
Threshold Calibration in CLARIT Adaptive Filtering

Chengxiang Zhai, Peter Jansen, Emilia Stoica, Norbert Grot, David A. Evans

CLARITECH Corporation
A Justsystem Group Company

Abstract In this paper, we describe the system and
methods used for the CLARITECH entries in the TREC–7
Filtering Track. Our main aim was to study algorithms,
designs, and parameters for Adaptive Filtering, as this
comes closest to actual applications. For efficiency's sake,
however, we adapted a system largely geared towards
retrieval and introduced a few critical new components. The
first of these components, the delivery ratio mechanism, is
used to obtain a profile threshold when no feedback has
been received. A second method, which we call beta–gamma
regulation, is used for threshold updating. It takes into
account the number of judged documents processed by the
system as well as an expected bias in optimal threshold
calculation. Several parameters were determined
empirically: apart from the parameters pertaining to the
new components, we also experimented with different
choices for the reference corpus, and different "chunk" sizes
for processing news stories. Gradually increasing chunk
sizes over "time" appears to help profile learning. Finally,
we examined the effect of terminating underperforming
queries over the AP90 corpus and found that the utility
metric over AP88–AP89 was a good predictor. All of the
above innovations contributed to the success of the
CLARITECH system in the adaptive filtering track.

1 Introduction

Filtering in general, and adaptive filtering in particular, is
one of the most challenging problems in information
retrieval.

This year's TREC Filtering track was redesigned to
accommodate a more realistic evaluation of practical
filtering systems. One major difference was the absence of
initial training information in the Adaptive Filtering task.
Another was the more realistic nature of feedback:
judgments were provided only for documents accepted by
the system, and restrictions were placed on information
available at the time of that decision.

These changes necessitated important modifications to our
Filtering Evaluation system from previous years. Our goal
was to evaluate the basic CLARIT adaptive filtering
approach, which is based on standard CLARIT retrieval and
routing techniques. [1,2,3,4] While the CLARIT system can
be (and has been) extended to support real–time filtering—
processing each incoming document in real time—we could
not afford the time to adapt such a real–time filtering system
for TREC evaluation. Therefore we used our standard
CLARIT retrieval and profile training mechanism to make
batch filtering decisions and perform batch updating on a

succession of "chunks" of source documents. This improved
efficiency but at the cost of some precision and sensitivity,
as any feedback information can only be applied from the
next chunk on.

Our basic approach to filtering still involves a two–step
procedure similar to the one used in many other systems.
For each document–profile pair, we compute a relevance
score and then apply a score threshold to make the (binary)
decision to accept or reject the document. Therefore, in this
paradigm the two most important technical procedures to
be worked out are scoring and threshold setting.

For our TREC–7 Filtering Track experiments, we decided to
focus primarily on the problem of threshold setting, in large
measure because (1) we did not understand it as well as the
problem of scoring, and (2) it may have the greater impact
on perceived performance (utility). The threshold-setting
problem can be subdivided into two parts: (a) initial
threshold setting, before there are any relevance judgments
from the user; and (b) threshold updating, at any point
when relevance judgments are fed back to the system. We
used different techniques to set an initial threshold and to
update the threshold during filtering.

Although we participated in both the adaptive filtering task
and the batch filtering task, our focus was on adaptive
filtering. We made two submissions for each utility measure
for adaptive filtering. The first submission for each utility
represented an optimal threshold parameter configuration
as determined in our preliminary experiments. The second
submission differed from the first only in that we adopted
the rather user–unfriendly strategy of refusing any
documents from AP90 for those topics that have an
accumulated negative utility over AP88 and AP89. A
comparison of the two submissions allows us to see how
well a negative training utility can identify "difficult" topics.

