BBN at TRECT:
Using Hidden Markov Models
for Information Retrieval

David R. H. Miller, Tim Leek, Richard M. Schwartz
BBN Technologies
Cambridge, MA USA
{tleek,dmiller, schwartz}@bbn.com

Abstract

We present a new method for information retrieval
using hidden Markov models (HMMs) and relate our
experience with this system on the TREC-7 ad hoc
task. We develop a general framework for incorporat-
ing multiple word generation mechanisms within the
same model. We then demonstrate that an extremely
simple realization of this model substantially outper-
forms tf .idf ranking on both the TREC-6 and TREC-
7 ad hoc retrieval tasks. We go on to present several
algorithmic refinements, including a novel method for
performing blind feedback in the HMM framework.
Together, these methods form a state-of-the-art re-
trieval system that ranked among the best on the
TREC-7 ad hoc retrieval task, and showed extraor-

dinary performance in development experiments on
TREC-6.

1 Introduction

Hidden Markov models have been applied success-
fully over the last two decades in a wide variety of
speech and language related recognition problems in-
cluding speech recognition [8], named entity finding
[2], optical character recognition [9], and topic iden-
tification [18]. For TREC-7, we applied this tech-
nology for the first time to the problem of ad hoc
information retrieval. On the TREC-7 ad hoc task,
our entry ranked among the top tier of systems in av-
erage non-interpolated precison [22]. Moreover, our

strong development results on TREC-6 hold out the
promise of even higher performance from a mature
HMM retrieval system.

In all HMM applications, the observed data (e.g.
audio recording, image bitmap) is modeled as being
the output produced by passing some unknown key
(e.g. words, letters) through a noisy channel. In the
ad hoc retrieval problem, we take the observed data
to be the query @, and the unknown key to be a de-
sired relevant document D. The noisy channel is the
mind of a user, who is imagined to have some fuzzy
notion of which documents he wants, and who trans-
forms that notion into the text of the query). Thus,
we compute for each document the probability that D
was the relevant document in the user’s mind, given
that () was the query produced, i.e. P(D is R|Q),
and rank the documents based on this measure.

Using probability models for information retrieval
has a history almost four decades long, beginning
with the work of Maron and Kuhns [10], and first
seeing real application in the “standard probability
model” pioneered by Robertson and Sparck-Jones
[14]. More recently, however, the introduction of
ad hoc constants and non-linear smoothing functions
have improved performance steadily at the cost of
straying further and further from the probabilistic
framework. What started as a reasonable probabil-
ity model is now masked by numerous heuristics. We
believe our new hidden Markov model is more closely
tied to its formal probabilistic underpinnings, mak-
ing it easier to extend and reason about. In addition,
the HMM’s performance is on a par with the best

automatic query systems.

The remainder of this paper is organized as fol-
lows: Section 2 lays out the basic theory of the hid-
den Markov model system and develops the formulas
for a simple realization of it; Section 3 presents exper-
imental results for the basic system on the TREC-6
and TREC-7 ad hoc tasks, and compares the system
with the familiar #f.idf ranking; Section 4 develops
several refinements of the basic HMM system, includ-
ing a novel method of blind feedback and a more com-
plex HMM which models the production of two-word
phrases; Section 5 briefly explores the difference in
performance between the TREC-6 and TREC-7 tests;
lastly, Section 6 offers some conclusions regarding the
system.

2 Probability Model

Given a user-generated query and a set of documents,
we wish to rank the documents according to the prob-
ability that D is relevant, conditioned on the fact that
the user produced @, i.e. P(D is R|Q). Applying
Bayes’ rule, we decompose this into quantities that
may be more easily estimated:

P(Q|Dis R) - P(D is R)
P(Q)

where P(Q|D is R) is the probability of the query be-
ing posed, under the hypothesis that the document
is relevant; P(D is R) is the prior probability that
document D is relevant; and P(Q) is the prior prob-
ability of query @ being posed.

