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0 Submitted Runs


unc7aal1, unc7aal2 – Category A, automatic ad-hoc task runs (long query)
unc7ias, unc7iap – interactive track runs


1  Introduction


In our TREC-5 ad-hoc experiment, we tested two relevance feedback models, an adaptive linear model and a probabilistic model, using
massive feedback query expansion (Sumner & Shaw, 1997).  For our TREC-6 interactive experiment, we developed an interactive
retrieval system called IRIS (Information Retrieval Interactive System1), which implemented modified versions of the feedback models
with a three-valued scale of relevance and reduced feedback query expansion (Sumner, Yang, Akers & Shaw, 1998).  The goal of the
IRIS design was to provide users with ample opportunities to interact with the system throughout the search process.  For example,
users could supplement the initial query by choosing from a list of statistically significant, two-word collocations, or add and delete
query terms as well as change their weights at each search iteration.  Unfortunately, it was difficult to tell how much effect each IRIS
feature had on the retrieval outcome due to such factors as strong searcher effect and major differences between the experimental and
control systems.


In our TREC-7 interactive experiment, we attempted to isolate the effect of a given system feature by making the experimental
and control systems identical,  save for the feature we were studying.  In one interactive experiment, the difference between the
experimental and control systems was the display and modification capability of term weights.  In another experiment, the difference
was relevance feedback by passage versus document.


For the TREC-7 ad-hoc task, we wanted to examine the effectiveness of relevance feedback using a subcollection in order to lay
the groundwork for future participation in the Very Large Corpus experiment.  Though the pre-test results showed the retrieval
effectiveness of a subcollection approach to be competitive with a whole collection approach, we were not able to execute the
subcollection retrieval in the actual ad-hoc experiment due to hardware problems.  Instead, our ad-hoc experiment consisted of a simple
initial retrieval run and a pseudo-relevance feedback run using the top 5 documents as relevant and the 100th document as non-relevant.


Though the precision was high in the top few documents, the ad-hoc results were below average by TREC measures as expected.
In the interactive experiment, the passage feedback results were better than the document feedback results, and the results of the simple
interface system that did not display query term weights were better than that of the more complex interface system that displayed
query term weights and allowed users to change these weights.  Overall interactive results were about average among  participants.


2 Key Components of IRIS


2.1 Text Processing


IRIS processes the text first by removing punctuation, and then excluding the 390 high-frequency terms listed in the WAIS default
stopwords list as well as “IRIS stopwords,” which are defined as all numeric words, words that start with a special character, words
consisting of more than 25 non-special characters, and words with embedded special characters other than a period, apostrophe,
hyphen, underline, or forward or  backward slash.  The IRIS stopwords definition was arrived at by examining the inverted index and
identifying low frequency terms that appeared meaningless.  The removal of IRIS stopwords reduced the number of unique terms by
over 25% (401,423 to 295,257 in the Financial Times collection), which can effect considerable savings in machine resources.  Such
savings can  be a significant factor when dealing with massive collections.


After the initial processing step described above, IRIS conflates each word by applying one of the four stemmers implemented in
the IRIS Nice Stemmer module,2 which consists of a simple plural remover (Frakes & Baeza-Yates, 1992, chap. 8), the Porter stemmer
(Porter, 1980), the modified Krovetz inflectional stemmer, and the Combo stemmer.  The modified Krovetz inflectional stemmer
implements a modified version of Krovetz’s inflectional stemmer algorithm (Krovetz, 1993) and restores the root form of plural (“-s,”
“-es,” “-ies”), past tense (“-ed”), and present participle (“-ing”) words, provided this root form is in our online dictionary.  Though this


                                                
1 A prior version of IRIS was developed by Kiduk Yang,  Kristin Chaffin, Sean Semone, and Lisa Wilcox at the School of Information
and Library Science (SILS) at the University of North Carolina.  They worked under the supervision of William Shaw and Robert
Losee.
2 Nice stemmer was implemented by Kiduk Yang, Danqi Song, Woo-Seob Jeong, and Rong Tang at SILS at UNC.







stemmer’s conservative conflation approach can be advantageous over suffix-removal stemmers that can adversely affect precision by
overstemming, it can also cause lower recall by understemming, since the morphological variations targeted for conflation are few.
The Combo stemmer attempts to minimize the disadvantages of both understemming and overstemming by taking as the final result the
shortest whole word (i.e., word that appears in a dictionary) returned by the three stemmers.  For example, the Krovetz stemmer does
not conflate “disappointment” and “goodness,” and the Porter Stemmer overconflates “ponies,” “agreed” and “troubling” to “poni,”
“agre,” and “troubl,” but the Combo stemmer correctly stems these words to “disappoint,” “good,” “pony,” “agree,” and “trouble.” 3


Unfortunately, the Combo stemmer’s computational cost is very high due to its multiple dictionary lookup per word.  Given the
resource limitations at SILS relative to the size of the TREC-7 collection and the fact that the effectiveness of the Combo stemmer has
not yet been fully tested, we opted for the modified Krovetz stemmer as the default stemmer for the TREC-7 experiments.


2.2  Phrase Construction


In our TREC-6 experiments, we constructed a statistically significant, two-word collocation index by extracting co-occurring word
pairs within a window of 4 words (Haas & Losee, 1994; Losee, 1994) and selecting those that co-occur with statistically significant
frequency (Berry-Rogghe, 1974).  Though this collocation index worked very well in some cases, its overall effect on retrieval
effectiveness did not appear to be significant (Sumner et. al., 1998).  Furthermore, the computational cost of constructing the
collocation index was quite high.