In the following section, we describe our general procedure
for adaptive filtering experiments. In Section 3, we discuss
our main new algorithms, for initial threshold setting and
for threshold updating. Our parameter space and the
parameter settings we found to be best in pre-TREC runs are
described in Section 4. Section 5 reviews our results and
findings based on the experiments. Batch filtering, though
not our main focus, nevertheless led to interesting insights
and is discussed in Section 6. Finally, in Section 7, we
summarize the main points and our plans for further work.

2 Adaptive Filtering Experimental Procedure

Conceptually, a profile (i.e., a binary document classifier)
consists of three elements: a term vector, IDF statistics, and a
score threshold. The first two are used to assign a score to
any document, and the third is used to make the binary
decision whether to accept the document.

The initial profile term vector for each topic was created
automatically by parsing the original topic descriptions. We
used all the fields (except the definition field, if any) in the
topic description. The initial IDF statistics were derived
from an unrelated reference corpus (Wall Street Journal
19871). The initial profile threshold is set using the delivery
ratio method described in the next section.

Source documents (i.e., the AP data) are segmented into a
number of chunks, possibly of different sizes. Each chunk is
indexed on noun phrases and individual words using the
standard CLARIT phrase indexing technique. [1,2,4]
Chunks are processed sequentially. At each chunk, we
iterate over all the profiles, and run each profile as a query
over the current chunk corpus. The matching function is a
vector space dot product over terms in the profile space. To
avoid using statistics based on "future" information,
including the current chunk, we only used IDF statistics
based on "earlier" chunks for matching (or WSJ87 data for
the first two chunks –– see Table 1). All the documents
scored above the profile threshold are accepted.

Relevance judgments for the accepted documents are then
obtained and the current chunk is used as a training corpus
to update each profile independently.

Updating consists of two stages. The first stage involves
term vector updating (i.e., expansion). We used the same
general procedure that we employed in our TREC-6 Routing
experiments. [4] Rocchio feedback, on relevant documents
only, is used to expand the current term vector. [5,6]
Specifically, the centroid vector of the relevant document
vectors is computed and the terms are ranked by their
centroid weight.2 The K best–ranked terms are selected.
Unlike standard Rocchio feedback, we assign a uniform
weight to the selected terms before merging them into the
current term vector. K grows heuristically with the number
of relevant documents (N) available for training, according
to the function ()1log*1010 ++= NK .

The second stage involves threshold updating (i.e., re-
estimating a threshold for the new term vector to be used
when processing the next chunk). We use a method we call
"beta-gamma regulation" to set a threshold for the new
vector based on the current chunk (as an approximation of
the next chunk), the future matching IDF statistics (from the
“seen” documents up to the current chunk), and the partial

1 Note that we avoided using any data from the time period covered
by the test data, as these data might have had some overlap and
would not have been available in a real application.
2 While normalized TF is often used in the CLARIT system, we used the
raw within-document frequency for Rocchio feedback here. Our goal in
doing this was to emphasize TF over IDF in the presence of very few
relevant training examples.

relevance judgment on the current chunk. The details of this
method are described in the next section.

The new, updated profile is then used to process the next
chunk, and the above process is repeated until the last
chunk (i.e., AP90) has been handled. Finally, the accepted
documents for all the chunks are combined as the results for
evaluation.

Note that a drawback of retrieval over chunks is that
relevance information cannot be used immediately
(according to the needs of each profile independently). If the
threshold has been set inappropriately, there is no way for
the system to correct this until the end of the chunk, at
which time considerable damage may have been done to the
performance.

3 Threshold Setting and Threshold Updating

To estimate an initial profile threshold, we used a new
method, which we call the "delivery ratio" method. The
rationale behind this method is that, in the absence of
evidence pertaining to document relevance scores and
stream topic density, a plausible utility metric may be the
number of documents delivered to a user. A threshold can
be set to best approximate the desirable number of
documents to deliver. For a given time period, a desirable
amount of delivery can be projected to a delivery ratio
based on an estimate of the stream volume. A small
reference corpus can be used to estimate an approximate
threshold score at which the desirable ratio would be
achieved.