Since P(Q) will be identical for all documents D,
we can safely disregard it for the purposes of sorting
documents. We will return in Section 4.4 to the ques-
tion of estimating the prior probability P(D is R),
but for now we shall assume that it, too, is constant
across all documents. We focus our attention on the
remaining term P(Q|D is R).

We propose to model the generation of a query by
a user as a discrete hidden Markov process dependent
on the document the user has in mind.! A discrete
hidden Markov model is defined by a set of output
symbols, a set of states, a matrix of probabilities for
transitions between the states, and a probability dis-
tribution of output symbols for each state. See [13]

P(Dis R|Q) = (1)

for an excellent introduction to hidden Markov mod-
els and their application. In the present application,
we take the union of all words appearing in the cor-
pus as the set of output symbols, and posit a separate
state for each of several mechanisms of query word
generation. For example, the states might represent
choosing:

e a word from the desired document.

e a word that shares a root with a word appearing
in the document.

e a word belonging to a lexicon specific to the top-
ics of the document.

e a word commonly used for information requests.

In fact, the model can be easily extended to accom-
modate a broad variety of word generation mecha-
nisms.

The process generates the words of the query by
traversing a random sequence of states (with prob-
abilities governed by the transition matrix), and at
each state producing a word according to the output
distribution of the state. Knowing the query that was
produced, we can easily compute the probability of
its being produced by each of the documents in the
corpus. This is the P(Q|D is R) term that appears
in Equation 1.

In order to use the HMM proposed, we must esti-
mate the transition probabilities and the output dis-
tributions for every document in the corpus, since
we have a separate HMM for each document. One
typically computes estimates of HMM parameters
with the EM (Estimation-Maximization) algorithm
[5, 3] using training examples, in this case docu-
ments paired with queries to which they were rele-
vant. However, such training examples are difficult
to come by, and in practice it is usually the case that
for the overwhelming majority of documents there are
no training queries available. In the face of this diffi-
culty we have proceeded by tying the transition prob-
abilities between states across all models (i.e. making
the transition matrix document independent), and by

1. In reality, a user rarely has only a single document in
mind. However, we assign a probability to each hypothesis
“the user has D in mind”, and rank the documents using that
probability.

P(q| GE)
General English

;

0
query__

Figure 1: A simple two-state HMM.

abandoning EM entirely in favor of simple unigram
estimation for the output distributions.

The number and purpose of the HMM states is left
open to the practitioner, as is the topology of the
transition graph connecting them. A very simple yet
remarkably powerful configuration is the two-state,
ergodic HMM shown in Figure 1. The first state
represents choosing a word directly from the docu-
ment; the second state represents choosing a word
from “general query English.” The transition proba-
bilities are constrained so that P(s; — s;) is the same
for all states s;, which allows us to introduce two null
states (states producing no output) and simplify the
model. The values of the transition probabilities are
estimated by EM. Since ag + a1 = 1, there is only a
single free parameter to be estimated, for which there
is usually ample training data.

The output distribution for the document state is
set to be a unigram on words appearing in the doc-
ument. Ideally, we would like the distribution of the
second state to be the unigram on words appearing in
all queries. However, since we do not have sufficient
training queries to estimate this distribution well, we
use the unigram of the entire document corpus as an
approximation to this ideal.

The two-state HMM shown in Figure 1 entails an
independence assumption which we believe to be a
reasonable approximation to the truth. In order to
capture context effects better, we later incorporate a
third state which models the production of bigrams.
Indeed, the HMM framework easily generalizes to in-

. query I \ .
s % pgip) o \,v
\/ [0

N

) oo

V’Q

Figure 2: An expanded multi-state HMM.

clude additional states for synonyms, topic specific
lexicons, etc., (see Figure 2). Sticking with the two-
state model for now, the formula for P(Q|D is R)
corresponding to Figure 1 is

P(Q|Dy is R) =

I1 (a0P(@|GE) + a1 P(q|Dy)). (2)
qeEQ

While this formula bears some resemblance to ones
used by Ponte/Croft [11] and by Hiemstra/Kraiij [7],
it involves a different smoothing term and is arrived
at through a different theoretical derivation. More-
over, when extended along the theoretic lines sug-
gested by the HMM (in Section 4) it diverges from
these other works considerably.