Consequently, we tried another approach to constructing a phrase index in TREC-7.  Using the online dictionary and the clause
recognition algorithm built into the Nice Stemmer, we constructed a two-word noun-noun phrase index by first extracting adjacent
word pairs of noun and proper noun combinations within a clause,4 and then discarding the phrases occurring 20 or less times in the
collection to reduce indexing time and to conserve computer resources.  The phrase occurrence frequency threshold of 20 was arrived
at by selecting the number that produced the phrase index whose size was most comparable to that of the collocation index.  To
augment the proper nouns in the online dictionary, all capitalized words not occurring at the beginning of a sentence were considered
to be proper nouns.  Since the Krovetz stemmer does not conflate hyphenated words, hyphenated words were broken up and stemmed
by the simple plural remover before the noun-noun phrase construction module was applied.  Hyphenated words in their raw form (i.e.
as they appear in documents sans punctuation) were added to the index as well.


2.3  Ranking Function and Term Weights


IRIS ranks the retrieved documents in decreasing order of the inner product of document and query vectors,
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where qk is the weight of term k in the query, dik is the weight of term k in document i, and t is the number of terms in the index.  We
used SMART Lnu weights for document terms (Buckley, Singhal, Mitra, & Salton, 1996; Buckley, Singhal, & Mitra, 1997), and
SMART ltc weights (Buckley, C., Salton, G., Allan, J., & Singhal, A., 1995) for query terms. Lnu weights  attempt to match the
probability of retrieval given a document length with the probability of relevance given that length (Singhal, Buckley, & Mitra, 1996).
Our implementation of Lnu weights was the same as that of Buckley et al. (1996, 1997) except for the value of the slope in the formula,
which is an adjustable parameter whose optimal value may depend, in part, on the properties of the document collection.


According to the pre-test experiments, an Lnu slope of 0.5 performed best with feedback, especially when using both single term
and phrase indexes.  In initial retrieval without any feedback, however, a slope of 0.2 or 0.3 showed best results.  Based on these
findings, we used a slope of 0.3 in the ad-hoc experiment to optimize the initial retrieval results, but used a slope of 0.5 in the
interactive experiment to optimize performance with feedback.


2.4  Feedback Models


2.4.1  Adaptive Linear Model


Currently, the default relevance feedback model of IRIS is the adaptive linear model  (Wong & Yao, 1990; Wong, Yao, Salton, &
Buckley, 1991).  The basic approach of the adaptive linear model, which is based on the concept of the preference relation from
decision theory (Fishburn, 1970), is to find a solution vector that, given any two documents in the collection, will rank a more-
preferred document before a less-preferred one (Wong et al., 1988).


The goal of the adaptive linear model, in essence, is to construct a query vector that ranks the entire document collection
according to the user’s preferences.  Since the user’s preferences are not usually known for the whole collection, however, we can only
create a solution vector for the training set T, which is the cumulative set of documents retrieved and evaluated by the user.  As
knowledge of the user’s preferences accumulates with relevance feedback iterations, one can expect the solution vector for T to more
accurately rank the entire collection (Wong & Yao, 1990).


                                                
3 For interactive comparison of these stemmers, please visit http://ils.unc.edu/iris/nstem.htm.
4 IRIS identifies a clause boundary by the presence of appropriate punctuation marks such as a comma, period, semicolon, question
mark, or exclamation mark.







The error-correction procedure we used to find a solution vector for T in our TREC experiments is based on  the procedure used by
Wong et al. (1991).  The error-correction procedure begins with a starting vector q(0) and repeats the cycle of “error-correction” until a
solution vector is found.  The error-correction cycle i is defined by


q(i+1) = q(i) + αb , (2)


where α is a constant, and b is the difference vector resulting from subtracting a less-preferred document vector from a more preferred
one.  (For details about how this difference vector is chosen, see Sumner et al., 1998.)  The choices for the constant α and the starting
vector q(0) are very important since they can influence not only the composition of the solution vector but also the number of error-
correction cycles needed to arrive at it  Different choices have been made for α and q(0) in our TREC-5, TREC-6, and TREC-7 experiments
(Sumner & Shaw, 1997, Sumner et al., 1998).


In the relevance feedback interface of IRIS, users can evaluate documents as “relevant,” “marginally relevant,” or “nonrelevant.”  By
adapting the concept of the user preference relation to extend the relevance scale from a binary to a three-valued scale, we constructed
the following formula for the starting vector.  Note that this formula can be adjusted for any multivalued relevance scale:
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where qrk is the query vector that produced the current ranking of documents; c0, c1, c2, and c3 are constants; Nnew rel, Nnew mrel, and Nnew


nonrel are the number of new relevant, new marginally relevant, and new nonrelevant documents respectively in the current iteration; and
the summations are over the appropriate new documents.  This formula is similar to the relevance feedback formulas used by Rocchio
(1971) and Salton and Buckley (1990).  A “new” document during a given search iteration is one that was not retrieved and evaluated
during a previous iteration.  Alternatively, it may also be a document that was retrieved and evaluated in a previous iteration, but whose
relevance judgement was changed in the current iteration.