Specifically, assume that the user wants to have a certain
fraction (r), say 10% of the news delivered, we can run the
profile vector as a query on the reference corpus using the
same IDF statistics as would be used for matching future
documents. The delivery ratio threshold is set to the score
of the K-th document in the ranked list of retrieved
documents, where K = r*N and N is the number of
documents in the reference corpus. In special cases when K
< 1 or K is larger than the size of the list of all matched
documents, heuristic extrapolation is applied.

For threshold updating we used beta-gamma adaptive
threshold regulation. This technique selects a threshold, �
by interpolating between an "optimal" threshold, op, and
"zero" threshold, zero,.

The optimal threshold is the threshold that yields the highest
utility, given the newly updated term vector, over the
accumulated training data. The zero–threshold is the highest
threshold below the optimal threshold that gives a non–
positive utility over the training data under the assumption
that all documents that were rejected are non–relevant.

There are two reasons for believing that the "optimal"
threshold our training procedure derives from the training
data serves as an upper bound for the threshold, and is
biased towards higher values. First, only an incomplete set
of documents has been judged. As all un-judged documents
are assumed to be non-relevant, the true optimal threshold,
assuming complete knowledge of relevance judgments,

could only be lower and never higher than the estimated
optimal threshold. Second, the scores of the positive
training examples tend to be higher than the expected score
of any randomly selected relevant document, since the term
vector as trained with training examples favors the terms in
the training documents. In other words, using the same
training data for vector updating and threshold setting may
lead to over–fitting. In addition, for learning and
experimentation (especially in the beginning), we want to
use a threshold somewhat lower than the true optimal
threshold, even should we be able to estimate its value
accurately.

At the lower end of the range, preliminary experiments
indicated that using a zero utility threshold as a lower
bound is a safe procedure, even though it is theoretically
possible that the actual optimal threshold is lower still.

To obtain an actual threshold to use for a profile, we
interpolate between opt and zero. Our pre-TREC experiments
were geared towards finding an appropriate interpolation
scheme. We first experimented with simple linear
interpolation, using a constant parameter , and called this
method "alpha regulation" where �plays the role indicated in
the following formula.

optzero θαθαθ *)1(* −+=

After several experiments, and some study of the method's
behavior, we decided to express as a function of two
further parameters, β and γ, related to the two factors in the
threshold bias identified above. We postulated the following
formula, in which M is the number of judged training
documents.

Me *γββα −∗)−(1+=

In writing in terms of β and γ, we attempt to capture both
aspects of the bias present in the optimal threshold
calculation: (1) β is a score bias correction factor that
compensates for the relatively higher scores of relevant
documents in the training corpus, and (2) γ expresses our
belief that the estimated optimal threshold approximates the
true optimal threshold more closely when more training
examples are available. Note that γ is the inverse of the
number of documents at which we place the threshold at
approximately the midpoint of our range. If fewer than 1/γ
training examples are available, the threshold will be
somewhat lower; if more, somewhat higher.

Figure 1 illustrates the idea behind the formulas graphically.

 chosen
 Utility opt zero

 cutoff position

 0 1 2 3 … α

 β () Me **1 γβ −−

Figure 1. Beta-gamma regulation parameters.

Given a ranked list of all the documents in the training
database sorted by their scores, their relevance, and a
specific utility criterion, we can plot the utility value at each
different cutoff position. Each cutoff position corresponds
to a score threshold. Figure 1 shows how a choice of alpha
determines a cutoff point between the optimal and the zero
utility points, and how β and γ help us to adjust alpha
dynamically according to the number of judged examples in
the training database.

4 Configuring Experimental Parameters

In this section, we describe the values of several parameters
of our system led to the best performance in our preliminary
experiments. The parameters with the largest impact were
the initial profile threshold, the document chunk sizes,
subdocument size, and the β and γ factors used in threshold
updating.

