Fujitsu Laboratories TREC7 Report

[sao Namba Nobuyuki Igata

Hisayuki Horai Kiyoshi Nitta

Kunio Matsui

Multimedia Laboratory Fujitsu Laboratories Ltd.
{namba,igata,horai, kiyoshi kunio}@flab.fujitsu.co.jp

1 Abstract

In our first participation in TREC, our focus
was on improving the basic ranking systems and
applying text clustering techniques for query ex-
pansion.

We tested a variety of techiniques including
reference measures, passage retrieval, and data
fusion for the basic ranking systems. Some te-
chiniques were used in the official run, others
were not used because of time limitations.

We applied the text clustering techiniques for
query expansion with a text clustering engine.
Clustering base query expansion uses the top N
best text clusters from the top 1000 documents
instead of just using the top N documents.

Clustering base query expansion produces
better results than simple query expansion
based on passage retrieval.

We submitted three runs, Flab7at , Flab7ad,
and Flab7atE. Flab7at is combination of rank-
ing and query expansion by clustering the top
1000 documents on the title field, Flab7ad is
combination of ranking and query expansion by
clustering on the description field, and Flab7atE
is combination of ranking with Boolean (exis-
tence) operators and query expansion by pas-
sage retrieval.

2 System Description

2.1 Owverall

We particpated in TREC with two groups. One
group was concerned with search engines, and
included index construction, searching process,
and normal query expansion. The other group
was concerned with the Environment for Docu-
ment Analysis (EDA), which is related to query
expansion with text clustering.

The two groups had different locations, and
the two systems were developped in completely
different environments. To combine the two sys-
tems, we constructed an experimental search
procedure using perl script. We also wrote a
TREC local procedure in perl script for such
tasks as removing stop patterns from input

query.

2.2 The Search System Teraf}

Teraf3[1],[2] is fulltext search system, designed
to provide an adequate number of efficient func-
tions for commercial service, and to provide pa-
rameter combination testing and easy extension
for experiment of information retrieval.

To satisfy both the commercial and experi-
mental requirements, Terafl has many functions
and extensibility as described below.

1. Basic search operations

Boolean, Boolean Ranking (Ranking with
Boolean operators for commercial use),
Ranking (Accumulator Method) Near op-
erators for phrase, Not operator, existing
operator for term in ranking and parame-
ter control, such as df limiter for ranking,
term evaluation order control for ranking,
etc.

2. Index type

Inverted file index for fulltext search, num-
ber array index for range search, number
array index for multiple occurences of num-
ber in a single text (eg. IPC code in a
patent text) , and B-Tree index for item
search.

3. Coding system for inverted file index com-
pression

8-bit block coding (com-
mercial standard)[3] d, v coding (academic
standard)[4],[5], Extended v coding [2].

4. Inverted file index construction

Combination of term number, term fre-
quency, and term offset in document

With skip list[6],[4], and without skip list
selection.

5. Ranking measures and easy extension to
other measures

Terafl supports reference measures such as
Okapi, Lt.Lnu, and Cosine Measure, and is
easily extended to other measures.

6. Other extensions

(a) Parallel Processing][7], [8]
Terafl can be extended to access multi
indexes (data parallel) for large-size
text collections or for getting better
throughput on the AP-3000 parallel
processor.

(b) Language support and coding system
Because the language-dependent part
is separate, Teral can be easily
adapted to any language if the user
writes a token analyzer. The current
version supports English (stemming,
soundex), Japanese (morphological
analysis[9], Character N-gram), and
Chinese (Character N-gram). Terafl
also supports a variety of coding sys-
tems such as Unicode, Ascii, ISO8859,
Shift-JIS, and EUC.

2.3 Environment for Document
Analysis (EDA)

Environment for Document Analysis (EDA) as-
sists in the analysis of many kinds of large doc-
ument sets. It consists of several component
tools. The major tool is Keyword Associator
(KA) which provides the basic functions for full-
text search engines based on vector space model,
although it had originally been developed to
support idea creation by presenting words re-
lated to a keyword[10]. The other components
of EDA are KAcluster (part of KA), which pro-
vides a clustering function, Document Selector,
which selects documents according to document
attributes, and miscellaneous scripts and make-
files that combine EDA tools.