Because every new document vector already contributes to the starting vector (Equation 3), we used a value of α = 0.5 (Equation
2) to reduce the influence of any one new document.  The value of c2 = 0.6 was chosen so that a marginally relevant document could
still contribute to the final query vector even after being subtracted in the error correction procedure (c2 - α = 0.1).  We set c1 = 1.2 so
that the influence of relevant documents would be twice that of marginally relevant ones and set c3 = 0.6 for internal consistency.
Though we used c0 = 1.0 in TREC-6 experiments, we adjusted it to the value of 0.2 in the TREC-7 interactive experiment to reduce the
influence of the initial query.  We noticed in our post-TREC6 experiments that the influence of the initial query tended to overshadow
the user feedback, and consequently set c0 = 0.2, which seemed to make the system more responsive to the user feedback.  In the ad-hoc
experiment, however, we used the value of c0 = 1.0 since the importance of pseudo-feedback for that task was viewed as minimal.


2.4.2  Probabilistic Model


In addition to the adaptive linear model, a variation of the binary probabilistic feedback model that accommodates three levels of
relevance judgments is implemented in IRIS.  As is the case with the adaptive linear model, this probabilistic model with the graded
relevance formula  (Yang & Yang, 1997) can be adjusted for any multivalued relevance scale including the binary relevance scale.


According to the TREC-7 pre-tests as well as our past TREC results, our implementation of the adaptive linear model performed
consistently better than that of the probabilistic model when using binary relevance feedback. The findings of the TREC-6 interactive
experiment regarding the comparative performances of the two feedback models using the three-valued relevance scale is inconclusive
due to other factors such as searcher effect.  Given these considerations and our resource limitations, we decided to exclude the
probabilistic model from the actual TREC-7 experiments.  The detailed description of the probabilistic model can be found in Sumner
et. al. (1998).


2.4.3  Passage Feedback Model


The conventional relevance feedback models assume the user’s relevance judgement, whether binary or multi-valued, to be about an
entire document.  The unit of a document, however, can sometimes be arbitrary, as in the case of web documents whose boundaries are
often determined for reasons of convenience or efficiency rather than content, or can contain subsections of various information
content as in Congressional Record and Federal Register documents.  The findings from passage feedback research (Melucci, 1998) as
well as from comments made by IRIS users at large indicate that determination of relevance is sometimes based on certain portions of a
document rather than the entirety of it.


To test out this theory in TREC-7 experiments, we implemented in IRIS a third relevance feedback model called the “passage
feedback model”.  The formula for feedback vector creation in the passage feedback model looks almost identical to the “Ide regular”
formula (Ide, 1971; Salton & Buckley, 1990), except where the document vector d is replaced by p, the passage vector.
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Since the normalization factor of the Lnu weight is based on document length, an inverse document frequency weight was used for the
passage vector p.


In the interactive setting of the IRIS passage feedback interface, the unit of passage is determined by the user, who can simply
highlight the relevant and nonrelevant portions of documents with a mouse.  Passage feedback can also be implemented by







automatically selecting passages with high frequencies of matching query terms, though the automatic determination of nonrelevant
passages is not possible with this approach.  Such automatic passage feedback approach may be useful if activated after the initial
feedback so as to expand the initial query with related terms.


The passage feedback approach differs fundamentally from the philosophy of the adaptive linear model and the probabilistic
model.  Regardless of whether a document or passage is used as the unit of feedback, the passage feedback model does not attempt, in
principle, to rank a document collection in the preference or relevance order defined by a training set.  Instead, the passage feedback
model, similar to conventional vector space models, simply expands the query vector to make it more “similar” to relevant passages
and “dissimilar” to nonrelevant passages.


3   Pre-test Experiments


In our TREC-7 pre-test experiments, we chose to examine the effects of 4 main system components of representation (single term vs.
phrases), term weighting (normalization slope), feedback model (adaptive linear vs. probabilistic), and feedback query expansion size
(full-expansion, 300 terms, 30 terms).  As a preparation for potential future efforts to scale up to massive document collections, we also
examined the effectivenss of relevance feedback using a subcollection.  The FT collection with TREC-6 queries and relevance
judgements was used in these experiments, and many system design decisions in both ad-hoc and interactive experiments were based
on the findings from the pre-test results.


3.1. System Component Tests


3.1.1 Experiment Design


Prior experiments, both in and outside of TREC, have shown the use of syntactic phrases to be only marginally effective (Salton, 1968;
Lewis, Croft & Bhandaru, 1989).  However, most of the findings were based on the performance of initial retrieval only and did not
investigate the effect of automatically expanding the feedback query with phrase index terms.5


Though Lnu weights with a slope of 0.2 proved effective in both TREC-4 and TREC-5 (Buckley et. al., 1996; Buckley, Singhal,
& Mitra, 1997), we found a slope of 0.3 to be more effective with respect to initial retrieval in our TREC-6 experiments (Sumner et. al.,
1998). As is the case with phrases, Lnu weight experiments did not investigate its effects on retrieval beyond the first feedback
iteration.


In our past TREC experiments, we compared the performances of the adaptive linear model (ALM) and probabilistic model (PM)
in relevance feedback, and though ALM generally outperformed PM, we noticed distinctly different retrieval patterns between the two
models, which warranted further investigation (Sumner & Shaw, 1997; Sumner et. al., 1998).