Delivery Ratio. The threshold for the initial profiles was set
using our delivery ratio method, with a ratio of 0.0005, i.e., 1
out of 2,000 documents. A collection of all available 1987
Wall Street Journal articles was used as a reference corpus,
approximating somewhat a possible earlier news stream.

Chunk Size. Another main parameter (though a direct
consequence of our approximate method to simulate real–
time filtering) was the size of successive chunks of news
articles (roughly corresponding to periods of time over
which news is accumulated). Using smaller chunks tends to
be more “robust” as this limits the damage from a bad
threshold in the overall utility. It also provides more
flexibility in the presence of changes. But as smaller chunks
contain fewer examples, they may provide less reliable
profile learning and be overly sensitive to random
fluctuations (we only used the examples in the previous
chunk for updating).

In the first stages of learning, both the term vector and
threshold are less reliable, and smaller–sized chunks are
preferable. In addition, it is sometimes useful to lower the
threshold to boost the number of judged examples
presented to the system to speed up initial learning. This
introduces the risk that many non–relevant documents
might be accepted. In later stages, the profile can be
assumed to be more stable, and the threshold more reliable.
Hence larger chunks are to be preferred for better training.

In fact, our preliminary experiments with Wall Street Journal
data bore out these hypotheses: chunks of increasing sizes
generally led to better performance than chunks of equal
sizes. Our post–TREC experiments confirm that using
increasing–size chunks helps learning on AP as well.

In practice, we segmented AP88 and AP89 into 15 chunks
with increasing sizes starting at 3,000 articles and going up
to over 20,000 articles. Our hope was that both the term
vector and the threshold would become stable enough to
handle the AP90 collection as one chunk.

To simulate the accumulation of information about the news
stream over time, we pre–built the reference corpus for each
chunk (used for matching IDF statistics) so as to provide a
compromise between availability, recency, size, and
convenience. This resulted in the following arrangement.

Current Chunk Reference corpus (IDF) used

Chunk 1 (3,000) WSJ87
Chunk 2 (3,000) WSJ87
Chunk 3 (4,000) Chunk 1 + Chunk 2
… …
Chunk 8 (9,000) Chunk 1 + … + Chunk 7
Chunk 9 (10,000) Chunk 1 + … + Chunk 8
Chunk 10 (12,000) Chunk 1 + … + Chunk 9
Chunk 11 (14,000) Chunk 1 + … + Chunk 10
Chunk 12 (17,000) Chunk 1 + … + Chunk 11
Chunk 13 (20,000) Chunk 1 + … + Chunk 11
Chunk 14 (24,000) Chunk 1 + … + Chunk 11
Chunk 15 (22,597) Chunk 1 + … + Chunk 11
Chunk 16 = AP90 AP89
Table 1. Size of source and reference chunks

Subdocument Size. Another parameter we varied in our
experiments is the subdocument size used for indexing.
Although intuitively subdocument indexing is appealing,
preliminary experiments indicated that indexing on whole
documents performed better, though only slightly.3

Threshold Regulation. The beta–gamma threshold
regulation method was used to set a new threshold using
the formula described in Section 3. In our preliminary
experiments with Wall Street Journal data, we explored a
large space of beta and gamma values and found that the
best performance was fairly consistently reached, for both
F1 and F3, at a setting of β = 0.1 and γ = 0.05. We used this
setting in all our official runs.

5 Analysis of Adaptive Filtering Results

As a general trend, participating systems did relatively
poorly for AP88, much better for AP89, and again somewhat
worse for AP90. This effect can generally be attributed to an
inherent instability in experimenting over part of the AP88
corpus (to train the profile and set the threshold), attained
stability in performance for the rest of AP88 and AP89, and
perhaps deteriorating stability (and the use of more
defensive strategies) for AP90. This would indicate that
most systems did indeed learn. For F1 (and a fortiori for F3)

3 In practice, whole document indexing is achieved by using a very large
subdocument size as a parameter for the CLARIT indexing procedure.

it turned out to be possible to obtain an overall positive
average utility.