3 Baseline Performance

In this section we report on ad hoc retrieval exper-
iments we performed on the TREC-6 and TREC-7
test collections using the simple two-state system de-
scribed in Section 2. We indexed each corpus sep-
arately to create inverted index files recording the
number of times each word appears in each docu-
ment. For this indexing, we ignored case and used
Porter’s algorithm [12] to conflate words with the
same stem. We used a list of 397 “stop” words, and
replaced all occurrences of these words with the spe-
cial token *STOP* In addition, we replaced cer-

number of documents in the corpus containing ¢

tfidf (Q,D) = Y wif(g;,D)-idf (¢:)
:EQ
tf(q, D
wtf(q,D) = it) (D)
tf(q,D) + 05 + 157
log nﬂ
idf(q) = N+1
N = number of documets in the corpus
ng =
tf(g, D) = number of times ¢ appears in D
[(D) = length of D in words
al =

average length in words of a document in the corpus

Figure 3: Comparison tf.idf formula.

tain 4-digit strings by the token *YEAR *, suspected
dollar amounts by *DOLLAR*, and remaining digit
strings by *NUMBER*. We applied the same pre-
processing to the queries, and then excluded the stop
words from further computation.

Keeping these indices fixed, we ranked documents
for each query using the HMM measure of Equation 2,
and compared this ranking with that given by the
well known tf.idf measure. In particular, we used
the tf.idf measure presented in [15] and reproduced
in Figure 3. For the HMM transition probabilities, we
used the EM algorithm to train the value of a; = 0.3
using training examples from the TREC-4 collection.

Table 1 shows the non-interpolated average preci-
sion (AveP) achieved by each ranking measure for
a variety of test conditions. In all cases, the HMM
system dramatically outperforms tf.idf , exceeding it
by as much as 8 percentage points in absolute terms.
Others [23] have reported somewhat better perfor-
mance from this same #f.idf formula (though still not
nearly as high as the HMM’s performance?), which
we attribute to differences in indexing which would
degrade our results equally for both ranking formulas
(e.g. exclusion of different SGML sections, different
stop words, different stemming). Since we used the
same index for both systems in Table 1, we feel this
is a valid comparison.

It is puzzling that the score for the HMM on the
full query decreases considerably (3.2%) from TREC-

6 to TREC-7, whereas for tf.idf it increases slightly.
See Section 5 for a discussion of this point.

4 HMM Refinements

Most IR systems do more than just compare the
query words with the documents. This section de-
scribes four refinements we have added to our system:
blind feedback, bigram modeling, feature dependent
priors, and query section weighting. We describe and
present experimental results for each method sepa-
rately, and then present the results from using all the
methods together.

Blind Feedback

Blind feedback is a well known technique for enhanc-
ing the performance of a retrieval system by conduct-
ing a preliminary search with the user’s query, au-
tomatically constructing a new query based on the
top-ranked documents from that initial search, and
then conducting a second search with this new query
before presenting anything to the user. The Rocchio
algorithm [16] is perhaps the best known implemen-
tation of this idea, although there are many others as
well [17, 4, 24]. We have developed a novel algorithm

4.1

2. Dr. J. Xu reported 23.2 AveP on the TREC-6 full queries
and 22.6 on the TREC-T7 full queries in [23] using the formulas
in Figure 3 and the UMass INQUERY indexing.

TREC-6 TREC-7
TMDM | #f.idf | Diff || HMM | ¢f.idf | Diff
Title || 21.6 | 150 | +58 || 16.1 | 11.6 | +4.5
Desc || 181 | 11.9 | +6.2 || 183 | 14.2 | +4.1
Narr || 215 | 158 | +5.7 || 17.7 | 14.7 | +3.0
Full || 27.1 | 189 | +82 | 230 | 10.0 | +4.9

Table 1: HMM ranking vs.

for blind feedback that is particularly suited for use
with hidden Markov models.