1. Keyword Associator

Keyword Associator (KA) manipulates dic-
tionaries of pre-calculated relevances be-
tween terms and documents. KA has five
independent major parameters that deter-
mine the system behaviors of the basic
functions: 1) Relevance pattern (RP), 2)
Result type (RT), 3) Weighting measure,
4) Similarity measure, and 5) Normaliza-
tion. Each of these parameters is described
below.

The functions provided by KA can be di-
vided into four patterns:

(RP-1) retrieve document from document
(RP-2) retrieve term from document
(RP-3) retrieve document from term

(RP-4) retrieve term from term

Each function pattern produces a result
with three types of relevance:

(RT-S) scalar value
(RT-V) vector value
(RT-M) matrix value

Thus, 12 combinations of the RP and RT
functions are available for obtaining rele-
vances. The behavior of KA can be con-
trolled by either command line options or
by a KA-batch script language. KA-batch
is an effective tool for document analysys
and for reusing analysis techniques.

The main dictionary of term-document rel-
evance is produced from a set of docu-
ments. One of several term weighting mea-
sures, such as Lt.Lnu[11], tf, or idf, is ap-
plied to produce the dictionary. The rel-
evance values of the retrieved results are
calculated from the dictionary, using one
of four similarity measures, Inner product,
Dice coefficient, Cosine coefficient, or Jac-
card coefficient[12]. The relevance is nor-
malized either before or after the calcula-
tion. One of several normalization schemes
(not apply, term vector sum = 1, term vec-
tor square sum = 1, document vector sum
= 1, and so on) is applied.

2. KAcluster

KAcluster reads the data of either the (RP-
1, RT-M) or (RP-4, RT-M) types from KA

and forms clusters of the resulting element.
One of the hierarchical agglomerative clus-
tering methods (HACM), such as Single
link, Complete link, Group average, Me-
dian, Centroid, or Ward’s method[13], is
applied to perform the task. Usually, clus-
ters generated by a clustering method are
disjunctive partitions of the document set
by determining an appropriate threshold.
However, finding the threshold is known to
be of the most difficult problems. There-
fore, KAcluster generates all possible clus-
ters produced from a hierarchical structure
that the clustering method creates. The
resulting clusters are not disjunctive parti-
tions.

3. Document Selector

Document Selector assigns an order rela-
tion to the given document set and selects
documents from it. The document set may
or may not be clustered. One or more com-
binations of ordering algorithms using the
attributes of each of the documents is ap-
plied. For example, the attributes are the
rank and score of the pilot search, and the
attributes of the cluster the document be-
longs to, if the document set was clustered.
The attributes of clusters are the average
and median rank/score, the best and worst
rank/score, and size.

3 Processing

The section introduces the overall TREC7 pro-
cessing.

3.1 Preprocessing

1. Indexing

The indexing vocabulary consists of char-
acter strings made up of letters, numbers,
and symbols. For every string of alpha-
betic characters, stemming algorithm of
Porter[14] was applied, and no stop words
were used in indexing. Thus, all the tokens
in the text are indexed including “,”, “.”,
and “?” . This is because we are not cer-
tain as to what is reliable stop word list,
how it affects the result. Also, we had not
enough time to compare the different in-
dexes.

In the search, we used two adjacent terms
within a specified distance as a phrase in-
stead of using two adjacent words with a
specified document frequency.

2. List of stop words for query processing

We used stop word list of about 400 words
of Fox[15], and added some missing words
such as “near”, “taken”, “taking”, etc..

At run time, words with a high frequency
(over 50000-80000) were also treated as
stop words.

