

DSIR: the First TREC-7 Attempt

Arnon Rungsawang
fenganr@ku.ac.th

Department of Computer Engineering, Faculty of Engineering

Kasetsart University, Paholyothin Rd., Bangkok, Thailand.

Abstract

This paper describes our first large-scale retrieval attempt
in TREC-7 using DSIR. DSIR is a vector space based
retrieval system in which semantic similarity between
words, documents and queries, is interpreted in terms of
geometric proximity of vectors in a multi-dimensional
space. A co-occurrence matrix computed directly from
the collection is used to build the underlying semantic
space. We have implemented DSIR on a cluster of low-
cost PC Pentium-class machines, and chosen the PVM
message-passing library to manage our distributed DSIR
version. Although our first adhoc retrieval results are
quite poor in terms of recall-precision measure, we be-
lieve that more work and experiments have to be explored
in order to obtain more promising retrieval performance.

1 Introduction

For our first large-scale text retrieval attempt in TREC-
7 adhoc experiments, we use our own retrieval artifact,
called “DSIR”, a full-text retrieval system developed on
a cluster of PC Pentiums at the department of Computer
Science, Kasetsart University1. DSIR stands for “Dis-
tributional Semantics based Information Retrieval”, a re-
trieval model based on vector space. In this model, the
contents of retrievable objects, such as words, phrases,
sentences, documents, are represented in a unified way
by multi-dimensional vectors. These vectors are derived

1Indeed, this retrieval model has been devised during the author’s
Ph.D. study at ENST-Paris, in France [8].

from a co-occurrence matrix computed on textual collec-
tion being indexed. Semantic proximity among objects is
then simply interpreted in terms of geometric proximity
between corresponding vectors in the multi-dimensional
space, called the “meaning space”.

Former source codes of DSIR algorithm are written in
C, and Perl programming languages, running on a stan-
dard Unix machine. To achieve TREC-7 experiments,
we reexport the distributed DSIR to a cluster of low-
cost PC Pentiums, running Linux operating system. Each
PC is hooked together through a low-cost Ethernet local
area network. New distributed version is developed us-
ing PVM2 [2], a widely used message-passing software
package.

We organize this paper in the following ways. Section 2
gives a brief overview of fundamental concepts constitut-
ing DSIR model. Section 3 provides more detail about
distributed DSIR implementation. Section 4 presents
TREC-7 retrieval experiments and gives the results. Fi-
nally, section 5 concludes this paper.

2 DSIR Model

2.1 Basic Concept

Research in distributional semantics concerns with the
utilization of distributional information extracted from
textual collections to represent the meaning of linguistic

2Parallel Virtual Machine.

1

entities, e.g. words, phrases, sentences, documents. We
assume that there exists a correlation between meaning
of a word and its observable distributional characteristics
within particular contexts in a given language [6]. These
distributional characteristics can either be “occurrences”
of that word itself, or its “co-occurrences” with the other
words appearing within the documents.

In this retrieval approach, we are especially interested
in using word contexts to characterize the meaning of a
word [9, 10, 7, 8]. In general, every word has meaning.
Each contributes its own meaning, according to its occur-
rence, to the whole content of the document in which it
appears. Here, we choose “word” as an elementary entity
that holds the meaning. We consider tokens of length at
least two characters, beginning with an alphabet, exclud-
ing those words in a pre-defined non-significant word list,
as words (i.e. keywords or index terms) that constitute a
set of vocabulary chosen for indexing a document collec-
tion. Following the ”distributional structure” definition of
Harris [3, 1]:

”The distribution of an element will be understood as the
sum of all its environments.”,

we denote the “context” of a word as a knowledge con-
cerning its usage, i.e. how that word is used with the other
words in order to compose the content of a document. We
characterize word contexts on the basis of “co-occurrence
statistic”. This choice is made because it is a source of
distributional information that is easily extracted from a
document collection.

We then define the co-occurrence statistic of a word as
the number of times that word co-occurs with one of
its neighbors within a pre-defined boundary. We denote
this boundary, the “distributional environment”. Possible
distributional environments can be sentences, paragraphs,
sections, whole documents, or windows of k words.

The definition of this distributional environment is essen-
tial in our retrieval model. It is used to delimit the scope of
the contexts which are of interest. Co-occurrences mea-
sured within distributional environment defined by a sen-
tence will let the “local” context information of words
written in the documents to be observed. On the other

hand, co-occurrences measured within the environment of
a paragraph or the whole document will let the “global”
context information of words to be examined. A window
of k words can be used to extract the information between
local and global contexts.

A specialized case of representing a word based on its
contexts is that true synonyms will have identical con-
texts. Near-synonyms or related words will have just
similar contexts. On the other hand, in case of a poly-
semy, its contexts are different because its meanings are
in general invoked with different sets of words in differ-
ent contexts. Representing the contents of documents on
the basis of word contexts rather than just word occur-
rences thereby makes this retrieval model different from
other standard keyword-based approaches. Documents in
the collections should be retrieved without difficulty even
if a query is composed of synonyms or related terms.