In TREC-6, we also compared the performance of a fully expanded feedback vector with that of a shorter feedback vector,
namely one with the top 250 positive-weighted terms and the lowest 50 negative-weighted terms.  Previous routing and adhoc pseudo-
feedback experiments in TREC have shown that effectiveness improves linearly with the log of the number of added terms, with the
point of diminishing improvement at 300 terms (Buckley et. al., 1995).  This was in direct contrast to our results in TREC-6, which,
though somewhat suspect due to a system bug, indicated superior performance of the fully expanded feedback vector over the 300 term
feedback vector.  However, the advantage gained by full expansion of the feedback vector was marginal and the shorter feedback
vector performed reasonably well given its size, which was about one tenth that of the full feedback vector.  In addition to reconfirming
our previous findings regarding feedback query size, we wanted to investigate the retrieval performance level of an even shorter
feedback query that consisted of the top 25 positive-weighted terms and the lowest 5 negative-weighted terms—just to see how much
gain in efficiency can be achieved without sacrificing too much in effectiveness.


In order to identify the optimum retrieval component combinations of representation, normalization weight, feedback model, and
feedback query size, one of us (Yang) conducted an experiment using  5 retrieval iterations (4 feedback iterations with a feedback
window of 20 documents) with 48 retrieval model combinations as outlined below.  A feedback window of 20 documents means that
the top 20 previously unretrieved documents of the current ranking are added to the training set.  A feedback window of 20 documents
and 5 retrieval iterations were chosen to simulate the capacity of a human searcher based on the data from TREC-6 experiments.


Representation Lnu slope Feedback model Feedback expansion
Single term
Single & phrase term


0.1
0.2
0.3
0.5


Adaptive Linear
Probabilistic


Full expansion
250p + 50n
25p + 5n


2 * 4 * 2 * 3 = 48 Retrieval Model combinations


The retrieval results of all the model combinations were then compared using optimum effectiveness (F) in the top 20 documents
retrieved as well as using standard TREC evaluation metrics.  We chose these evaluation measures because optimum F, which
represents the optimum performance level of the top 20 retrieved documents, and TREC metrics, which signify the overall performance
level of the top 1000 retrieved documents, tend to complement each other.


                                                
5 Here, routing and filtering experiments are not considered due to the different nature of those tasks and the ad hoc task.







TREC evaluation measures used were average precision across all relevant documents, R-precision,  and the total number of
relevant documents retrieved in the top 1000 documents.  Optimum F is the highest F value in all retrieval iterations, where F is
computed from recall and precision  (Shaw, 1986) by the formula,
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3.1.2 Results


The analysis of retrieval results by all evaluation measures used showed a consistent pattern of improved retrieval performance with the
larger feedback query.  The difference in performance between the 30 term feedback vector and the 300 term feedback vector, how ever,
was much greater than that between the 300 term feedback vector and the full feedback vector.  As a matter of fact, the reduction in
performance by limiting the feedback vector to 300 terms was almost negligible, whereas significant loss of performance occurred by
reducing the feedback vector to 30 terms.


Though there were slight variations across evaluation methods, an Lnu slope of 0.5 seemed to be most advantageous for ALM
and an Lnu slope of 0.2 seemed to perform best with PM.  Using phrases in feedback as well as single terms resulted in slightly
improved retrieval performances by both feedback models, which suggested that using phrases in feedback provides some utility
though less than one might hope for.


As was the case in our previous TREC experiments, ALM consistently outperformed PM across all evaluation measures.  The
difference between the two models was most prominent in the number of relevant documents retrieved in the top 1000 documents,
where ALM retrieved hundreds more relevant documents than PM.  Upon closer inspection of ALM and PM, we discovered a pattern
of “failure” by PM, where PM’s feedback query formulation strategy of selecting terms from relevant documents would stagnate the
performance of feedback when no more relevant documents could be found.  ALM, on the other hand, would continue expanding the
feedback vector in its attempt to find the solution vector (Wong et al., 1988; Wong et. al. 1991).


At this point, we devised the “Adaptive Probabilistic Model” (APM), which will keep adding terms from top-ranked non-relevant
documents until finding the solution vector that will rank a more-preferred document before a less-preferred one (Wong et al., 1988).
Due to time constraints, however, we did not engage in full-scale retrieval experiments with APM.  Instead we tested APM in a limited
fashion, which resulted in only a marginal improvement of retrieval performance.


3.2. Subcollection Tests


3.2.1 Experiment Design


One of the immediate challenges in the field of Information Retrieval is effective and efficient handling of massive document
collections.  When dealing with massive document collections, the conventional IR approach of ranking the entire document collection
by document-query similarity scores becomes extremely resource-intensive, especially with relevance feedback, where retrieval cycles
have to be repeated with expanded query vectors.


One way to deal with massive data may be to create a subcollection, which is small enough to be efficient and yet large enough to
contain most of the relevant documents.  Once such a subcollection has been created, we can not only refine the search with relevance
feedback at relatively small cost, but can also continue to refine and/or update the subcollection by periodically resubmitting to the
entire collection the reformulated query created using the subcollection.  The main question in subcollection IR is twofold;  First, how
do we create a subcollection with high enough recall and small enough size?  Second, is the retrieval performance of an optimum
subcollection competitive to that of the whole collection?  In order to investigate these questions, we explored various subcollection
creation methods to identify the optimum subcollection creation method, after which we compared its retrieval performance with that
of using the whole collection.


The first objective of subcollection creation is to maximize recall at some optimum document rank N, so that the subcollection is
small enough to be efficient while containing enough relevant data to be effective.  In addition to applying the optimum retrieval
component combinations identified in the system component tests, we implemented combinations of document-reranking methods to
retrieve relevant documents that may not necessarily contain any initial query terms.  Initial retrieval, being essentially a Boolean OR
retrieval, will only retrieve documents that contain at least one query term.  Thus, a poorly formulated initial query will tend to not
retrieve many relevant documents that may include only synonyms or related concept terms.