3. List of Stop patterns

A TREC query has many peculiar expres-
sions such as “find document which,” “rel-
evant document will describe,” which are
artificial, and which cannot be eliminated
by a stop word list. Ideally, stop patterns
should be collected from the input collec-
tion of actual users queries, or from a se-
mantic analysis of the input queries, but
we don’t have them. So to remove them,
we made an N-gram (N = 1 —4) of the to-
kens from all of the TREC1-6 topics, and
manually selected the stop patterns.

4. Synonym dictionary

We made a simple synonym dictionary of
words which appear frequently in TREC
topics such as U.S., U.S.A, Japan, British,
and U.N .

5. KA dictionary

All documents were pre-processed by KA
, then Lt.Lnu was used to generate a dic-
tionary of relevance between the terms and
the documents for query expansion by doc-
ument clustering. This process took about
ten hours on an AP-3000.

3.2 Query Processing

This section contains an outline of the query
processing. We used different measures for
the pilot search and for the final search after
query expansion. The pilot search measure is
designed for high precision, where as the sec-
ondary search measure is a reference measure in
TREC (Okapi). For query expansion, we used
two different methods, one method simply used
the top N ranked documents, while the other
method used the top N ranked clusters from the
top 1000 documents.

1. Query generation (Teraf} format query gen-
eration)

(a)

(b)

Stop pattern/word removal

Remove the stop pattern from the
topic and replace it with 7*”.

Stop word removal

Remove the stop word from the topic.

Query generation

Generate a query based on words, and
phrases.

A phrase is an adjacent pair of words
that are not stop words, and is ex-
pressed as a two-word pair within a
specified distance without order.

The distance is set at 4 or 5.

Must operator attachment (optional)
Attach the term existence operator by
simple sentence pattern analysis.

This operator means that the term
must be in the search result.

Synonym dictionary
expansion(optional)

Expand synonyms such as U.S etc.

2. Pilot search

Simple term frequency /text size with range
limiting, and average size considering text
size normalization is used , which seems to
be ok in our experiment.

3. Query expansion

Query expansion is based on a single term
because we have found that automatically
generated term pairs at a specified distance
hurt performance.

(a)

Passage retrieval base

This query expansion is rather exper-
imental due to the time limitation.

i. Extract passages from the top 15-
20 documents with the following
conditions

A. Choose one passage of less
than 2 KB
B. The passage contains most of
the terms in the query
ii. Add 20-30 terms in the passage
with weighting

A. Order from most frequent to
least frequent in the passages

B. df of the terms in all docu-
ment sets is more than 19 and
less than 20000

C. Use the Rocchio formula with
weighting a = 6,0 =1

(b) Clustering base

Our method of query expansion by
document clustering consists of the
three steps described below. All steps
are implemented by EDA.

First, we generated clusters of doc-
uments from the results of the pi-
lot search. @~ We compared several
document-document relevance calcu-
lation methods and clustering meth-
ods implemented in KA and KAclus-
ter, respectively. Each query took an
average of three minutes.

Second, we used the generated clus-
ters to select good documents and
bad documents. The rank of the pi-
lot search was the basis of the doc-
uments evaluation for this selection.
We called the rank of the pilot search
RPS, hereafter. Document Selector
provides several evaluation and ma-
nipulation techninuqges for a set of
clusters and for clusters (sets of docu-
ments).

Finally, we generated two sets of
weighted words from good and bad
documents based on document-word
relevance. We compared several
document-term relevance calculation
methods implemented in KA. A set
of weighted words from the bad doc-
uments was used to suppress inade-
quate words in a set of weighted words
from the good documents. This sup-
pression is very important for improv-
ing the precision of the final search.
These sets of weighted words and the
query for the pilot search (QPS) were
combined into a query for the final
search. Several parameters were com-
bined. Each query took an average of
two minutes.

Our query expansion by document
clustering offers many possible meth-
ods and many parameters. We

combined several EDA functions by
perl scripts, makefiles, and KAbatch
scripts, and succeeded in implement-
ing a flexible environment. Using qrels
of TRECG6 in order to build a query
expansion by document clustering for
TREC7, we selected a set of methods
and determined a set of parameter val-
ues.