Our approach is to augment the initial query with
words appearing in two or more of the top N doc-
uments, and to adjust the HMM transition proba-
bilities for each word to account for how unexpected
those appearances are. For example, seeing the word
“very” in 90% of the top N retrieved document car-
ries little information, while seeing “Nixon” in 90% of
those same documents is highly informative. We de-
velop a method below that captures this distinction
in a principled fashion.

For the two-state HMM, the transition probabili-
ties between the two states can be estimated by the
EM algorithm using training queries. For each obser-
vation, the EM algorithm distributes the count for
that observation to the two-states in proportion to
the likelihood of each state’s generating that word.
Since the document state typically contains only hun-
dreds of words, while the general English state con-
tains hundreds of thousands, whenever the document
state has a non-zero probability for a word it usually
dwarfs the probability from the general English state.
As a result, the estimate from EM for transition into
the document state is very close to that obtained by
calculating the probability that a query word is in a
document, given that the document is relevant. This

is?

P(¢' € D'|D" is rel. to Q') =
i Z Z |DI s.t. ql € DI,DI is I'el. to QI|
19| |Q'| - | D' is rel. to Q'] '

QEQqEQ

(3)

where mathcal@) is the set of available training
queries.
Using this insight as our motivation, we consider

tf .idf on TREC-6 and TREC-7.

the case where we have additional query terms taken
from the top N ranked documents from a preliminary
search for query). Given these top N documents,
we partition the complete corpus lexicon into N + 1
disjoint sets of words that we call m-intersections:

o ={ b @

for m =0,1,2,...,N. For those words q € I, g, it
is tempting to set the transition probability into the
document, state to be

w appearing in exactly m of the
top N documents for query @

P(¢ e D'|D"isrel. to Q',q' € I;h). (5)
But merely being in a high-order m-intersection is
not enough to be an important term. The most com-
mon words in the corpus like “the”, “a”, and “is”
would turn up in Iy g nearly all the time merely as
a result of their document frequency, and these carry
no information about the query Q.*

To compensate for this phenomenon, we condition
on and subtract out the baseline document frequency
of the words. We define df (w) to be the percentage
of documents in the corpus containing word w. We
then define

D' is rel. to Q'
ql € Im,Q’a df(ql) =z
(6)

3. Here and in discussions below, we use a prime (') to indi-
cate a variable that refers to a generic or training object, while
an unmodified variable refers to a specific or test object. Thus
Q' is some abstract query while @ is the current query posed
to the system.

4. The words “the”, “a” and “is” are in our stop list, of
course, but the same argument applies for any word with high
document frequency that is not in the stop list.

Vm.Q'x = P(Q' €D

TREC-6 | TREC-7
basic HMM 27.1 23.9
w/blind feedback 30.6 274
improvement +3.5 +3.5

Table 2: Performance gain from blind feedback.

and set the transition probability for query terms in
Im,o with a particular document frequency df (¢) to
be

(7)

In order to estimate this parameter, we take many
training queries and run a preliminary search with
each of them to obtain the top N ranked documents.
We then count the number of documents each query
term appears in. Since these are training queries, we
know the complete set of documents that are relevant
to each query. With this information we can estimate
Ym,Q',> by the formula

ao = Ym,Q,df (¢) — df (q).

‘ D' s.t. ¢ € D', D" is rel. to @',

: v Lo € o dfid) =2

|9] ‘ D' s.t. D' is rel. to Q'

QIGQ q/EQ’ ! .)
' q €Imq,df(d) ==

(8)

Blind feedback produced a large and robust per-
formance improvement. We used the top 6 docu-
ments from the first retrieval to form m-intersections.
We discarded the terms in Iy and I; unless they ap-
peared in the original query as well. We trained the
transition probabilities using the 50 queries of the
TREC-6 collection, and tested on both the TREC-
6 and TREC-7 collections. The improvement of 3.5
AveP on the TREC-6 queries (unfair test on train-
ing) carried over exactly to the fair test condition of
the TREC-T queries (see Table 2), indicating that we
have not overtuned our parameters to the training
data.

