
The TREC-8 Filtering Track Final Report

David A. Hull Stephen Robertson

Xerox Research Centre Europe Microsoft Research

Meylan, France Cambridge, UK

hull@xrce.xerox.com ser@microsoft.com

Abstract

The TREC-8 �ltering track measures the ability of systems to build persistent user pro�les

which successfully separate relevant and non-relevant documents. It consists of three major

subtasks: adaptive �ltering, batch �ltering, and routing. In adaptive �ltering, the system

begins with only a topic statement and must learn a better pro�le from on-line feedback. Batch

�ltering and routing are more traditional machine learning tasks where the system begins with

a large sample of evaluated training documents. This report describes the track, presents the

evaluation results in graphical format, and provides a general commentary on lessons learned

from this year's track.

1 Introduction

A text �ltering system sifts through a stream of arriving information to �nd documents relevant to
a set of user pro�les. Unlike the traditional search query, user pro�les are persistent, and tend to
reect a long term information need. With user feedback, the system can learn a better pro�le, and
improve its performance over time. The TREC �ltering track tries to simulate on-line time-critical
text �ltering applications, where the value of a document decays rapidly with time. This means
that potentially relevant documents must be presented immediately to the user. There is no time
to accumulate and rank a set of documents according to their relevance. Evaluation is based only
on the quality of the retrieved set, which is scored using a utility measure. The utility measure
assigns a positive score for each relevant document retrieved and a negative score to each retrieved
document that is not relevant.

Filtering di�ers from search in that documents arrive sequentially over time. The TREC �ltering
track consists of three subtasks: adaptive �ltering, batch �ltering, and routing. In adaptive �ltering,
the system starts with only a user pro�le and must begin �ltering documents without any other prior
information. Each retrieved document is immediately judged for relevance, and this information can
be used by the system to adaptively update the �ltering pro�le. In batch �ltering and routing, the
system starts with a large set of evaluated training documents which can be used to help construct
the search pro�le. For batch �ltering, the system must decide to accept or reject each document,
while routing systems can return a ranked list of documents. The core tasks have remained the
same in TREC-7 and TREC-8.

Traditional adhoc retrieval and routing simulate a non-interactive process where users look
at documents once at the end of system processing. This allows for ranking or clustering of the
retrieved set. The �ltering model is based on the assumption that users examine documents period-
ically over time. The actual frequency of user interaction is unknown and task-dependent. Rather
than create a complex simulation which includes partial batching and ranking of the document set,

1

we make the simplifying assumption that users want to be noti�ed about interesting documents as
soon as they arrive. Therefore, a decision must be made about each document without reference to
future documents, and the retrieved set is ordered by time, not estimated likelihood of relevance.
The history and development of the TREC Filtering Track can be traced by reading the yearly
�nal reports:

� TREC-7 http://trec.nist.gov/pubs/trec7/t7 proceedings.html (#3 - 2 �les) [3]

� TREC-6 http://trec.nist.gov/pubs/trec6/t6 proceedings.html (#4 and #5) [2]

� TREC-5 http://trec.nist.gov/pubs/trec5/t5 proceedings.html (#5) [5]

� TREC-4 http://trec.nist.gov/pubs/trec4/t4 proceedings.html (#11) [4]

Information on the participating groups and their �ltering systems can be found in the individual
site reports, also available from the TREC web site.

2 TREC-8 Task Description

The basic �ltering tasks have not changed from TREC-7 to TREC-8, so readers familiar with
the TREC-7 task may wish to skip this section. In this section, we review the corpus, the three
sub-tasks, the submission requirements, and the evaluation measures. For more background and
motivation, please consult the TREC-7 track report [3]. The TREC-8 �ltering experiments used
the Financial Times document collection (TREC disk 4), which consists of slightly more than three
years of newspaper articles covering part of 1991 and most of 1992-1994. The 210,000 documents
were ordered roughly as a function of time, and all systems were required to process the collection
(or a subset) in the same order. The documents average 412 words in length and cover a wide
variety of subject matter. All tasks used topics 351-400, which were constructed for the TREC-7
adhoc experiments. The topics contain Title, Description, and Narrative �elds and have an average
length of 58 words.