4. Final search

We used OKAPI[16] for tf normalization.
because we were not able to obtain good
results with reference measure Lt.Lnu [11].
Besides our expermence in Lt.Lnu normal-
iztation, we were not able to obtain goot
results with word frequency base text size
normalization. We did not have enough
time to determine the cause, but we suspect
our handling of stemming or stop words.

4 Details

4.1 Measure

Our basic method was utilization of tf x idf ,
but with consideration of the following points:

e Words with small idf have a tendency to
have high term frequency in a document,
so the simple idf formula logsN/n favors
high df (small idf) words.

A mecanically generated phrase with a
large idf sometimes produces a bad re-
sult because its document frequency(df) is
lower than 10, even as low as 1 or 2. Thus
we established a minimal df.

e Measures favoring word co-ocurrence in a
query get better results with short queries.
To reflect this factor, we tested two solu-
tions. One solution was to narrow the rage
of tf in t f +idf; the other was to give bonus
points when two words co-occur in text.

In contrast, after automatic query expan-
sion we need not consider the co-occurence
of words in a query, because there are many
words in the query.

e The text size of a correct text set for queries
in TREC is mostly between one and three
times of average text size. Measures that
consider average text size, such as [16], [11],
get better results.

1. idf
idf = logg(W)
idf = logs (MR)if(n < 1))
N = number of texts in the test collection
n = document frequency for term
a=8-9
=50
k = 9000 — 10000

2. tf of pilot search
tfl =

logs(1+term_freq)

tf = func(tfl,term_freq, doc_size_in_byte)

func controls the range of £ f1, and the max
term num for each text size, and outputs ¢ f
value greater than 0.1, and less than 0.5

3. tf of final search (tf of OKAPT)

tf _ (k1+1)xterm_freq
(k1 ((1—b) —brdocTengih_inbyte)

average_doc_length_in _byte

ki =15b=0.75

4.2 Co-ocurrence Boosting

As was pointed out by [17],the measures fa-
voring term co-ocurrence get better results for
short queries. With a pilot search of a rather
narrow tf range, we adopted a scoring method
that favors term co-ocurrence.

Co-ocurrence boosting is implemented by
simply multipling boost ratio to the similarity
of each term.

Si:ZB*Wt,i
t

S; is the degree of similarity between
a document and topics.

i is the document number.

t is a term that document; includes.
Wi, is the part of similarity of term,
in document;.

B is the boost-ratio by term co-
occurrence.

As expected, parameter B depends on the
query. For example, in the TRECG6 collection,
one query gets the best result with B = 3.0
, while another gets the best result with B =
1.08.

We did not have enough time to determine
how to assign the best boost ratio for each
query, so we set the parameter to 1.08 for
short queries, and to 1.40 for very short queries
through all the pilot search. We set the param-
eter to 1.00 for the final search.

%/oc*a'uerage.doc-size-in-byte«l»(l7oc)*doc_size_in_byte

4.3 MUST Operator Attachment

To raise the precision of the pilot search, we
tested a new operator called the ”MUST oper-
ator”.

The MUST operator requires that the word
specified by this operator must exist in the
search results. In some cases, the precision of
the pilot search increases when the MUST oper-
ator is used. This operator was tested to obtain
higher precision in pilot search; it was not used
in final search.

The use of the MUST operator consists of
two steps. The first step is to select important
terms. The second step is to retrieve documents
that include the terms specified by the MUST
operator.

We used the following simple rules to select
important terms for specification by the MUST
operator:

e Select a term that begins with capital char-

acter.

e Select two terms after the words ”of”,
”in” .and ”the”.

e DO NOT select adjectives (such as

"*out”, and” x ble”).

Action by the MUST Operator is removed for
words that fall under any of the following con-
ditions:

e The df of the word is less than 25.
e The df of the word is more than 80000.

e The number of text hits becomes less than
100.