CLARITECH submitted four runs for adaptive filtering, two
per utility. Except for F1 for AP88, our runs ended up at the
top of participating systems. In this section we try to
identify the factors that contributed to this result.

Apart from an indication that our system works
satisfactorily, that Rocchio is a dependable term selection
method, and that we did not make major errors, we can
offer the following observations, the first three of which we
discuss further in separate subsections:
1. Eliminating "bad" topics from consideration for AP90

yields a significant benefit for F1, and does not harm F3.
2. The more complicated beta-gamma regulation

algorithm is better than a simple alpha regulation.
3. The use of increasing chunk sizes helps learning.
4. The delivery ratio method, with a conservative initial

parameter setting, is a good method for initial threshold
setting in the absence of training data.

5.1 Topic Elimination

For certain topics, for example those with only a few
relevant documents in the news corpus, it is not possible to
obtain a good profile (i.e., a profile for which the precision is
> 0.4 for F1, or > 0.2 for F3).4 For such topics, the highest
utility (viz., 0) is achieved by not accepting any documents
at all.

The simplest criterion we could think of was whether the
total training utility over AP88 and AP89 was positive or
not, and though this gives somewhat conservative results,
we were not able to find better predictors.

To assess the benefit of this technique, we submitted two
runs that differed only in whether they eliminated topics for
AP90 or not. For F1, this approach was invasive, but very
beneficial: half of the topics (25) were eliminated from
consideration, resulting in an approximately 40% reduction
in accepted documents and a 266 point increase in the total
utility score for all 50 topics (302 vs. 36, i.e., an eight-fold
increase in average utility!). Of the 25 eliminated topics, 16
would indeed have accumulated a negative utility (average
value of –19.5) over AP90, whereas the remaining 9 would
have contributed positive utilities (average value of 5.11). In
comparison with the other groups, the median was tied or
exceeded 10 more times, and the (zero) maximum 13 more
times.

For F3, the impact was less substantial. Sixteen topics were
eliminated, resulting in a reduction in the number of
accepted documents by approximately 10%, and a total
utility increase by 15 points, i.e., by less than 1%. Only 8 of
the 16 topics showed a benefit (11 points on average),
whereas 7 topics would have accumulated an average
positive utility of 10.4. Here both the median and the
maximum were tied or exceeded for four more topics.

4 This can be because of many noisy non–relevant documents or ineffective
training.

5.2 Beta–Gamma Threshold Regulation

Before attempting a finer control over the threshold
adjustments, we used simple linear interpolation with a
constant coefficient (alpha regulation). In this section we
compare the average utility of this method with the results
from use of the beta–gamma algorithm.

A comparison of average total utility per topic over AP88
and AP89 for our best runs using alpha regulation and our
best runs with beta–gamma regulation is given in Table 2.

Average utility over
AP88–89 F1 F3

Alpha (best) 6.98 54.96
Beta–Gamma 10.46 72.34

Increase 3.48 (50%) 17.38 (32%)

Table 2. Comparison of alpha, and beta–gamma regulation

Another interesting observation was that the best setting for
beta–gamma also was less sensitive to small changes than
the best setting for alpha. Furthermore, we found the
maximum for beta–gamma (for the settings of our
submissions, viz, = 0.1 and = 0.05) to be stable even
across databases (Wall Street Journal data as well as AP data).

Figure 2, below, demonstrates another aspect of the
superiority of beta-gamma regulation. Shown in the graphs
are the average utilities for equal–size chunks for our best
runs with the respective methods. From these graphs, we
learn that the difference between the two methods is most
pronounced for "bad" chunks. In other words, beta–gamma
regulation appears to be more stable than alpha regulation
for both F1 and F3.