The adaptive �ltering task is designed to model the text �ltering process from the moment
of pro�le construction. No training documents are provided. However, once a document is re-
trieved, the relevance assessment (when one exists) is immediately made available to the system.
Unfortunately, it is not feasible in practice to have interactive human assessment by NIST.1 In-
stead, assessment is simulated by releasing the pre-existing relevance judgement for that document.
Judgements for unretrieved documents are never revealed to the system. Once the system makes
a decision about whether or not to retrieve a document, that decision is �nal. No back-tracking or
temporary caching of documents is allowed. While not always realistic, this condition reduces the
complexity of the task and makes it easier to compare performance between di�erent systems.

Systems are allowed to use the rest of the TREC document collection (excluding the Financial
Times) to generate collection frequency statistics (such as IDF) or auxiliary data structures (such
as automatically-generated thesauri). While access to relevance judgements for topics 351-400 was
restricted to the �nal run, systems could be trained using other topics on the rest of the TREC
collection. As documents were processed, the text could be used to update term frequency statistics
and auxiliary document structures even if the document was not matched to any pro�le. Groups
had the option to treat unevaluated documents as not relevant. Evaluation is based on utility, as
described in the next section.

1Individual participants have the option to assess documents manually, although all such runs are evaluated in a

di�erent category. No groups submitted manual runs for TREC-8.

In batch �ltering, documents and relevance judgements from the 1991-1992 Financial Times are
available in advance as a training set. The 1993-1994 Financial Times documents form the test set.
As in adaptive �ltering, systems may use the relevance judgement from any retrieved document to
update the �ltering pro�le. Evaluation is based on utility. Routing is similar to batch �ltering, with
the following two di�erences. Systems are allowed to use relevance judgements for topics 351-400
from other parts of the TREC document collection as part of the training set. For routing, systems
return a ranked list of the top 1000 retrieved documents and are evaluated according to average
uninterpolated precision, as in adhoc search. Batch �ltering and routing are included to open
participation to as many di�erent groups as possible and to improve the quality of the document
pool used for evaluation.

2.1 Evaluation

For the TREC experiments, �ltering systems are expected to make a binary decision to accept
or reject a document for each pro�le. Therefore, the retrieved set consists of an unranked list
of documents. The primary evaluation measure is utility. Utility assigns a value or cost to each
document, based on whether it is retrieved or not retrieved and whether it is relevant or not relevant.
For linear utility, the score is a linear combination of the elements in the contingency table shown
below:

Relevant Not Relevant

Retrieved R+ / A N+ / B

Not Retrieved R- / C N- / D

Linear Utility = A*R+ + B*N+ + C*R- + D*N-

The variables R+/R-/N+/N- refer to the number of documents in each category. The utility
parameters (A,B,C,D) determine the relative value of each possible category. A positive utility
parameter can be thought of as the value of each document in that category, while a negative
utility parameter is the cost of classifying a document in that category. Therefore, the larger the
utility score, the better the �ltering system is performing for a given query pro�le. For TREC-8,
we use two di�erent linear utility functions:

LF1 = 3*R+ - 2*N+ --> retrieve if P(rel) > .4

LF2 = 3*R+ - N+ --> retrieve if P(rel) > .25

Filtering according to a utility function is equivalent to �ltering by estimated probability of rele-
vance. Therefore, the utility functions above are listed with the appropriate probability thresholds.

In addition, we tested the following non-linear utility functions for the �rst time at TREC-8:

NF1 = 6 � (R+)0:5 �N+

NF2 = 6 � (R+)0:8 �N+

The idea behind the non-linear utility functions (originally due to I.J. Good [1]) is that the value
of a relevant document depends on how many relevant documents have been seen before. In this
formulation, the more relevant documents retrieved, the lower the value of each additional relevant
document. From a practical perspective, our hope is that the non-linear functions will do a better
job of equalizing the size of the retrieved sets for topics with large di�erences in the number of
relevant documents.

When evaluation is based on utility, it is di�cult to compare performance across topics. Simple
averaging of the utility measure gives each retrieved document equal weight, which means that the
average scores will be dominated by the topics with large retrieved sets (as in micro-averaging).
Therefore, we scale the utility scores prior to averaging. The most obvious scaling strategy is to
divide by the maximum possible utility score for each topic. However, this approach is seriously
awed for negative utility scores. A system which returns one hundred non-relevant documents will
receive a score of -100 for a topic with one relevant document and -1 for a topic with one-hundred
relevant documents. Since the maximum possible positive score on a topic is 1, topics with negative
utilities will dominate the average. Therefore, a more complex utility scaling function is required.