This rule, and the execution strategy of
queries using the MUST operator is still ten-
tative.

4.4 Query Expansion by Docu-
ment Clustering

Our method of query expansion by document
clustering consists of three steps: clustering the
results of a pilot search, selecting documents,
and generating a query for the final search.
EDA supplies many functions for implementing
these steps. In this section, we explain the real
steps for TRECT.

4.4.1 Clustering pilot search results

We used KA and KAcluster with RP-1, RT-
M, LtLnu, Inner Product, and Ward’s method,
then generated clusters from the top 1,000 doc-
uments resulting from the pilot search.

4.4.2 Selecting documents

Two sets of clusters (cluster sets) were gener-
ated from the generated clusters: one the good
cluster set (GCS) and the other the bad cluster
set (BCS). Because a cluster is a set of docu-
ments, a cluster set is a set of sets of documents.

The following steps were used to generate
GCS and BCS. They were implemented by Doc-
ument Selector.

1. Select clusters of an adequate size. We dis-
carded every cluster that had fewer than n;
elements or more than ns elements.

2. Generate GCS.

(a) Measure clusters. For each cluster, we
selected the best RPS as the represen-
tative document (REP) of the cluster,
and calculated the average RPS of its
elements (AVE).

(b) Generate cluster sets. We grouped
the clusters into cluster sets, each of
which consisted of clusters with iden-
tical REPs.

(c) Select each cluster from a cluster set.
For each cluster set, we selected the
cluster that had the best AVE in the
cluster set. These clusters were com-
bined to form a new cluster set whose
elements have different REPs.

(d) Select good clusters. From the clus-
ter set, we selected ng clusters whose
REPSs had better RPSs, and dis-
carded all the other.

(e) Select good documents. For each of
the clusters in the good cluster set, we
selected ny documents that had bet-
ter RPS, and discarded all the others
from the cluster. The result is GCS.

3. Generate BCS.

We generated BCS in the same way as
in Step 2, but ‘good,” ‘better,” ‘best,” ng,
and n4 in Step 2 were replaced with ‘bad,’
‘worse,’ ‘worst,’” n5, and ng, respectively.

4.4.3 Generating a query

The query for the final search is generated from
GCS, BCS, and QPS. A query is a set of words
called a “word set,” each of which has been as-
signed a weight.

The query for the final search consisted of the
following steps:

1. Generate a good word set (GWS) from
GCS.

(a) Calculate weights. For each cluster in
GCS, we used KA using RP-3, RT-
M and LtLnu to generate a word set.
The results were word sets, each of
which corresponded to a cluster in
GCS.

(b) Select words. For each of the gener-
ated word sets, we selected n; words
that had the greatest weight, and dis-
carded all other words from the word
set.

(c) Average weights. For each word se-
lected, we summed its weights in all
word sets and divided the sum by the
number of occurrences. The result is
GWS.

2. Generate a bad word set (BWS) from BCS.

We generated BWS from BCS as using a
similar method to that in Step 1, except
that n7 is replaced by ng and the method of
averaging weights in 1c is changed to sum-
ming the weight of each word in all word
sets and dividing the sum by the square of
its occurrence.

3. Combine GWS and BWS.

For each word that is only in GWS, we mul-
tiplied its weight in GWS by ng. For each
word that is in both GWS and BWS, we
multiplied its weight in GWS by ng, multi-
plied its weight in BWS by n19, and divided
the former weight by the latter weight. The
result is a word set that we call as the in-
terim query (IQ). BWS contributes to sup-
press inadequate words in GWS.

4. Combine IQ and QPS.

(a) Classify words. We divided the words
in IQ and QPS into three groups:
words only in IQ (OnlyIQ), words

only in QPS (OnlyQPS), and words
in both IQ and QPS (Both).

(b) Recalculate weights for Both. For
each word in Both, we multiplied its
weight in IQ by ni; and added its
weight in QPS to the multiplier.