5.3 Learning Factors and the Effect of Chunk Size

A difficult but not unimportant question is how to evaluate
the extent to which the system has improved the topic
profiles over time as a result of learning. Two aspects of
learning can be considered: improvement in scoring and
improvement in threshold setting.

One way to assess the learning effect is to compare the
actual utility scores obtained for each chunk with the
maximum possible utility given the current term vector. The
maximum possible utility is a measure of the quality of
scoring, which is related to term vector training. How well
the actual utility approximates the optimal utility, on the
other hand, indicates the quality of threshold setting.

The actual and maximum average utilities for each chunk
are shown, together with their ratios, in the graphs given in
Figures 3a and 3b. In each case the comparison is shown for
both F1 and F3. In Figure 3a, equal–sized chunks were
used, and Figure 3b corresponds to our official run with
increasing–size chunks. In the latter case, utility values are
normalized with respect to the size of each chunk.

We see that in all cases there seems to be a gradual small
decrease (at least not an increase) in optimal utility value.
Although this may indicate that we obtain little benefit from
profile training, it may also mean, for example, that the
relevant documents are not evenly distributed over the
stream, or that confusing non-relevant documents start
appearing later on.

On the other hand, whereas actual and optimal utility
values remain far apart (ratio relatively constant or even
decreasing) for equal–sized chunks, the ratio clearly
increases for increasing–sized chunks, indicating a gradual
improvement in threshold setting.

Though this confirms our intuition that it is better to use
chunks of increasing size, we need to point out that several
factors play confusing roles. It is important, for example,
which reference corpus was being used for the IDF
calculations. The decrease in scoring quality from chunk 2 to
chunk 3 in our official run, for example, may in part be
explained by the switch from a large reference corpus
(WSJ87) to a reference corpus only 8% its size (first two
chunks of AP88). Also, certain chunks contain strongly
varying numbers of relevant documents for some topics,
leading to increased variance of the average utility.

Beta-Gamma vs. Alpha (F1)

-2

-1

0

1

2

3

1 3 5 7 9 11 13 15

Chunk

A
vg

. U
ti

lit
y

p
er

 T
o

p
ic

F1-alpha F1-beta-gamma

Beta-Gamma vs. Alpha (F3)

-4

-2

0

2

4

6

8

1 3 5 7 9 11 13 15

Chunk

A
vg

. U
ti

lit
y

p
er

 T
o

p
ic

F3-alpha F3-beta-gamma

Figure 2. Comparison of chunk utility of beta–gamma regulation and alpha regulation

6 Batch Filtering

In this section we describe, more briefly, our experiments on
batch filtering task.

6.1 Experimental Procedure

For Batch Filtering, we used essentially the same system that
we used for Adaptive Filtering. The differences were as
follows.
• As initial profiles, we took term vectors trained over

AP88 instead of the vectors generated from the topic
description.

• We used different chunk sizes.5

• AP88 was used as the initial reference corpus (for IDF,
and delivery ratio).

• We used (standard) subdocument indexing.
As in adaptive filtering, we used the delivery ratio method
to estimate an initial threshold. For this threshold
estimation, the relevance judgments available for AP88 were
not used.

6.2 Analysis of TREC-7 Batch Filtering Results

We submitted two runs (one each for F1 and F3) for the
batch filtering task. Our runs were both clearly below
median, though better for F3 than for F1.

By itself such a poor performance is not a surprise, as we
did not exploit the complete set of relevance judgments on
AP88 to establish a better initial threshold than the delivery
ratio threshold. But a direct comparison showed that our
adaptive runs over the same data would in fact have
achieved a better performance, and instead of significantly
below median, would have been very near median instead.
There are then two questions:
1. Do the batch filtering runs perform worse as a result of

lower profile quality (i.e., a problem with the training
method)?

2. If not, what is the reason for the observed performance
hit?

We tried to settle the first question by means of follow-up
experiments.