The scaling function used for TREC-8 is:

u�s(S; T) =
max(u(S; T); U(s))� U(s)

MaxU(T)� U(s)

where u(S; T) and u�s(S; T) are the original and scaled utility of system S for topic T , U(s) is
the utility of retrieving s non-relevant documents, and MaxU(T) is the maximum possible utility
score for topic T . This scaling function assigns a lower bound to the utility function which can
be set with the parameter s. There is a reasonable justi�cation for this approach. Assume that a
�ltering pro�le is performing really poorly. At some point, the user will get fed up with reading
non-relevant documents and delete the pro�le entirely. The parameter s sets the number of non-
relevant documents at which the user's tolerance is exhausted. All utility scores less than U(s) are
set to U(s). Therefore, utility scores can range between U(s) and MaxU(T) and the scores are
renormalized to range between 0 and 1 and then averaged.

The parameter s is set once for all topics. The scaled score can be interpreted relative to the
perfect system (utility of 1.0) and the worst possible system (0.0). Unfortunately, the average scaled
utility score is highly dependent on the de�nition of the worst possible system, as determined by the
parameter s, and so is only meaningful in relation to a particular lower bound. Since the decision
on where to put the lower bound is fairly arbitrary, we will plot the average scaled utility scores
over a range of values for s (25-800). A low value for s di�erentiates more between systems that do
well on topics with few relevant documents. On the other hand, it reduces the penalty for systems
which do very poorly on these or other topics. One could de�ne a two-parameter scaling model
which sets the zero point for utility scaling and the lower bound for acceptable performance to
di�erent values, thus allowing for negative scaled utility. This would make it possible to distinguish
to the two types of behavior described above. For simplicity, we choose to use the same value for
the zero point and the lower bound in these experiments.

2.1.1 Evaluation measures { further discussion

During the period between TREC{7 and TREC{8, there was some continuing discussion of the
problem of devising suitable evaluation measures for �ltering tasks. This discussion followed several
di�erent lines, and by no means all the contentious issues were resolved. This section attempts some
kind of summary of parts of the discussion. The reasons for the introduction of the utility scaling
function and of the non-linear utility functions were discussed above. Both ideas were adopted in
the plan for the TREC{8 �ltering track, and were included in the guidelines. However, both ideas
came into some question in the subsequent discussion on the track mailing list.

One characteristic of utility in general that attracted comment was its relationship to recall and
precision. With any utility function, it is possible to imagine two systems X and Y which have the
following characteristics:

Precision(X) > Precision(Y)

Recall(X) > Recall(Y)

but U(X) < U(Y)

With the linear functions, this arises only when both utilities are negative; this can be demonstrated
as follows. Suppose the system retrieves R+ relevant and N+ non-relevant documents (as above),
and (again as above) the utility function is:

U = AR+ + BN+ = R+(A+ B
N+

R+
)

(B will of course be negative). Then we assume for precision that
R
+

X

(R+
X
+N+

X
)
>

R
+

Y

(R+
Y
+N+

Y
)
which is

equivalent to
N
+

X

R
+

X

<
N
+

Y

R
+

Y

. For recall we have R+
X
> R+

Y
. If U(Y) is positive (which implies that

A+ B
N
+

Y

R
+

Y

is positive), then

U(X) = R+
X
(A+B

N+
X

R+
X

)

> R+
Y
(A+B

N+
X

R+
X

)

> R+
Y
(A+B

N+
Y

R+
Y

) since B < 0

= U(Y)

However, if U(X) is negative, we can infer that U(Y) is also negative, but that the above inequalities
are reversed, and U(X) < U(Y). Non-linear utility functions exhibit similar behaviour under
di�erent conditions, and in particular may do so in the positive range. The behaviour was in fact
in evidence in some of the TREC{8 results (see section 3.3).

The signi�cance of this fact was the subject of some debate in the group. It is clear that this
reects a genuine characteristic of user preference, provided that user preference is well described
by the utility function. However, it also implies that a system might be improved by introducing
a random element to it, which suggests that what we are measuring is less a characteristic of a
system and more of a particular user preference.