In our computational model, we use a co-occurrence ma-
trix illustrated in Figure 1 to represent distributional in-
formation extracted from a document collection. Each
row in this matrix represents the distribution of a word
xi, while each column represents the distribution of an-
other wordyj which appears close toxi. The intersection
between rowi and columnj, i.e. themij , records the co-
occurrence frequency betweenxi andyj extracted from a
document collection.

1
y

2
y

3
y

J
y

x
3

x
2

x
1

x
I

32m

Figure 1: Co-occurrence matrix.

2

To represent meaning of a word according to its contexts
by a vector, we depict each word distributionxi corres-
ponding to rowi in the co-occurrence matrix by a vector
~v(xi) using the sequence offmij j j 2 Jg as its coordi-
nate. Each dimension of this vector is associated to word
yj representing the column of the matrix. We hereafter
call this vector, “co-occurrence vector”.

Therefore, if a co-occurrence matrix built from a docu-
ment collection consists of I rows representing I word
distributions, and J columns representing J word distri-
butions, the meaning of these I words can, by this way, be
projected onto a vector space of J dimensions by I corres-
ponding co-occurrence vectors. We name hereafter this
vector space, “meaning space”. Figure 2 is supposed to
illustrate the first three vector representations correspond-
ing to wordsx1; x2 andx3 in the first three-dimensional
meaning space associated with wordsy1; y2 andy3, de-
rived from a document collection.

3

3

2

1

2

1

y

x

y

x

x

y

Figure 2: Vector representation of words in a meaning
space.

2.2 Document Representation

A full-text document consists of words. Since we have
already represented the meanings of words as vectors in

the meaning space, our problem now is limited to define
the vector representation of a document on the basis of the
co-occurrence vectors of words of which that document is
composed. We propose to define the vector representation
of a document using the weighted vector sum of the co-
occurrence vectors corresponding to words occurring in
that document. Formally, if we choose I words, and J fea-
tures, to index a collection of N documents, a document
vectorn is written by:

~v(dn) =

� IX
i=1

w(fni)mi1;

IX
i=1

w(fni)mi2;

IX
i=1

w(fni)mi3; : : : ;

IX
i=1

w(fni)miJ

�

(1)

where w(fni) is the weighting function addressing the im-
portance of the wordi in documentn. Since a query can
be considered as a specific document, its vector represen-
tation is derived in the same way as those of documents.
Figure 3 below illustrates our document and query vector
representations.

3

2

1

y

y

y

i

q

d

Figure 3: Document representation.

The document vector representation defined in Equation
(1) can be seen as an approximation of semantic content of
a document, because the (weighted) vector sum averages

3

the direction of a set of vectors corresponding to words
constituting that document. The intuition underlying this
proposition is that a given document is composed of se-
veral words corresponding to different topics. If at least
some of the words in a document are frequently used to
described what the current topic is about then their corres-
ponding co-occurrence vectors will pull the final vector
sum towards the direction of that topic.

We also include the document vector components derived
from the conventional vector space retrieval model [11]
in our retrieval model. If we define~vDS as the compo-
nent vector written in Equation (1), and~vVS as the com-
ponent vector conventionally derived from the standard
vector space method, our final document vector represen-
tation can be written as follows:

~vDSIR = H : ~vDS + (1�H) : ~vVS (2)

The H parameter, which we call “hybrid parameter”,
takes the real value between 0.0 and 1.0. WhenH is de-
fined = 1.0, each document vector just takes the DS com-
ponent vector. On the other hand, whenH is defined =
0.0, each document vector is derived from conventional
vector space retrieval model.

2.3 Document Retrieval

Since words, documents, and queries are represented as
vectors in the same vector space, the basic retrieval ope-
ration in this retrieval model is then very simple; the query
vector is compared to every document vector, and the
documents whose vectors locate close to that query vector
in the meaning space are presented to the user as relevant
answer. These documents are returned in decreasing order
of their closeness.

In addition, other similarity comparison can be obtained
as well. For example, it is easy to combine traditional
keyword matching method during any retrieval opera-
tion since each keyword also has a corresponding co-
occurrence vector in the same meaning space. The user

can first use his keyword(s) as query to filter for ranked
documents which locate close to that keywords, and then
select one (or several) of them as his new query to find
the closest remaining documents of interest. In the same
way, traditional relevance feedback [4] can easily be inte-
grated into this retrieval model as well. During a retrieval
process, the user can choose certain terms or documents
(with weights) so that their vectors can simply be added
up to the query vector to search more documents in the
collection.