4.2 Bigrams

Many words have a distinctive meaning when used
in the context of another word, or in a larger
phrase. For example, a query using the phrase

“white house” is much more likely to be satisfied
by a document using those two words in sequence
than by one that has them separately. Other sys-
tems have attempted to model this phenomenon by
fusing selected phrases into a new single term (e.g.
“white_house”, “Pope_John_Paul II”) and using it ei-
ther instead of or in addition to the individual words
[1]. This approach, however, requires that all sen-
tences, whether in documents or queries, be seg-
mented into terms (e.g. is “white house secretary”
transformed into “white_house secretary” or “white
house_secretary”?).

We have taken an alternate approach, in which the
words of a query are modeled as always being gen-
erated one at a time, but the probabilities governing
this generation are conditioned on the identity of the
previous word generated. This is accomplished by
adding to our HMM a third, document-dependent
bigram state (see Figure 4). The output distribution
of this state® is given by

|Qn—IQn in D|
P D)=
(qn| y qn 1) |qn71 o D|

(9)
where ¢, is the current word of the query and ¢, 1
is the previous word. In the event that a document
does not contain the previous word of the query the
computation backs off to the two-state model, as the
denominator of the bigram state output probability
would be zero.

Generating a word via this state corresponds to the
user’s continuing a two-word phrase that was initi-
ated in the previous word. Since the bigram state
output probabilities are typically one to three or-
ders of magnitude greater than those in the unigram
states, a document containing a bigram that matches
the query gains a big boost in likelihood.

The three-state system has a second free param-
eter, as, in the transition probabilities. We opti-
mized the values for a; and as to maximize AveP on
the TREC-6 task, arriving at a; = 0.29,a> = 0.01.
Table 3 shows the effect of using the bigram-state
with these transition values for both the TREC-6 and

5. Strictly speaking, the output distribution of an HMM
state cannot be dependent on any of the previous outputs.
However the unorthodox HMM presented here is equivalent to
a strict HMM having one state per distinct word of the docu-
ment in place of the the single bigram state shown in Figure 4.

Document
uni gram

D ocument
bi gram

Figure 4: An HMM that models bigram production.

TREC-6 | TREC-7
basic HMM 27.1 23.9
w/bigrams 28.1 24.4
improvement +1.0 +0.5

Table 3: Performance gains from adding a bigram
state.

TREC-7 tasks. The fair gain, while solid, is only half
as big as the unfair improvement seen on the TREC-
6 task. As there are only two free parameters being
tuned, statistical variance between test sets seems a
more likely explanation for the discrepancy than over-
training.

4.3 Query Section Weighting

Examining the topics from past TREC evaluations,
it was clear that the words in the “Title” section were
more important than those in the remainder of the
topic (although it was unclear whether the “Descrip-
tion” section was more or less useful than the “Nar-
rative” section). In a more general context, a user
may wish to designate some portions of his query as
more important than others. To exploit this obser-
vation, we imagine a simple model in which a user
repeats a word multiple times in a query to indicate
its greater importance. Under this model, the “Title”
declaration is taken simply as shorthand for “repeat
these words v times”. Applying these repetitions to

TREC-6 | TREC-7
basic HMM 27.1 23.9
w/query weights 30.0 25.1
improvement +2.9 +1.2

Table 4: Performance gains query section weighting.

Equation 2 yields

P(Q|Dy is R) = [[(a0P(q|GE) + a1 P(g| D))"
qEQ

(10)

where v, is the weight (i.e. number of repetitions)
for the section of the query in which ¢ appears.

We optimized the weights to maximize AveP for
the TREC-6 task, which produced values of vy, =
5.7, Vgese = 1.2, Vpgrr = 1.9. The gain from applying
these weights to the TREC-6 task is unfairly opti-
mistic, but Table 4 shows that using these same query
section weights improves AveP by 1.2 on TREC-7 in
a fair test. In an interactive setting, it would be easy
to make term or section weights available to user ma-
nipulation.