Also, one justi�cation for the scaling function is that the zero of the utility scale is essentially
arbitrary: given any decision rule based on probability of relevance, such as those indicated in
section 2.1 above, it could be derived from any number of di�erent utility functions with di�erent
zero points. This suggests that an arbitrary rede�nition of the zero point (which the scaling function
achieves by setting the utility of the worst possible system to zero) will not interfere too much with
the essential properties of utility. However, the present argument casts doubt on this conclusion,
because even if two di�erent utility functions with two di�erent zeros generate the same decision
rule, they will have di�erent relationships to recall and precision. Scaling by the method chosen is
not equivalent to choosing a utility function with a di�erent zero, and produces di�erent behaviour.

This discussion took place shortly before TREC{8, and therefore did not a�ect the track guide-
lines or way the results were evaluated. However, it is clear that the issues raised will have to be
revisited for TREC{9.

2.2 Submission Requirements

Each participating group could submit up to six adaptive �ltering runs and up to two runs each
for batch �ltering and routing. Each adaptive or batch �ltering run was evaluated according to a

pre-speci�ed utility function. There were no required runs this year, although we asked each group
that participated in adaptive or batch �ltering to submit one run optimized for the LF1 measure.
Runs were classi�ed into one of three categories:

(A) Automatic - Any run which uses fully automatic methods for pro�le construction and updat-
ing. This can include automatic learning from test documents as they are �ltered.

(B) Manual - Any run which uses manual techniques for pro�le construction, up to and includ-
ing making additional relevance judgments on training documents. No manual intervention
based on information from the test documents is allowed, although automatic learning is still
permitted.

(C) Manual Feedback - Any run which uses manual techniques for updating pro�les based on
previously viewed test documents. The run may or may not also use manual techniques for
pro�le construction.

There are no training documents for adaptive �ltering, so manual intervention (B) is limited to
pro�le construction for this task. In practice, none of the groups submitted manual runs. Groups
were also asked to indicate whether they used other parts of the TREC collection to build term
collection statistics or other resources.

Topics 351-400 were evaluated against the Financial Times collection for the TREC-7 adhoc
experiments, and these relevance judgements served as the basis for the �ltering tasks. However,
we wanted to reduce the risk that systems which retrieved many unevaluated documents might be
unfairly penalized, so we asked NIST to perform a second round of evaluation. We are grateful to
NIST for following through on this request, given the heavy assessment load for TREC-8. In the end,
NIST managed to evaluate the top 57 documents from every submitted run, although documents
with existing relevance judgement were not re-assessed. A signi�cant number of new relevant
documents were found in the second round of assessment, indicating that it was a worthwhile
endeavor2.

3 TREC-8 results

Fourteen groups participated in the TREC-8 �ltering track and submitted a total of 55 runs. This
represents roughly a 20% increase over the TREC-7 participation level.

groups # runs

Total 14 55

----- -- --

adaptive 8 33

batch 6 11

routing 6 11

Here is a list of the participating groups, including [abbreviations] and (run identi�ers). Participants
will generally be referred to by their abbreviations in this paper. The run identi�ers can be used
to recognize which runs belong to which groups in the plotted results.

� City Univ. London / Microsoft [City] (plt8f)

� CLARITECH Corporation [CLARITECH] (CL99)

2As reported in the overview presentation of the TREC-8 Conference by Ellen Voorhees.

Organization Runs 1st yr? Adaptive Batch Routing

City plt8f - - X X
CLARITECH CL99 - X X -
DSO dso99r X - - X
ICDC S2N2 X - - X
IRIT Mer8 - - X X
KDD kdd8f X X - -
Microsoft ok8f - X - -
CUNY pir9 - X X X
Rutgers-K Ant - X X -
Seoul Scai8 X - X -
TNO uttno8 - X - -
UIowa IOWAF - X - -
UMass INQ - X - -
UMaryland umr X - - X

Table 1: Summary of task participation (X = participant).

� DSO National Laboratories, Singapore [DSO] (dso99r)

� Informatique-CDC - Groupe Caisse des D�epôts / ESPCI [ICDC] (S2N2)

� IRIT / University of Toulouse (IRIT) (Mer8)

� KDD [KDD] (kdd8f)

� Microsoft Research - Cambridge [Microsoft] (ok8f)

� Queens College CUNY [CUNY] (pir9)

� Rutgers University [Rutgers-K] (Ant)

� Seoul [Seoul] (Scai8)

� TNO-TPD / Univ. Twente [TNO] (uttno8)

� University of Iowa [UIowa] (IOWAF)

� University of Massachusetts Amherst [UMass] (INQ)

� University of Maryland [UMaryland] (ume)

Table 1 summarizes the tasks each group participated in and whether or not this is their �rst year
participating.