If we assume that there are chosen J distinct features for
representing documents in a collection, a given document
dn can then be written as a J-dimensional vector of the
form:

~v(dn) = (dn1; dn2; dn3; : : : ; dnJ); (3)

wherednj represents thejth element of document vector
n. In the same way, a vector representation of a given
queryq can be written as a J-dimensional vector of the
form:

~v(q) = (q1; q2; q3; : : : ; qJ); (4)

A typical vector similarity measure that we use in this re-
trieval model is the cosine similarity function. This func-
tion represents the cosine of the angle between vectors of
queryq and documentdn in a J-dimensional vector space,
which is written by:

sim (~v(q); ~v(dn)) =

JX
j=1

qj � dnj

vuut JX
j=1

(qj)
2 �

JX
j=1

(dnj)
2

(5)

4

3 DSIR Implementation

DSIR system consists of 4 parts; document preprocess-
ing, co-occurrence matrix computation, document vector
derivation, and document retrieval. We use a small Perl
routine to arrange TREC adhoc collections to be ready
for document preprocessing. Document preprocessing in
DSIR integrates both Porter and Lovin stemmers, includ-
ing standard stopword elimination.

Distributed-DSIR implementation uses master/slave or
pool of tasks programming style on PVM platform [2].
During co-occurrence matrix computation, a big word-by-
word co-occurrence matrix is partitioned into small por-
tions, each can be fit in physical memory ofn PC Pentium
machines (see the machine configuration in Figure 4).
Due to the fact that we have only one big local harddisk,
each machine reads and performs co-occurrence compu-
tation on TREC collections via NFS3. A scheduler (or
master), the machine at which the TREC collections is
located, has responsible to manage the messages between
machines in the pool. Finally, that scheduler accumulates
all co-occurrent matrix portions from other machines and
writes them out to its local disk.

Co-occurrence
matrix

TREC-7
Collection

N/W
Bus

PC Pentium

PC Pentium

PC Pentium

PC Pentium

Scheduler

Figure 4: Distributed-DSIR machine configuration during
co-occurrence matrix computation and document vector
derivation.

3Read and write large amount of data via Network File System is one
of the bottle-neck problems in our current distributed-DSIR implemen-
tation.

During document vector derivation, we still use the same
machine configuration illustrated in Figure 4. The big co-
occurrence matrix is partitioned, each small portion is dis-
tributed through other machine. The main scheduler then
reads each TREC-7 document from the collections to see
which co-occurrence vectors are needed to be retrieved
from other machines to compose that document vector. A
careful design of caching strategy during document vector
derivation is necessary in order to reduce message passing
between scheduler and other machine in the pool in order
not to saturate the network bus.

Distributed document retrieval algorithm in DSIR is quite
straightforward (see the machine configuration in Figure
5). Each machine in the pool, called “retrieval engine”,
reads portion of document vector into its main memory,
and waits for retrieval command from the central sche-
duler. The central scheduler reads each query vector, and
distributes it to every retrieval engine. Each retrieval en-
gine retrieves and ranks its document vectors, the ones
which are close to the query vector are ranked first, and
send its ranking back to scheduler. Note that during this
phase, retrieval engines perform their retrieval tasks in
parallel. Then scheduler accumulates all rank lists from
retrieval engines, and performs the final ranking scores.

N/W
Bus

Scheduler

PC Pentium

Retrieval engine

PC Pentium

Retrieval engine

PC Pentium

Retrieval engine

PC Pentium

Retrieval engine

PC Pentium

Figure 5: Distributed-DSIR machine configuration during
document retrieval.

5

4 Experimental Results and Discus-
sion

We participate quite lately our TREC-7 adhoc experi-
ments, i.e. in May 1998. That means we have only 3
months before the official deadline to prepare and scale-
up DSIR on our PC cluster to perform this large-scale text
retrieval task. DSIR adopts standard SMART stoplist,
and uses Lovin stemmer to pre-process all adhoc docu-
ments. For each run, two term sets are chosen by docu-
ment and occurrence frequency criterion to build a co-
occurrence matrix. We also applied the chi-square cor-
recting weight, which we call “spatial transformation”
[8], to every entry in the co-occurrence matrix. That
means, each co-occurrence entrymij is transformed to
m

0

ij = (1

ri
p
cj
) mij , whereri =

P
j mij is defined as

row total, andcj =
P

i mij is defined as column total.

Document vectors are computed using formulae ex-
plained earlier in Equations (1) and (2). DSIR uses
’aaa.bbb’ SMART weighting style [5] during indexing the
documents. Query vectors are calculated in the same way,
using words found in “title” and “description” field of the
topics 351-400. We submitted two adhoc run; dsir07a01
and dsir07a02. Table 1 gives the values of different DSIR
parameters, and results.