(¢) Adjust weights. For each word in On-
lyIQ, we multiplied its weight in IQ by
ni2. For each word in OnlyQPS, we
multiplied its weight in QPS by nj3.
For each word in Both, we multiplied
its weight, calculated in 4b, by ni4.
The result was a new word set that
consisted of all words in IQ and QPS
with the multiplied weights.

5. Select words.

we selected n15 words that had the greatest
weight, and discarded all other words from
the word set. The result is the query for
the final search.

. Comments

Fifteen parameters (nl,n2,...,nl5) ap-
pear in our query expansion by document
clustering for TREC7. We decided on a
set of values for the parameters by qrels of
TRECS.

At the step of adjusting weights in Step 4c,
the multiplier of Both (n14) should be set
to a value that is greater than the others
(n12 and ny13). This adjustment of weights
favor good words in QPS over bad words,
and improves precision in the higher ranks
in the final search.

It is important to select clusters from clus-
ter sets with appropriate variety in the step
described in Section 4.4.2 (Selecting Docu-
ments) if the step described in Section 4.4.3
is to be processed successfully. If the clus-
ters were selected only by AVE, the vari-
ety of the clusters is restricted. Step 2c is
neccesary to solve the problem.

Adequate values of all parameters depend
on the deference of final search engines and
documents sets. Our system implemented
by EDA and some scripts is a flexible and
powerful tool for determing a set of values
for many search engines and document sets.

5 Ad hoc Results

Table 1: Eleven Point Average (Official Run)

Name Flab7ad FlabT7at Flab7atE
Category | Short VShort VShort

Mode +CLS_.QE | +CLS_QE | +MUST +QE

+PH +PH +PH

at 0.00 0.7166 0.6771 0.6338

at 0.10 0.4962 0.4698 0.4530

at 0.20 0.3917 0.3635 0.3358

at 0.30 0.3298 0.2857 0.2644

at 0.40 0.2668 0.2206 0.2199

at 0.50 0.2055 0.1850 0.1796

at 0.60 0.1480 0.1370 0.1387

at 0.70 0.1006 0.0963 0.1052

at 0.80 0.0555 0.0579 0.0749

at 0.90 0.0287 0.0461 0.0402

at 1.00 0.0106 0.0154 0.0161
Average 0.2296 0.2126 0.2020

+CLS_QE = clustring-based query expansion; +MUST =

Must operator;

+QE = passage retrieval base query expansion; +PH

phrase in query

Table 2: Eleven Point Average for Description
(Base Point)

[Category | Short [Short [Short [Short |
| Mode | -PH | +PH | -PH +QE | +PH +QE |

at 0.00 0.7620 0.7734 0.6656 0.7103

at 0.10 0.4642 0.4516 0.4468 0.4811

at 0.20 0.3133 0.3340 0.3632 0.3801

at 0.30 0.2473 0.2753 0.2788 0.2974

at 0.40 0.1955 0.2138 0.2188 0.2372

at 0.50 0.1478 0.1504 0.1726 0.1935

at 0.60 0.1017 0.1091 0.1303 0.1475

at 0.70 0.0709 0.0810 0.0887 0.1151

at 0.80 0.0304 0.0505 0.0511 0.0652

at 0.90 0.0065 0.0169 0.0256 0.0330

at 1.00 0.0000 0.0046 0.0026 0.0132

Average 0.1863 | 0.1952 | 0.2042 0.2229

Table 3: Eleven Point Average for Title (Base
Point)

[Category | VShort [VShort | VShort [VShort |
| Mode | -PH | +PH | -PH +QE | +PH +QE |

at 0.00 0.6806 0.6928 0.5806 0.6751

at 0.10 0.4162 0.4075 0.4442 0.4485

at 0.20 0.3056 0.2918 0.3683 0.3253

at 0.30 0.2315 0.2278 0.2902 0.2524

at 0.40 0.1740 0.1635 0.2375 0.2159

at 0.50 0.1322 0.1237 0.1696 0.1718

at 0.60 0.0892 0.0947 0.1259 0.1351

at 0.70 0.0587 0.0690 0.0921 0.1017

at 0.80 0.0380 0.0530 0.0532 0.0674

at 0.90 0.0131 0.0260 0.0296 0.0369

at 1.00 0.0011 0.0075 0.0040 0.0131

Average 0.1707 0.1706 0.2014 0.1993

Query expansion technique also produced a
better result in our experiment. Clustering-
based query expansion outperformed passage-
based query expansion by 0.007 point.