3.1 Summary of approaches

In this section, we present a one-paragraph description of the techniques used by each of the groups
in their TREC-8 experiments. Essentially, this information is just a summary of the �nal papers.
The goal is to enable readers to quickly identify the papers they wish to read and to provide
background information to motivate the commentary on the evaluation results which follows. We

were unable to �nd �nal papers for IRIT, Rutgers-K, Seoul, and UMass at the time this document
was written.

City participated in batch �ltering and routing. They focused on measuring the e�ciency of
their Pliers system for text �ltering using an architecture of 16 Pentium II machines in parallel.
Their routing system is based on the Okapi TREC-5 strategy of partitioning the training set into
two parts: one for term extraction and one for term selection. Their system indexed the training
set (FT91-92) in 5 minutes and �ltered the test set in less than 11 minutes.

CLARITECH participated in adaptive and batch �ltering. For TREC-7, they concentrated on
threshold selection and updating. For TREC-8, they added pro�le-speci�c updating (as opposed to
their former strategy of updating all pro�les at the same time after a batch of documents has been
processed) and worked to optimize term selection and the pro�le scoring function. They chose to
update each pro�le individually every n (usually 2 or 4) documents retrieved or after a �xed amount
of time has passed. The former update allows the system to quickly take advantage of new training
data (and improved performance) while the latter update allows the system to make adjustments to
pro�les which have retrieved no documents (and had mixed results). They also found that changing
the terms in the pro�le in response to new training data improves performance even though it makes
accurate threshold calibration more di�cult.

DSO participated in routing. They select terms using the AT&T TREC-6 routing method
then assign weights to the terms using a specialized perceptron learning algorithm (dso99rt1).
Their second run (dso99rt2) merges the results of perceptron learning with Dynamic Feedback
Optimization.

ICDC participated in routing. Each document is initially represented by terms which have
a high frequency in the document relative to their frequency in the corpus. In order to reduce
correlation among previously selected terms, a Gram-Schmidt orthogonalization technique is used
to �nd the most descriptive term at each step, given the terms already chosen by the model. The
learning algorithm is a linear neural network with early stopping to reduce over�tting.

KDD participated in adaptive �ltering. They de�ne the contribution of a term to the similarity
of a query document pair as the di�erence between the similarity scores with and without that
term. Words with negative scores are prime candidates for query expansion. The basic �ltering
model is Rocchio relevance feedback with terms also weighted and selected as a function of their
contribution as de�ned above.

Microsoft participated in adaptive �ltering. Their basic system uses Okapi term weighting with
no query modi�cation or term reweighting based on feedback data. Initial thresholds (probability
estimates) are set via logistic regression on a separate training set of documents and topics. The
probabilities are a function of the retrieval score, the average score of the top 1% of retrieved
documents (also initially estimated from the training set), the maximum possible score, and the
length of the query. The thresholds are set low initially to allow more pro�le learning. Documents
are processed in weekly batches and the intercept term in the regression is updated. In general,
they �nd that starting with higher initial thresholds works better.

CUNY participated in all three tasks. For adaptive �ltering, they concentrate on threshold
updating. Their system de�ned a starting threshold (Thi), a lower bound threshold (Tlo), a
precision threshold (G), and a selection rate threshold (SRT). The current threshold T is updated
every 2000 documents. If no relevant docs have been seen, the current threshold (T) is decreased
if the proportion of documents retrieved is less than SRT, but never less than Tlo. Otherwise, the
threshold is increased if the precision of the current retrieved set is less than G and decreased if
precision is greater than G. For batch Filtering and Routing, CUNY's Pircs system uses genetic
algorithms to select and modify multiple pro�les. Logistic regression is used for threshold selection.

TNO participated in adaptive �ltering. They use a probabilistic retrieval model which assumes

that the user generates the query from an ideal internal representation of a relevant document.
The initial thresholds are set to a large multiple of the probability of selecting the query from a
random document. Each time a document is selected for a pro�le, the threshold is adjusted to a
value slightly lower than the one which achieves maximum performance on the retrieved document
set. The model de�nes a relevance weight for each term (ranging from 0 to 1) which is updated for
new data using the EM algorithm.