Run Index Features H Weighting Av. P
DSIR07a01 11488 566 0.05 ntc.atc 0.0117
DSIR07a02 15567 566 0.05 ntc.atc 0.0135

Table 1: Indexing parameters used in TREC-7, and re-
sults.

Considering our first official testing of DSIR over the
TREC-7 collection set, we found that the recall/precision
results were very bad. This level of performance is far be-
low DSIR’s typical performance tested over the old stan-
dard, very small size collections such as Cranfield and
Time. We look forward to getting a more complete set
of experiments and to spending more time understanding
the situation in which DSIR had difficulty in identifying
relevant documents. We believe that the word contexts
that DSIR derived from the co-occurrence matrix built di-

rectly from the whole TREC-7 collections is confused by
several domains that are specific to those TREC-7 col-
lections themselves. DSIR should work better when de-
rived word contexts are learned from a specific domain
of interest. Thus, we plan to use DSIR to index and
search TREC-7 collections separately so that each seman-
tic space (i.e. meaning space) has been derived from word
co-occurrences more correctly with respect to a certain
domain.

5 Conclusion

In this paper, we introduce our DSIR retrieval system
that has been tuned to perform large-scale text retrieval
in TREC-7 adhoc track. DSIR is a distributional seman-
tics based retrieval model in which semantic proximity is
derived from a co-occurrence matrix calculated from the
textual collection being indexed. Words, documents, and
users’ queries, are represented in a unified way by vec-
tors in a multi-dimensional space. Retrieval is performed
on the basis of the geometric proximity between vectors
representing documents and the user’s query; documents
whose corresponding vectors are closed to that of query
are returned as relevant answer.

To achieve TREC-7 adhoc experiments, we have reex-
ported our distributed DSIR on a cluster of low-cost PC
Pentium machines using PVM framework. Since the
results of our first large-scale retrieval attempt in this
TREC-7 are not quite successful, in terms of recall-
precision measure, more work and experiments must be
continued.

References

[1] J.P. Benz´ecri. Analyse Statistique des Donn´ees Lin-
guistiques. In J.P. Benz´ecri & Collaborateur, edi-
tor,Pratique de l’Analyse des Données, volume 3 of
Linguistique & Lexicologie. Dunod, Paris, 1981.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Vir-

6

tual Machine–A Users’ Guide and Tutorial for Net-
worked Parallel Computing. The MIT Press, Cam-
bridge, Massachusette, 1994.

[3] Z.S. Harris. Structure Distributionnelle. In M. Ar-
rivé and J.C. Chevallier, editors,Initiation à la lin-
guistique: La grammaire, Serie A3, pages 249–
258. Klincksieck Linguistiques, Paris, 1975. French
translation from original article of Z.S. Harris,
”Distributional structure”, inWord , number 2-3,
1954, by J. Throne and M. Arriv´e.

[4] E. Ide. New Experiments in Relevance Feedback. In
G. Salton, editor,The SMART Retrieval System: Ex-
periments in Automatic Document Processing, chap-
ter 16, pages 337–354. Prentice-Hall, Englewood
Cliffs, 1971.

[5] J.H. Lee. Combining Multiple Evidence from Dif-
ferent Properties of Weighting Schemes. In E.A.
Fox, editor,Proceedings of the18th Annual Interna-
tional ACM/SIGIR Conference on Research and De-
velopment in Information Retrieval, Seattle, Wash-
ington, USA, July 1995.

[6] M. Rajman and A. Bonnet. New Tools for Text
Analysis: Corpora-based Linguistics. InThe First
Conference of the Association for Global Strategic
Information, Bad Kreuznach, Germany, November
1992.

[7] M. Rajman and A. Rungsawang. How to find the
nearest by evaluating only few? Clusterization tech-
niques used to improve the efficiency of an Infor-
mation Retrieval based on Distributional Semantics.
In The Fifth Conference of International Federation
of Classification Societies (IFCS-96), volume 1, Ky-
oto, Japan, March 1996.

[8] A. Rungsawang. Distributional Semantic based In-
formation Retrieval. PhD thesis, ENST-Paris, De-
partment of Computer Science, Paris, France, 1997.

[9] A. Rungsawang and M. Rajman. A New Approach
for Textual Information Retrieval. In E.A. Fox, P. In-
gwersen, and R. Fidel, editors,Proceedings of the
18th Annual International ACM/SIGIR Conference

on Research and Development in Information Re-
trieval, in Poster session, Seattle Washington, USA,
July 1995.

[10] A. Rungsawang and M. Rajman. Textual Informa-
tion Retrieval Based on the Concept of the Distribu-
tional Semantics. InProceedings of the3th Interna-
tional Conference on Statistical Analysis of Textual
Data, Rome, Italy, December 1995.

[11] G. Salton, editor. The SMART RETRIEVAL SYS-
TEM, Experiments in Automatic Document Pro-
cessing. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1971.

7