One way to overcome this problem is to expand the query vector with synonyms or related concept terms as well as using word-
stems to conflate the morphological variations.  Relevance feedback also expands the query vector indirectly with synonyms and
related concept terms often contained in the body of relevant documents, though the effect may not be as precise as using a thesaurus or
other such natural language processing methods.  Consequently, we experimented with expanding the initial query with noun-noun
phrases as well as expanding it by applying the “pseudo-relevance feedback” method of assuming that the top 5 documents are relevant
and the 100th document is non-relevant.  Variations on this method of expanding the initial query by  pseudo-relevance feedback (using
terms from the top n documents) have been used by top performing participants in past TREC ad-hoc experiments (Buckley et. al.,
1995; Voorhees & Harman, 1997).


In addition to query expansion by phrases and automatic feedback, we also tested query expansion methods by using passages6


with matching initial query terms.  Three variations of query expansion by passage feedback were tested by selecting terms from only


                                                
6 IRIS identifies a passage boundary by SGML tags or a clause break followed by a carriage return.







the “relevant” passages, terms from relevant passages and top-ranked “non-relevant” passages, and terms from all passages (both
relevant and non-relevant) in the top 100 documents retrieved.  The “relevance” of a passage is determined by an arbitrary threshold of
matching query term numbers in a given passage.  These subcollection creation methods along with the baseline method of initial
retrieval with the unexpanded original query were then investigated by comparing recall at various document ranks up to the rank of
21,000 (10 % of FT collection).


After identifying the optimum subcollection creation method and cutoff, we created 47 subcollections, one for each query7, and
recomputed their collection statistics, namely Lnu weights for documents, and ltc weights for queries.  We then performed 5 retrieval
iterations with a feedback window of 20 documents using selected retrieval models from the system component tests, and compared the
performance of subcollection retrieval with that of whole collection retrieval.  The same evaluation metrics used in the analysis of
system component test results were applied to evaluate the performance of subcollection retrieval.


3.2.2 Results


According to recall values at fixed document ranks, the top-performing subcollection creation method was  pseudo-relevance feedback
by ALM, though average recall (recall averaged over queries) at document rank 5000 was the same for the top 4 methods.  Interestingly
enough, the baseline method was one of the top 4 methods, performing only slightly below the methods of initial query expansion by
phrases and feedback by ALM.  The results of passage feedback methods (PFM) were disappointing.  However, poor performance of
PFM could be due to an improper threshold of “relevant” passage identification (e.g. passages with n or more query terms).  The
hypothesis that a relevant passage would include related terms and concepts is critically dependent on the correct identification of
relevant passages.  Since the top 4 subcollection creation methods all achieved average recall of 0.87 at 5000 documents, which is only
2.4% of the total FT collection, we chose the optimum cutoff at 5000 and decided on the simplest method (i.e. baseline initial retrieval
with single term queries) to create the subcollections.


The comparison of the subcollection retrieval results with the whole collection retrieval results showed an interesting difference
between ALM and PM.  The performance of PM using a subcollection was better than that of PM using the whole collection, whereas
ALM’s performance deteriorated slightly with subcollection retrieval.  Overall performance of ALM, however, was again superior to
that of PM, though the gap in performance between ALM and PM was much narrower in subcollection retrieval than whole collection
retrieval.


Different behaviors of ALM and PM may be attributed to fundamental differences in feedback query formulation between the
two models.  ALM starts out with the initial query vector and keeps adding and subtracting terms to find the solution vector, which is a
radically different approach from PM’s strategy of estimating the probability of term occurrence in all relevant/nonrelevant documents
from its occurrence characteristics in a training set.  ALM’s feedback vector is firmly anchored with the initial query terms and is more
resilient to improper and/or insufficient feedback evaluations, whereas PM’s feedback vector can be affected severely by bad relevance
judgements and small training sets.  It is therefore reasonable to assume that PM will perform better as the ratio of the training set size
to the document collection size increases, as in the case of the subcollection retrieval.


The overall results of relevance feedback using subcollections has shown it to be almost as effective as using the whole collection
while being much more efficient.  However,  by virtue of the fact that only the top 100 documents of various TREC runs are evaluated
for a given set of topics, the TREC test collection may be inherently put together to show high recall for the top N documents, given N
is sufficiently large enough.  Accordingly, it is difficult to tell how much of these good results using subcollections are due to TREC
bias, and whether the optimum subcollection creation method of using simple initial retrieval or ALM pseudo-relevance feedback at 2
or 3% of total collection cutoff will still be applicable in other instances.  Though high recall value at such a low rank (under 3% of the
total document collection) is somewhat suspect due to the potential bias introduced by the TREC pooling method of relevant document
identification (Voorhees & Harman, 1997), it is still reasonable to think that subcollection IR can be an effective as well as efficient
way to deal with the problem of massive document collections.


4 Ad-hoc Experiment


4.1 Research Question


As a natural consequence of our belief that the user is an integral component of a truly effective information retrieval system, our
approach to information retrieval centers on various ways to involve the user and then to effectively incorporate the user contribution
into the search process.  Thus, our main goal of the ad-hoc experiment was to explore methods of preparing the system for such an
eventuality.  More specifically, we wanted to examine a strategy for creating a subset of a document collection to be used in relevance
feedback.