4.4 Document Priors

In the discussion of Section 2, we made the simpli-
fying assumption that the prior probability of rel-
evance, P(D is R), is constant for all documents.
However, it is reasonable to think that longer docu-
ments may be more useful in general than short ones,
or that articles from a refereed journal may be more
informative than those from a supermarket tabloid.
With this in mind, we searched for features that could
predict prior relevance on TREC-6. The most predic-
tive features we found were source, length, and av-
erage word-length. Conditioning the document prior
on these features and estimating the marginals on
TREC-6 yielded a small gain for that corpus, but
this gain did not carry over to the fair test set of
TREC-7 (see Table 5). Nonetheless, we believe that
using a non-constant prior is a good idea and have
retained this mechanism in our system.

TREC-6 | TREC-7
basic HMM 271 23.9
w/non-constant prior 27.6 24.0
improvement +0.5 +0.1

Table 5: Performance with non-constant prior.

TREC-6 | TREC-7
basic HMM 27.1 23.9
w/blind feedback +3.5 +3.5
w/query weights +2.9 +1.2
w/non-constant prior +0.5 +0.1
w/bigrams +1.0 +0.5
| HMM w/all refinements | 33.2 [280 |

Table 6: Performance gains from refinements to the
HMM system.

4.5 Additivity of Refinements

Table 6 summarizes the improvements in AveP due
to the various extensions described in this section.
The first row shows AveP for the basic HMM sys-
tem, the next four rows show the gain from using
any one of the techniques by itself, and the final row
shows the result of using all four techniques together.
The overall improvement (+6.1 for TREC-6, +4.1 for
TREC-7) is roughly 77% of the sum of the individual
improvements (+7.9 for TREC-6, +5.3 for TREC-
7), indicating that the information captured by these
techniques are largely orthogonal to each other.

5 Discussion

Although the HMM system performed well in TREC-
7, it did not yield the extraordinary performance we
saw in our development work on TREC-6 (our AveP
of 33.2 is a full 4.4 points better than the best result
reported in the TREC-6 conference [20]). We have
tried to understand what accounts for the difference
in these results.

Considering first the performance of the basic
HMM presented Section 3, we are puzzled by the
observation that the score for the HMM on the full
query decreases considerably (3.2% absolute) from

TREC-6 to TREC-7, whereas for tf.idf it increases
slightly (see Table 1). In this comparison, the in-
dex was held fixed, as was the query pre-processing.
Only the ranking function was changed. Since both
measures use only exact matches on the stems in the
query, problems with stemming, stopping, or doc-
ument, handling should have affected both systems
equally.

We decomposed the results on TREC-6 and
TREC-7 into query groups having similar numbers
of relevant documents (see Table 7). We found that
the degradation of the HMM performance across
TREC’s is entirely localized to those queries that
have fewer than 20 relevant documents in the en-
tire corpus (34.5% AveP on TREC-6, 14.6% AveP
on TREC-7). Moreover, the standard deviation of
per-query AveP on all 50 queries for the HMM (23
on TREC-6, 19 on TREC-7) is considerably higher
than the per-query standard deviation for tf.idf (15
for TREC-6, 14 for TREC-7). In the end, statisti-
cal variance may be the only explanation for the ap-
parent inverse movement in results between the two
systems.

Since the overall AveP is an unweighted aver-
age across queries (not across documents), a small
change in the documents retrieved for the most spe-
cific queries has a disproportionate effect on the over-
all AveP. In search of a measure less sensitive to the
location of any single document, we computed the
weighted AveP for our systems:

o H(Q)AVeP(Q)
Sor@

where 7(Q) is the total number of documents in the
corpus judged relevant to (). As Table 8 shows,
the results for both ¢f.idf and the HMM are much
more stable using this measure than using the un-
weighted AveP. This is to be expected, since our
training is on query/relevant document pairs, with-
out regard to numbers of documents per query. Per-
haps a weighted training method is needed to opti-
mize the model’s performance when averaged across
queries rather than documents.