UIowa participated in adaptive �ltering. They use a dynamic clustering approach with two
acceptance thresholds. The �rst acceptance threshold is based on similarity to the topic. All
documents scoring higher than this threshold are dynamically clustered. When a cluster's similarity
�rst exceeds a second visibility threshold, the most recently retrieved document is sent to the user.
Clusters are then tagged as relevant or not relevant based on the assessment of this document, and
future documents from relevant clusters are also passed on to the user. A document judged not
relevant in a relevant cluster spawns an independent non-relevant cluster.

UMaryland participated in routing. They are interested in using Latent Semantic Indexing
(LSI) for collaborative �ltering. Routing queries are constructed by relevance feedback and then
an LSI dimension reduction is performed in the query space. The goal is to �nd and reuse common
structure in the query set. They submitted one run based on relevance feedback alone (umrqz) and
one run with relevance feedback plus LSI (umrlsi). Overall, LSI tended to slightly hurt performance,
perhaps because there is minimal topic overlap in the TREC-8 query set.

3.2 Evaluation results

Figures 1-8 summarize the evaluation results for the TREC-8 �ltering track. Not all runs appear
on all graphs due to scaling problems. Missing runs scored below the lower bound on the vertical
axis. There are three di�erent types of graph. Figures 1-2 and 6-7 plot average scaled utility for
a range of values for the lower bound. The horizontal axis represents the number of non-relevant
documents used to de�ne the lower bound (logarithmic scale). The vertical axis represents the
di�erence in average scaled utility between each system and the baseline (retrieving no documents
at all). Therefore, the baseline is represented by the straight horizontal axis marked with index
points for the lower bound. Figures 3-5 plot average scaled utility by year for adaptive �ltering.
Only a small fraction of the documents come from 1991, so it can be ignored. The lower bound in
these plots is �xed (the value of s is shown at the bottom of the plot). Figure 8 shows the average
uninterpolated precision scores on the left side of the plot. For the ride side, a system's score is
replaced by its rank with respect to that topic, and these ranks are averaged across topics. The
results are then rescaled to cover the same range as the raw scores.

The reader will note that there are no plots for non-linear utility. Only two groups submitted
runs optimized for these measures, one by CLARITECH for NF1 and adaptive �ltering, one by
IRIT for NF1 and batch �ltering. Therefore, there are no meaningful comparisons that can be
made. We had hoped that the non-linear utility functions would do a better job of equalizing
the size of the retrieved sets. However, a comparison of the variation in the size of the retrieved
set between CLARITECH's NF1 run and their four LF1 runs shows that there is no signi�cant
di�erence. Given the lack of interest in the non-linear utility functions, it is unlikely that this
experiment will continue next year. several groups expressed the sentiment that the non-linear
utility functions do not represent a good user model for �ltering.

Figure 1 shows average scaled utility for the LF1 function and the adaptive �ltering task. This
plot demonstrates that the LF1 function is a very challenging standard, as none of the systems
manage to beat the baseline. Most of the lines do not cross, indicating that relative system perfor-
mance changes very little as a function of the lower bound. The convergence of lines as the lower

bound increases is a natural phenomenon caused by the fact that the possible range of scores is
much larger, therefore the actual scaled scores will cluster in a smaller part of the space. This
pattern will be observed in all plots of this type. The two most successful runs (IOWA-2 and
TNO-1p) owe their success to their extremely conservative document selection strategies. Figure 2
shows average scaled utility for the LF2 function and the adaptive �ltering task. The task here is
simpler, and �ve systems consistently beat the baseline.

Figures 3 and 4 show average scaled utility for the LF1 function and adaptive �ltering broken
down by year. The di�erence between the two �gures is the scale of the vertical axis. In addition,
the TNO and CLARITECH runs were averaged in Figure 3 to avoid crowding the display at the
larger scale. All systems start below the baseline in 1992, due to the need to calibrate thresholds
by retrieving a few documents with little prior information about the odds that they are relevant.
It is encouraging to see that by 1993 six di�erent runs are above the baseline and this pattern
continues into 1994. However, there are striking di�erences in system behavior in these plots. We
can distinguish three di�erent patterns in this plot. CL99afL1(b,c) and uttno8lf1 improve gradually
and consistently over time. CL99afL1(a,d) and uttno8lf1(f,p) improve signi�cantly in 1993 and then
fall back slightly in 1994. Microsoft (ok8f), and to a lesser extent UMass (INQ) and UIowa, do more
poorly in 1993 but recover nicely in 1994. This indicates that learning behavior di�ers substantially
from system to system over time.