One obvious advantage of using a subcollection is the reduced computational cost.  If it can be shown that the retrieval
effectiveness of using a subcollection is competitive to that of using a whole collection, then subcollection retrieval may be a desirable
strategy when iteratively querying (e.g. relevance feedback, query refinement) a  document collection (Sumner & Shaw, 1997) that is
massive or composed of distributed collections, where collection statistics for the whole collection are not known.  A less obvious
advantage of a subcollection might be its increased homogeneity.  Being more densely populated with relevant documents that are
likely to be topically similar, a subcollection may be more responsive to a refined query than a whole collection with diverse subject
matter.  For example, “court rulings on the use of peyote” queried against the entire Web document collection may retrieve documents
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about either courts or peyote, whereas the same query submitted to a subcollection of legal documents may boost those documents
specifically about court rulings on the use of peyote to the top of the document ranking (Sumner, Yang & Dempsey, 1998).


For these potential advantages to be realized, a subcollection has to be small enough to incur savings in computational cost while
at the same time contain enough relevant document to be effective.  Thus, we are interested in finding answers to the following
questions regarding subcollection retrieval strategy.


• What is the best way to create a subcollection?
• How effective is subcollection retrieval compared to whole collection retrieval?


The focus of our ad-hoc experiment, therefore, was on achieving high recall at some reasonable document rank in order to create an
effective and efficient subcollection for relevance feedback.


4.2 Research Design


The constitution of the ad-hoc collection compounds the subcollection question.  Since the ad-hoc collection is made up of four
document collections, subcollection creation methods can be applied to the document collections separately or as a whole.  If
subcollection creation methods are applied to individual collections, then the question of how the results should be merged must be
addressed.  In previous research on this “collection fusion” problem, various strategies were employed to compensate for the potential
incomparability of query-document similarity scores across collections (Voorhees, Gupta, & Johnson-Laird, 1995; Savoy, Calve, &
Vrajitoru, 1997).


Though the “raw score” merging method can be problematic when collection-dependent term weights (i.e. idf weight) cause the
retrieval scores of similar documents to vary in different collections (Dumais, 1993; Voorhees et. al., 1995), we thought longer queries
and massive retrieval window used for subcollection creation might mute its adverse effects.  Any advantages gained by more complex
retrieval strategies are likely to have less impact on subcollection creation, whose goal is to retrieve the bulk of relevant documents at
an acceptable document rank.  Ideally, these assumptions should be empirically tested by experimenting with exhaustive combinations
of subcollection creation, collection fusion, and various ad-hoc retrieval strategies, but we decided to test only a few subcollection
creation methods for the reasons of practicality and simplicity.  One of the overriding factors that influenced our research design in
TREC-7 was the machine resource limitations that restricted a large scale experimentation.  Besides, we figured if a simple method
could create an effective enough subcollection, we could forgo complex methods in favor of a simple one.


Therefore, we chose the two most simple and yet effective subcollection creation methods from the pre-test and applied them to
individual collections separately.  Subcollection creation methods tested were:


• unc7aal1: Collection fusion by raw score merging of the simple initial retrieval results without any feedback.
• unc7aal2: Collection fusion by raw score merging of the pseudo-relevance feedback results with the adaptive linear model using


the top 5 retrieved documents as relevant and the 100th document as non-relevant.


Both unc7aal1 and unc7aal2 were produced by first retrieving 10% of documents in each collection and merging the results by their
raw query-document similarity scores.


The second phase of our ad-hoc experiment, which we planned to do in a post-study, involved performing relevance feedback on
the subcollections by using the official TREC relevance judgments for the top 20 retrieved documents.  The results of relevance
feedback on a subcollection would then be compared with that on the whole collection to determine the relative effectiveness of
subcollection retrieval.


The system construct for the ad-hoc experiment was based on the system component pre-test results.  We used the document term
weight of Lnu 0.3 to optimize the initial retrieval results and allowed for the full feedback query expansion to maximize the feedback
effect.  We also heavily weighted the initial query in the starting vector formulation of the adaptive linear model (i.e. c0 = 1.0 in
Equation 3) to reduce the adverse effect of the pseudo-relevance feedback.  We did not create a phrase index for the ad-hoc experiment
since we thought its creation cost in time and machine resources far outweighed any potential benefit gained by using it.


4.3 Results


The TREC-7 ad-hoc collection consists of 130,471 FBIS, 19,8428 Federal Register, 210,158 Financial Times, and 131,896 LA Times
documents.  Each document collection was first processed individually to generate single-word indexes of 243,778 terms for FBIS,
117,743 terms for Federal Register, 295,257 terms for Financial Times, and 222,155 terms for LA Times collection.
Unfortunately, we experienced a hard disk problem that corrupted the entirety of TREC-7 data and disabled our main research
computer soon after we completed the first phase of our ad-hoc experiment.  We turned in the top 1000 retrieved documents produced
by subcollection creation runs of initial retrieval (unc7aal1) and pseudo-feedback with ALM(unc7aal2).  We are still in the process of
restoring the data and consequently, we were not able to conduct the second phase of our experiment to test the effectiveness of
relevance feedback using a subcollection.


According to TREC evaluation measures, which indicate the retrieval performance of the top 1000 documents only, the pseudo-
relevance feedback with the adaptive linear model did slightly better than the initial retrieval without feedback, though both runs
performed slightly below the median level of all the ad-hoc participants (Table 1).  As for the subcollection creation results, the smaller
and homogeneous FT collection results still held true for the larger and heterogeneous ad-hoc collection.  As can be seen in Table 2,


                                                
8 Using the corrected document tag <PARENT> instead of <DOCNO> reduced the number of Federal Register documents from 55,630
to 19,842.







there was very little difference in average recall between the two runs.  In both runs, the subcollections consisting of only two percent
(document rank 10,000) of the whole document collection contained over 80% of the relevant documents on the average.