Looking next at the extensions and refinements
presented in Section 4, we see that the overall im-
provement was +6.1 for TREC-6, but only +4.1 for
TREC-7. Of course, many of the parameters of the

wAveP =

(11)

TREC-6 TREC-7
#rel docs | #q | HMM | tf.idf | #q || HMM | if .idf
0-20 15 34.5 20.4 9 14.6 13.5
21-80 17 25.5 18.4 19 30.5 23.4
> 80 18 22.5 18.2 22 22.3 17.5

|All queries| 50 || 27.1 |

189 | 50 || 240 | 19.0 |

Table 7: AveP as a function of total number of relevant documents for a query.

AMM | ¢ .idf
TREC6 | 22.1 | 180
TREC-7 | 23.2 | 189

Table 8: Weighted AveP for TREC-6 and TREC-7.

algorithms were tuned for the TREC-6 data, making
the performance there overly optimistic. To under-
stand better the effect of unfairly tuning to TREC-6,
we retuned the entire system to optimize performance
on the TREC-T7 test. The AveP increased by only 0.7
to 28.7. Put another way, a more realistic estimate of
our fair performance on TREC-6 is 33.2 — 0.7 = 32.5
AveP. This still leaves a gap of 1.3 between the gains
from refinements on TREC-7 and the gains from re-
finements on TREC-7, for which we have no expla-
nation at present.

6 Conclusion

We have presented a novel method for performing
information retrieval using hidden Markov models.
This framework offers a rich setting in which to in-
corporate a variety of techniques, both new and fa-
miliar. We have experimented with a system that
implements blind feedback, bigram modeling, query
weighting, and document-feature dependent priors.
Our official submission for the ad hoc task of the
TREC-7 conference achieved an AveP of 28.0 and
was among the top tier of systems [22]. Our own, un-
official test results on the TREC-6 ad hoc task show
an AveP substantially higher than any of the official
results reported in [20].

We believe that this approach holds great promise
beyond its already demonstrated success. The work

we have reported represents BBN Technologies’ ini-
tial foray into the field of information retrieval. The
system was conceived, developed, and debugged with
only 1.5 people working for eight months. Naturally,
there are many familiar ideas that we were unable
to incorporate into our system due to time and la-
bor constraints. Among the most glaring examples
are an absence of passage retrieval, explicit synonym
modeling, and concept modeling. We believe that
the HMM approach can be extended to accommo-
date these and many other ideas under a unified,
well-grounded framework. More work still needs to
be done.

References

[1] J. Allan, J. P. Callan, W. B. Croft, L. Ballestros,
D. Byrd, R. Swan and J. Xu, “INQUERY does
battle with TREC-6”. In D. K. Harman, editor,
Proceedings of the Sixth Text Retrieval Confer-
ence (TREC-6), NIST Special Publication 500-
240 (1996).

[2] D. Bikel, S. Miller, R. Schwartz, R. Weischedel,

“Nymble: a high-performance learning name-

finder.” Fifth Conference on Applied Natural

Language Processing, (published by ACL), pp

194-201 (1997).

[3] W. Byrne, Encoding and Representing Phonemic

Sequences Using Nonlinear Networks, Ph.D. Dis-

sertation, University of Maryland, College Park,

1993.

W. Cohen and Y. Singer, “Context-sensitive
learning methods for text categorization”. In Pro-
ceedings of the 19th Annual International ACM

SIGIR conference on Research and Development
in Information Retrieval, pp. 307-315, (1996).

[5] A. Dempster, N. Laird and D. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Al-
gorithm”, Journal of the Royal Statistical Society
(B), Vol. 39, No. 1, pp. 1-22, 1977.

[6] D. Harman, “Overview of the Fourth Text RE-
trival Conference.” In D. K. Harman, editor, Pro-
ceedings of the Sixth Text Retrieval Conference
(TREC-6), NIST Special Publication 500-236, pp.
1-24 (1996).