Figure 5 shows average scaled utility for the LF2 function and adaptive �ltering broken down
by year. We see similar patterns to Figure 4, except that most systems are well above the baseline
in 1993 and 1994. Note that the utility scores were scaled independently by year. This means that
the scores are not additive, i.e. you can't add up the scores for a system in Figure 5 and get the
score in Figure 4 at the same lower bound. This is because the upper bound is di�erent for each
plot. In hindsight, it might have made more sense to scale once and then divide up the score by
year.

Figures 6 and 7 show average scaled utility for the LF1 and LF2 functions respectively and
batch �ltering. Almost all systems score well above the baseline. Figure 8 shows the average
uninterpolated precision and average scaled rank for routing systems.

3.3 Utility vs. Other Measures

The evaluation results for adaptive and batch �ltering presented in the previous section are all
based on scaled utility. In order to give a broader view of system performance, we look at a number
of alternative measures in Table 2 and Table 3 below. Scores are tabulated for the best run from
each of the �ve groups with the highest average scaled utility (U(s) = -100). The measures include
average size of the retrieved set, micro-averaged precision (precision of retrieved set as a whole),
total number of relevant documents retrieved, and the number of topics with utility score greater
than zero. We use micro-averaging for precision to avoid the problem of empty retrieved sets. It is
clear from the results that scaled utility hides a lot of important di�erences in system behavior.

The most striking pattern for LF1 is that scaled utility is inversely correlated with average
set size and the total number of relevant documents. In other words, retrieving more documents
and more relevant documents leads to worse performance. Even more surprising, uttnolf1p and
CL99afL1d have a higher precision and a higher recall than IowaF992 but receive a lower utility
score! This is because the precision threshold for LF1 is 0.4, and all systems retrieve with a precision
below this level. When a system fails to meet this threshold, each new document has a negative
expected utility, and retrieving more documents lowers the overall utility score. Therefore, higher
precision and higher recall does not always translate into better performance when evaluation is
based on utility. This particular property runs counter to most intuitive notions in information

Run u�50 Average Micro Avg Total # Topics
Name LF1 Set Size Precision Rel. LF1 > 0

Baseline 0.0 0.0 { 0 0
IowaF992 -0.012 3.5 0.32 57 10
uttnolf1p -0.015 5.7 0.36 102 11
CL99afL1d -0.025 10.0 0.36 180 11
INQ610 -0.071 17.4 0.31 266 12
ok8f311 -0.153 23.3 0.25 295 14

Table 2: Comparison of LF1 to other measures.

Run u�100 Average Micro Avg Total # Topics
Name LF2 Set Size Precision Rel. LF2 > 0

uttnolf2f 0.034 23.2 0.32 372 20
CL99afL2 0.025 11.3 0.35 197 17
INQ612 0.013 17.4 0.31 266 18
IowaF991 0.007 4.3 0.34 74 13
Baseline 0.0 0.0 { 0 0
ok8f321 -0.011 29.2 0.27 398 23

Table 3: Comparison of LF2 to other measures.

retrieval and may help explain why many people are uncomfortable with the utility measure.
For LF2, system behavior is more regular. Generally, the systems that retrieve more documents

with a higher precision score better. In this case, all the top-ranked systems exceed the LF2
precision threshold of 0.25. It is sobering to note that even for the easier LF2 function, the best
systems retrieve with positive utility on fewer than half the topics. For LF1, the best systems beat
the baseline on fewer than 30% of the topics!

It is also interesting to note that with the exception of TNO, there is much more similarity (in
terms of set size, precision, and number relevant) between runs from the same system for LF1 and
LF2 than between di�erent systems for the same utility function. This pattern is exempli�ed by
the success of INQ610, which appears to be the same run submitted for both utility measures! One
possible explanation is that many topics are highly insensitive to the choice of retrieval threshold
and that di�erences in pro�le construction are more important for changing the size of the retrieved
set. Most likely, this reects the fact that best performance for LF1 and LF2 for most systems on
most topics is to retrieve no documents, and a wide range of thresholds achieve this outcome.

