing
	4 Search Techniques
	5 Results
	
	Run

	Table 1: Summary of Runs submitted for the TREC-9 Web Track
	Table 2: Precision of Title-only runs
	Table 3: Impact of Approximate Text Searching and Linguistic Expansion (Title-only runs)
	Table 4: Impact of Document Length Normalization (Title-only runs)
	Table 5: Precision of Full Topic runs
	Table 6: Impact of Document Length Normalization (T+D+N runs)
	Table 7: Precision of Large Web Task runs
	Table 8: Average Precision of Query Track runs
	
	References