[7] D. Hiemstra and W. Kraaij, “TREC-7 working
notes: Twenty-One in ad-hoc and CLIR” In D.
K. Harman, editor, Proceedings of the Seventh
Text Retrieval Conference (TREC-7). Elsewhere
in this volume (1999).

[8] J. Makhoul and R. Schwartz, “State of the art in
continuous speech recognition” , Proc. Natl. Acad.
Sci. USA 92, pp 9956-9963 (1995).

[9] J. Makhoul, R. Schwartz, C LaPre, I. Bazzi, “A
script-independent methodolgy for optical char-
acter recognition.” Pattern Recognition, Vol 31,
No. 9, pp. 1285-1294 (1998).

[10] M. E. Maron and K. L. Kuhns, “On relevance,
probabilistic indexing and information retrieval.”
Journal of the Associations of Computing Ma-
chinery, 7, pp. 216-244 (1960).

[11] J. Ponte and W. B. Croft, “A Language Model-
ing Approach to Information Retrieval.” In Pro-
ceedings of the 21st Annual International ACM
SIGIR conference on Research and Development
in Information Retrieval, pp. 275-281, (1998).

[12] M. F. Porter, “An Algorithm for Suffix Strip-
ping.” Program, 14(3), pp. 130-137 (1980).

[13] L. Rabiner, “A tutorial on hidden Markov mod-
els and selected applications in speech recogni-
tion”, Proc. IEEE 77, pp. 257-286 (1989).

[14] S. E. Roberston, and K. Sparck Jones “Rele-
vance weighting of search terms.” Journal of the
ASIS, 27, pp. 120-146 (1976).

10

[15] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, M. Gatford, “Okapi at TREC-
3.” In D. K. Harman, editor, Proceedings of
the Third Text Retrieval Conference (TREC-3),
NIST Special Publication 500-226 (1995).

[16] J. J. Rocchio, “Relevance feedback in informa-
tion retrieval”. In The SMART Retrieval System—
Experiments in Automatic Document Processing,
pp- 313-323, Englewood Cliffs, NJ, 1971. Prentice
Hall, Inc.

[17] R. Schapire, Y. Singer, A. Singhal, “Boosting
and Rocchio Applied to Text Filtering”. In Pro-
ceedings of the 21st Annual International ACM
SIGIR conference on Research and Development
in Information Retrieval, pp. 215-223, (1998).

[18] R. Schwartz, T. Imai, F. Kubala, L. Nguyen,
J. Makhoul, “A maximum likelihood model for
topic classification of broadcast news.” Proc. Eu-
rospeech ’97, Rhodes, Greece, pp. 1455-1458
(1997).

[19] E. Voorhees and D. Harman, “Overview of the
Sixth Text REtrival Conference.” In D. K. Har-
man, editor, Proceedings of the Sixth Text Re-
trieval Conference (TREC-6), NIST Special Pub-
lication 500-240, pp. 1-24 (1998).

[20] E. Voorhees and D. Harman, “Appendix A: Ad-
hoc Results.” In D. K. Harman, editor, Pro-
ceedings of the Sixth Text Retrieval Conference
(TREC-6), NIST Special Publication 500-240,
Appendix A (1998).

[21] E. Voorhees and D. Harman, “Overview of the
Seventh Text REtrival Conference.” In D. K. Har-
man, editor, Proceedings of the Seventh Text Re-
trieval Conference (TREC-7). Elsewhere in this
volume (1999).

[22] E. Voorhees and D. Harman, “Appendix A: Ad-
hoc Results.” In D. K. Harman, editor, Proceed-
ings of the Seventh Text Retrieval Conference
(TREC-7). Elsewhere in this volume (1999).

[23] J. Xu. Personal communication, October, 1998
(1998).

[24] J. Xu and B. Croft, “Improving the Effective-
ness of Information Retrieval with Local Context
Analysis”, 1998. To appear in ACM Transactions
on Information Systems (1999).