Table 1. Performance Statistics of top 1000 documents


unc7aal1 unc7aal2 Best* Median* Worst*
Average Precision 0.1506 0.1618 0.4334 0.1822 0.0009
Number of Relevant
Documents Retrieved


2188 2264 3890 2481 79


* Best, Median, Worst of all TREC7 ad-hoc participants


Table 2. Recall at Document Ranks averaged over 50 Queries


Document Rank Average Recall by unc7aal1 Average Recall by unc7aal2
1,000 0.57 0.59
5,000 0.75 0.76


10,000 0.80 0.81
15,000 0.84 0.85
20,000 0.85 0.86
40,000 0.90 0.90


Closer examination of individual query results revealed some outlier queries with many relevant documents (e.g. queries 370,
389) or with possibly dissimilar relevant documents (e.g. query 373) that produced recall much below the average.  Though it is very
conceivable that more complex methods of collection fusion and/or ad-hoc retrieval methods may produce a subcollection with higher
recall at a smaller size, whether those methods can push the results of outlier queries beyond the “recall block” remains to be seen.


5 Interactive Experiment


5.1 Research Question


Feedback from IRIS users at large as well as those in TREC-6 include mixed response regarding the complexity of its user interface.
Some like the interactive nature of its interface throughout the search process, while others are taken back by the complexity of it.  One
of the most often mentioned IRIS interface components is its ability to display and modify term weights.  Most novice searchers are
confused by it, though some like “seeing how the system works” and the opportunity to intervene in the system process.


In addition to the users’ ambivalence, there is also the question of how the users’ term weight modifications will affect the
retrieval result.  Certainly, if the user does not understand the significance of term weights and modifies them inappropriately, the
search result will be adversely affected.  If the system’s search direction is amiss and needs to adjusted, however, user intervention by
term weight modification might be beneficial.


Another often discussed IRIS component is the relevance feedback interface, especially its three levels of relevance (i.e. “yes,”
“maybe,” and “no,” representing relevant, marginally relevant, and nonrelevant).  Users like the option of judging a document beyond
the dichotomous “relevant’ or “nonrelevant,” but they are not quite sure what a “marginally relevant” document should be.  The
question of what makes a document relevant is a fertile ground for research (Schamber, 1991; Barry, 1994).  In a prior research, we
investigated the relationship between the proportionality and the degree of relevance and found that the number of relevant passages in
a document corresponded directly with the degree of relevance awarded to the document by the user (Maglaughlin, Meho, Yang, &
Tang, 1998).  If the proportionality of relevance is an important factor in determining the relevance of a document, then the relevance
levels used by the system should be finely graded to better reflect the user’s evaluation of relevance.  One method of addressing this
aspect of relevance may be to use “passage feedback,” where passages instead of documents are used as the unit of relevance feedback.


Based on these observations, we asked the following questions in our TREC-7 interactive experiment.


• Does the display and modification option of term weights in an interactive retrieval system help or hinder the retrieval result?
• Is passage feedback an effective alternative to conventional “document” feedback?


5.2 Methodology


We learned from our TREC-6 interactive experience that it is difficult enough to gauge the effects of various contributing factors in an
interactive retrieval experiment without compounding the analysis by introducing numerous system features.  Consequently, we
attempted to isolate the effect of system features by keeping the experimental and the control system identical except in one aspect.


In one interactive experiment (unc7iap), the only difference between the experimental and the control system was the display and
modification capability of term weights.  In another experiment (unc7ias), the difference was relevance feedback by passage versus
document.  Both experiments used the same control system called “iriss” which did not have the term weight display.  The
experimental system in unc7iap, “irisa”, is essentially the standard IRIS with term weight display used since TREC-6, whereas the







experimental system in unc7ias, “irisp”, implements the passage feedback based on the “simple” interface (i.e. without term weight
display) 9.


All three systems use the same initial interface, but the initial query modification interface differs in the display of query terms.
Though all three systems offer the “suggested phrases” with which the user can supplement the initial query, iriss and irisp (Figure 1.1)
do not have the term weight display where the user can  change the term weights as in irisa (Figure 1.2).  Instead, the term display of
the simple interface offers check boxes users can click to include or exclude terms.  The feedback query modification interface is
structured in the same fashion (Figures 3.1 and 3.2).  In addition to the modification of existing terms, the feedback query modification
interface allows the user to add terms with emphasis, indicated by the plus or minus symbol (simple interface, Figure 3.1) or by term
weights (advanced interface, Figure 3.2).


Another major difference between systems occurs in the relevance feedback interface.  Both iriss and irisa employ the
conventional feedback mechanism of judging the relevance of a document as a whole (Figure 2.1), but this document feedback
mechanism is replaced by the passage feedback in irisp (Figures 2.2).  Instead of checking each document as yes, maybe, or no for
relevance, the user can simply copy and paste relevant and nonrelevant portions of documents into the appropriate passage feedback
box in irisp.