4 General Commentary

Following the progression of system performance from TREC-7 to TREC-8 (or lack thereof!), it
is becoming increasingly clear that the adaptive �ltering task is too hard. Once again, no system
performed better than the baseline over all three years for the LF1 utility function. In other words,
it is better not to retrieve any documents according to this standard. Furthermore, systems with
higher precision and higher recall get a lower score, because they are unable to retrieve with high
enough precision. While systems are clearly ahead of the baseline for LF2, gains are concentrated
in fewer than half the topics. Looking at Figures 3-5, we realize that the situation is not as bad as
it �rst appears. Most systems su�er during the start-up phase but go on to beat the baseline quite
substantially in 1993 and 1994. However, the current utility functions (particularly LF1) simply

penalize too strongly against retrieving non-relevant documents early to allow systems to develop
an overall winning strategy.

This suggests a clear road for improvement in TREC-9. Next year, we propose to supplement
the topic statement with one or two positive training examples in order to give systems more
of a head start. In addition, we will �nd a topic set with a larger number of relevant documents.
The current TREC tasks favor highly conservative �ltering strategies which creates an environment
where there is little opportunity for adaptive learning. In addition, there is some interest in working
with evaluation measures based on di�erent user models, such as: �nd n relevant documents as fast
as possible or return no more than k documents per unit time. We are strongly considering moving
to a text categorization test collection for TREC-9, to give us more exibility in topic selection
and to reduce the assessment load for NIST. This will introduce new challenges, such as de�ning
an acceptable topic statement from category labels that may not be well de�ned.

When looking over the system reports, several clear patterns emerge. As suggested in our
commentary last year, it is important to take advantage of new training data as quickly as possible.
For TREC-7, most systems used batch updating, learning new pro�les and threshold simultaneously
for all topics every k documents �ltered. In TREC-8, the most successful systems are now updating
their pro�les independently with a much smaller batch ratio (usually 1 or 2 documents). Systems
like Okapi and Pircs, which still use large batches, have much more trouble learning rapidly in the
�rst year, a crucial period for determining overall performance. Di�erences in updating strategies
may explain two of the dominant learning behaviors found in Figures 3 and 4. These systems gain
more training data, which enables them to make more informed decisions later on, but not enough
to overcome the cost of all the irrelevant material passed on to the user. Given that people tend to
expect good results as soon as possible, this is not likely to be a winning strategy in a real �ltering
system.

As in TREC-7, most groups concentrate on optimizing their system's adaptive threshold setting
ability, rather than changing the terms or the term weights in the pro�le. Once again, the TREC-
8 task encourages highly conservative �ltering strategies, which limits the ability of systems to
adaptively learn better pro�les. Nonetheless, groups which run comparisons with and without
pro�le updating, such as CLARITECH and TNO/Twente, �nd that pro�le updating does improve
performance. We hope to encourage more work in this area by revising the task for next year.
Overall, the TREC �ltering track continues to grow and prosper and we look forward to welcoming
new participants next year.

Acknowledgements We give our thanks to all the people who have contributed to the develop-
ment of the TREC �ltering track over the years, in particular David Lewis, Karen Sparck Jones,
Chris Buckley, Paul Kantor, Ellen Voorhees, R.W. Hutchinson, Djoerd Hiemstra, the TREC pro-
gram committee, and the team at NIST.

References

[1] I.J. Good. The Decision Theory Approach to the Analysis of Information Retrieval Systems.
Information Storage and Retrieval Systems, 3:31{34, 1967.

[2] David A. Hull. The TREC-6 Filtering Track: Description and Analysis. In The 6th Text
Retrieval Conference (TREC-6), NIST SP 500-240, pages 45{68, 1998.

[3] David A. Hull. The TREC-7 Filtering Track: Description and Analysis. In The 7th Text
Retrieval Conference (TREC-7), NIST SP 500-242, pages 33{56, 1999.

[4] David Lewis. The TREC-4 Filtering Track. In The 4th Text Retrieval Conference (TREC-4),
NIST SP 500-236, pages 165{180, 1996.

[5] David Lewis. The TREC-5 Filtering Track. In The 5th Text Retrieval Conference (TREC-5),
NIST SP 500-238, pages 75{96, 1997.