Queries with phrases gets better results
than queries without phrases, and queries with
phrases also gets better results for query expan-
sion. The phrase as a two-word pair within a
specified distance without order sometimes re-
sults in documents including a bad phrase but
with a high idf, and gets worse results than
queries without phrase. We think that we must
modify the phrase treatement in such cases.

Acknowledgement

The authors would like to acknowledge use-
ful comments and suggestions of Mr. Isamu
Watanabe who is the author of KA and Mr.
Masayuki Sonobe of FUJITSU LABORATO-
RIES LTD.

References

[1] Kunio Matsui, Isao Namba, and Nobuyuki
Igata. A fulltext search system for large
text (in japanese). D-4-6, 1997.

[2] Kunio Matsui, Isao Namba, and Nobuyuki

Igata. High-speed text search engine (in

japanese). IPSJ 97-DD-7-8 pp15-21, 1997.

Niwa and Hirotora et al. Large text search
system at altavista (in japanese). IPSJ
Advanded DataBase Symposium ppl9-25,
1996.

Tan H. Witten, Alistair Moffat, and Timo-
thy C. Bell. Managing gigabyte - compress-
ing and indexing documents and images.
Van Nostard Reinhold New York, 1994.

[4]

[5] P. Elias. Universal codeword sets and rep-
resentaions of the integers. IEEE Transac-
tion of Information Theory IT21:194-203,
1975.

[6] William Pugh. Skip list a probablistic al-
ternative to balanced trees. CACM June
1990 Vol33 Num6 668-676, 1990.

[7] Junichi Hagiwara, Tsunehisa Doi, Yoshi-
nori Yaginuma, Kazuho Maeda, and Tat-
suya Shindo. Commercial applications on
the ap3000 parallel computer. IEEE Mas-
sively Parallel Programming Models 97,

1997.

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tsunehisa Doi and ITkuo Miyoshi et al.
Parallel text search engine on the ap3000.
Parallel Computing Workshop 97, P1-K,
1997.

Manabu Sassano and Isao Namba. A fast
morphological analysis tool with user tun-
ing (in japanese). IPSJ 52th 5B-4 pp75-76,
1996.

Kozo Sugiyama, Kazuo Misue,
Isamu Watanabe, Kiyoshi Nitta, and Yuji
Takada. Emergent media environment for
idea creation support. Knowledge-Based
Systems, 10, pp.51-58, 1997.

C. Buckley, A. Singhal, M. Mitra, and (G.
Salton). New retrieval approaches using
smart : Trec4d. TRECY Proceedings, 1994.

Gerard Salton. Automatic text process-
ing — the transformation, analysys, and re-
trieval of information by computer. Addi-
son Wesley, 1989.

Edie Rasmussen. Chapter 16, clustering
algorithms. Information Retrieval Data
Structure and Algorithms ed. William B.
Frakes, Ricardo Baeza-Yates Prentice Hall,
1992.

Porter M.F. An algorithm for suffix strip-
ping. Program, 13(3):130-137, 1980.

Chiristopher Fox. Chapter 7, lexical anal-
ysis and stoplists. Information Retrieval
Data Structure and Algorithms ed. William
B. Frakes, Ricardo Baeza-Yates Prentice
Hall, 1992.

S. E. Robertson, S. Walker, M. M.
Beaulieu, and M. Gatford. Okapi at trec-4.
TRECY Proceedings, 1995.

Ross Wilkinson, Justin Zobel, and Ron
Sacks-Davis. Similarity measures for short
queries. TRECY Proceeding, 1994.