The system construct for all three systems was essentially the same except for the mechanism of passage feedback.  This is
described in the section 2.4.3.  Based on the system component pre-test results, we used document term weights of Lnu 0.5 to
maximize the relevance feedback influence and restricted the feedback query expansion to the 250 terms with highest positive weights
and the 50 terms with lowest negative weights in order to optimize the system for efficiency.  We also reduced the contribution of the
initial query in the starting vector formulation of the adaptive linear model (i.e. c0 = 0.2 in Equation 3) to allow the actions taken during
the feedback process to have a stronger influence on the direction of the search.  We also created a phrase index of adjacent noun-noun
pairs to use in suggesting potentially useful phrases for the initial query as well as in expanding the feedback vectors.


5.3 Results


The performance of IRIS measured by the mean instance recall (MIR) measure was slightly below the median of all interactive track
runs (Table 3).  Though the term weight display system of irisa had the highest MIR of all three IRIS systems tested, the passage
feedback system (irisp) showed more improvement when performance is compared pairwise within each experimental run.  The
superior performance of both irisa and irisp over iriss seems to indicate that searcher interventions help rather than hinder the retrieval
process.  Also, the high relative MIR of irisp suggests passage feedback is an effective alternative to conventional document feedback.


Table 3. Interactive Experiment Result Statistics


iriss vs. irisp iriss vs. irisa Best Median Worst
Mean Instance Recall 0.281 0.314 0.340 0.350 0.420 0.363 0.221


Tables 4.1 and 4.2 show the information about each searcher's background and search experience gathered by pre-study
questionnaires. All searchers had received a bachelor's degree and were enrolled in the School of Information and Library Science.
Three searchers had previous graduate degrees.  The searchers had been searching between 1 and 15 years, with 5 being the average.
Four of the 16 searchers were male.


In addition to the pre-search questionnaire, the searchers also completed a psychometric evaluation in an attempt to assess their
query formulation skills.  The psychometric evaluation scores, which ranged from 11 to 70, were computed by comparing the
searcher’s synonyms to a list of “correct” synonyms and scoring a point for each correct synonym they recorded.  When the searchers’
psychometric scores were compared to their average precision and recall values, little correlation was found between search results and
psychometric results (Table 4.3).  Additionally, there was almost no relationship found between the searchers’ performance and their
perceived knowledge of the topics, satisfaction with the search, search confidence, the ease of system use, or understanding of the task.
Also, there was almost no relationship found between  the searchers’ performance and their interactions with the systems (Table 4.4). It
was however interesting to note that the searchers using the simple and advanced systems, on average, evaluated and saved more
documents than those using the simple and passage systems. This may be due to the difficulty of the passage feedback interface.


                                                
9 Due to an oversight, the system names we submitted to NIST were not consistent across experiments.  For the sake of clarity and
consistency, we have changed the system name mappings in this paper and submitted the corrected mappings to NIST. Eight subjects
searched on irisa and iriss, and eight searched on irisp and iriss.







Table 4.1 Response Frequency of irisa/iriss Searchers on Pre-Study Questionnaire


No
Experience


Some
Experience


Great Deal of
Experience


1.Using a point-and-click interface 1 7
2.searching on computerized


library catalogs
1 3 4


3.searching on CD ROM systems 3 4 1
4.searching commercial systems 3 4 1
5.searching WWW search services 1 5 2
6.searching other systems 7 1


Never Once or
twice a year


Once or twice
a month


Once or
twice a week


Once or
twice a day


7.Searching frequency 3 5
Strongly
Disagree


Disagree Neutral Agree Strongly
Agree


8.Enjoys carrying out information
searches


5 3


Table 4.2 Response Frequency of irisp/iriss Searchers on Pre-Study Questionnaire


No
Experience


Some
Experience


Great Deal of
Experience


1.Using a point-and-click interface 1 7
2.searching on computerized


library catalogs
6 2


3.searching on CD ROM systems 1 2 4 2
4.searching commercial systems 1 1 4 1 1
5.searching WWW search services 1 7
6.searching other systems 6 1** 1*


Never Once or
twice a year


Once or twice
a month


Once or
twice a week


Once or
twice a day


7.Searching frequency 4 4
Strongly
Disagree


Disagree Neutral Agree Strongly
Agree


8.Enjoys carrying out information
searches


2 5 1


* OCLC ** Military


Table 4.3  Searchers’ Average Psychometric Score, Precision and Recall


irisa/iriss irisp/iriss
Average Psychometric score 35.37 39.25
Average Precision .7056 .7255
Average Recall .3447 .2975
Correlation between Psychometric score and Precision .442 .372
Correlation between Psychometric score and Recall .308 .646


Table 4.4  Searchers’ use of system features


Searchers System initial
terms


Fbk
Iteration


docs
saved


docs
evaluated


positive
terms


modified


negative
terms


modified


positive
terms
added


Negative
 terms
added


unc7iap irisa 4.857 3.600 15.829 30.629 0.143 0.057 1.543 1.143


unc7iap iriss 4.118 3.118 15.882 30.618 1.353 0.147 1.176 1.176


unc7ias iriss 4.079 2.947 2.921 13.342 0.105 0.000 2.211 1.632


unc7ias irisp 3.898 2.510 2.571 9.245 0.000 0.020 1.102 0.224
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Figure 2.2 Relevance Feedback Interface for irisp


Figure 1.1  Initial Query Modification Interface for iriss and irisp


Figure 2.1  Relevance feedback interface for iriss and irisa


Figure 1.2  Initial Query Modification Interface for irisa


Figure 3.1  Feedback Query Modification Interface for iriss and irisp Figure 3.2    Feedback Query Modification Interface for irisa