6.3 Post–TREC Experiments

One possible hypothesis is that the profiles obtained by
adaptive filtering at the end of AP88 are better than the
profiles obtained from batch training over the same corpus.
To test this hypothesis, we compared three different
versions of initial profile vectors:
A. The original (untrained) profile vector ("NoTrain").
B. A trained profile vector based on adaptive filtering over

judgments for accepted documents in AP88
("AdaptTrain").

C. A trained profile vector using batch training over all
judgments in AP88 ("BatchTrain").

5 AP89 was broken up in 6 chunks consisting of 5,000, 8,000, 11,000,
16,000, 20,000, and approximately 25,000 documents, respectively.

Per topic, the initial threshold was kept constant.
Evaluation was based on the average utility over all 50
topics over AP89 and AP90. We found that BatchTrain
performed better than AdaptTrain, which was in turn better
than NoTrain. This is as it should be, since BatchTrain uses
more training examples than AdaptTrain, and NoTrain does
not use any training at all.

Another way to evaluate relative performance is to compare
the number of topics in which one method outperforms
another. Again, AdaptTrain was clearly better than
NoTrain, though now the difference between BatchTrain
and AdaptTrain was less clear for F1.

We can conclude that the hypothesis stated above is false
(the answer to our first question is "no") and, therefore, we
need to look elsewhere for explanations of observed
performance.6

6.4 Topic–By–Topic Analysis

We have not as yet performed a thorough topic–by–topic
analysis, but such an analysis might prove to be very
interesting in general. A classification of topics according to
different criteria, and an analysis of which filtering methods
work better for which class of topics can only lead to more
insight and better filtering systems.

In the batch filtering context, a cursory inspection of relative
per–topic performance showed that a big hit in performance
was due to under–delivery for one topic in particular (topic
22). This topic was, with over 800 relevant documents, the
topic with the highest density in relevant documents (and
hence the highest median utility). Smaller hits occurred for
other high-density topics. This under–delivery points at
some specific characteristics of the methods we used, and is
the result of a combination of the delivery ratio method and
the beta–gamma regulation.

6.5 Discussion: Defects and Remedies

To explain this, we need to look into the beta–gamma
regulation method in some more detail. A critical
observation is that, when the threshold is set considerably
higher than optimal for the topic, many relevant documents
score below threshold. These documents are considered
non–relevant by the system when it computes the optimal
and zero–threshold. In such cases, the zero–threshold may
be well above the true optimal threshold. Although the beta-
gamma algorithm will lower the threshold in small steps, it
may take many updates before the threshold approaches the
true optimal threshold for the profile.

This phenomenon occurs in situation where the initial
threshold is too high, for example because the estimated
ratio of delivery was underestimated (forcing a higher
score). This occurs precisely in high–density queries.

6 Incidentally, the data do suggest that a better initial profile leads to
more effective learning in later updating stages. This hypothesis
certainly warrants further analysis.

Both our batch–mode and adaptive mode runs suffered
from this effect. But the situation was much worse for batch
filtering because there were many more threshold updates
for the adaptive runs (16) than for the batch mode runs (6).
In addition, our batch filtering system made no use of
relevance information over AP88 for initial threshold
setting, whereas some other systems did.

Although there are potential risks associated with a less
conservative initial threshold setting, we could try to
improve our system in the following ways.
1. Estimate the individual topic density from the AP88

corpus and use this density to obtain a different
delivery ratio for each topic.

2. Use smaller chunks, or a real document–based filtering
system to allow more rapid detection of and adjustment
to underdelivery.

3. Use the shape of the utility function over a sorted list of
accepted documents to estimate density. Although this
function tends to behave rather chaotically, it may still
be possible get a rough estimate of the topic density
and take action in extreme cases.

Each of these aspects of the process suggests interesting
directions for further study.

7 Summary and Further Work

We evaluated the basic CLARIT adaptive filtering approach
by participating in the TREC–7 Adaptive and Batch Filtering
tasks. Our results show that using our standard retrieval
and routing techniques in combination with heuristic
threshold setting leads to reasonably good performance.
Three major positive contributors to this performance were
(1) a heuristic beta–gamma threshold regulation algorithm,
(2) the use of increasing chunk sizes, and (3) the elimination
of difficult topics. Our results also suggest that the delivery
ratio method is an effective initial thresholding method.
Less clear at this point is the benefit of a better initial term
vector.

In the future, we intend to study in more detail the behavior
of the beta–gamma threshold regulation algorithm, in
particular, how its effectiveness varies with different topics.
One example is the problem of slow learning for high
density topics that may have damaged our performance.
Another is the possibility of a combination with logistic
regression for density estimation, which showed some
promise in our approach to filtering in TREC 6. [4]

We also intend to investigate actual real–time filtering
algorithms, as well as profile–specific updating. Other
interesting aspects of filtering are related to an intelligent
exploitation of historical training data based, for example,
on recency and confidence. Finally, we believe that topics
related to the learning effect and behavior over time, such as
user interest drift and topic tracking, are important future
research issues.

Acknowledgements

We are indebted to Dr. Alison Huettner for her comments on
earlier drafts of this paper and to Ms. Lisa Stewart for help
with the layout and formating of the final document.

References

1. Evans, David A., Kimberly Ginther–Webster, Mary
Hart, Robert G. Lefferts, Ira A. Monarch, “Automatic
Indexing Using Selective NLP and First–Order Thesauri”.
In A. Lichnerowicz (Editor), Intelligent Text and Image
Handling. Proceedings of a Conference, RIAO ’91. Amsterdam,
NL: Elsevier, 1991, 624–644.

2. Evans, David A., and Robert G. Lefferts, “CLARIT–
TREC Experiments”. Information Processing and Management,
Vol. 31, No. 3, 1995, 385–395.

3. Evans, David A., Alison Huettner, Xiang Tong, Peter
Jansen, and Jeff Bennett, "Effectivenss of Clustering in Ad-
Hoc Retrieval," This Volume.

4. Milic–Frayling, Natasa, Chengxiang Zhai, Xiang Tong,
Peter Jansen, and David A. Evans, “Experiments in Query
Optimization, the CLARIT System TREC–6 Report”. In
Voorhees, E.M., and D.K. Harman (Editors), The Sixth Text
REtrieval Conference (TREC–6). NIST Special Publication 500–
240. Washington, DC: U.S. Government Printing Office,
1998, 415–454.

5. Rocchio, J.J., "Relevance Feedback in Information
Retrieval", In: Salton, Gerard (Editor), The SMART Retrieval
System, Prentice–Hall, Englewood NJ. 1971, 313–323.

6. Salton, Gerard, Automatic Text Processing, Addison–
Wesley, Reading, MA, 1988.

Optimal vs Actual Utility on Equal-Size Chunks (F1)

-2

-1

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
ti

lit
y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

F
1

R
at

io

optimal F1 actual F1 F1 ratio

Optimal vs Actual Utility on Equal-Size Chunks (F3)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
ti

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
3

R
at

io

optimal F3 actual F3 F3 ratio

Figure 3a. Learning effect: optimal vs. actual utility for equal–size
chunks (F1 and F3).

Optimal vs. Actual Utility on Increasing-Size Chunks (F1)

-20

-15

-10

-5

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15N
o

rm
al

iz
ed

 U
ti

lit
y

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

F
1

R
at

io

optimal F1 actual F1 F1 ratio

Optimal vs. Actual Utility on Increasing-Size Chunks (F3)

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
o

rm
al

iz
ed

 U
til

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
3

R
at

io

optimal F3 actual F3 F3 ratio

Figure 3b. Learning effect: optimal vs. actual utility for
increasing–size chunks (normalized) (F1 and F3).

