
Yale NLP at TREC 2024: Tip-of-the-Tongue Track

Rohan Phanse
Yale University

rohan.phanse@yale.edu

Gabrielle Kaili-May Liu
Yale University
kaili.liu@yale.edu

Arman Cohan
Yale University

arman.cohan@yale.edu

Abstract

This paper describes our submissions to the TREC
2024 Tip-of-the-Tongue (ToT) track. We use a two-
stage pipeline consisting of DPR-based retrieval fol-
lowed by reranking with GPT-4o mini to answer ToT
queries across three domains: movies, celebrities, and
landmarks. Two of our runs performed retrieval us-
ing a “general” DPR model trained to handle queries
from all domains. For our third run, we developed an
approach to route queries to multiple “expert” DPR
models each trained on a single domain. To build
training sets for our DPR models, we collected ex-
isting ToT queries and generated over 100k synthetic
queries using few-shot prompting with LLMs. After
retrieval, results were reranked either listwise or us-
ing a combined pointwise and listwise approach. Our
results demonstrate the efficacy of our three submit-
ted approaches, which achieved NDCG@1000 scores
ranging from 0.51 to 0.60.

1 Introduction

The Tip-of-the-Tongue (ToT) task refers to the chal-
lenge of retrieving the identifier of an item from gen-
erally verbose and vague recollections of that item [1].
The TREC ToT track was launched in 2023 to mo-
tivate the development of information retrieval (IR)
solutions for this task [1].

In this paper, we describe our submissions to the
TREC 2024 ToT track. We propose a two-stage
pipeline consisting of retrieval using Dense Passage
Retriever (DPR) models [2] followed by reranking
with GPT-4o mini to answer ToT queries across three
domains: movies, celebrities, and landmarks. To
build training datasets for our DPR models, we im-
plemented the pipeline proposed by Borges et al. [3]
in TREC ToT 2023 to create a dataset of movie
queries and collect few-shot examples of celebrity and
landmark queries. To address the scarcity of existing
celebrity and landmark queries on the Internet, we
developed a few-shot prompting approach to gener-
ate over 100k synthetic queries using GPT-4o mini.

After preparing training sets for each domain, we
trained a single “general” DPR model to handle
queries from all domains and used it in our first
two runs. In addition, we developed an approach
to route queries to multiple single-domain “expert”
DPR models for our third run. We used GPT-4o
mini to rerank the results retrieved by our DPR
models. We developed an initial pointwise reranking
stage that we used along with Borges et al.’s [3] list-
wise round-robin approach in our first run. We only
performed listwise reranking in our other two runs
to measure the specific contribution of our proposed
pointwise reranking stage to overall performance.

2 Methods

We begin by describing the process of preparing and
generating our training sets in Section 2.1. We then
discuss our “routing” retrieval approach in Section
2.2 and our reranking pipeline in Section 2.3.

2.1 Query Generation

To build the training datasets for our DPR mod-
els, we paired the pipeline proposed by Borges et
al. [3] for collecting real-world ToT queries with
our few-shot prompting approach for generating syn-
thetic queries using LLMs.

Motivated by Borges et al.’s [3] success with col-
lecting 118k ToT movie queries from Fröbe et al.’s
TOMT-KIS dataset of 1.3M+ Reddit posts [4], we
employed various filtering techniques to extract rele-
vant posts about celebrities and landmarks from this
dataset. We ultimately obtained only 3, 051 posts
regarding celebrities and 117 posts regarding land-
marks that satisfied our criteria of having an answer
and not containing links, which we specified to avoid
abrupt queries that simply relied on linked content.

To address this data scarcity, we opted to generate
synthetic training datasets for the celebrity and land-
mark domains with the goal of constructing diverse,
realistic queries varied in writing style, difficulty, and
query length. We generate multiple types of queries

1



across three difficulty settings (“easy”, “medium”,
and “difficult”) and three length settings (“short”,
“medium”, and “long”) for a total of nine categories,
each containing queries generated with the same dif-
ficulty and length settings.

Our first task was to collect real queries from
TOMT-KIS to form our training dataset for the
movie domain and our pools of few-shot examples
for the celebrity and landmark domains. We imple-
mented Borges et al.’s [3] pipeline for extracting an-
swers from Reddit posts with GPT-3.5 Turbo and
matching them to the titles of Wikipedia articles in
the corpus using the Python library difflib. We
adhered closely to their proposed pipeline aside from
two modifications. First, we gave GPT-3.5-Turbo the
option to respond with "NO NAME" in the title extrac-
tion stage to filter out posts without valid answers.
Second, we confirmed whether the words in the ex-
tracted title were contained in the Reddit post’s cho-
sen answer to eliminate cases of hallucinations from
GPT-3.5 Turbo. Similarly, we checked that words in
the matched Wikipedia title were contained in the
extracted title during the title matching stage.

With this pipeline, we obtained a training dataset
of 71,449 query-answer pairs about movies from an
initial collection of 127,283 posts in TOMT-KIS that
contained either “movie” or “film” in their titles.
From an initial group of 3,051 celebrity-related posts,
which we identified by searching for tags such as
[Celebrity] or [Actor] in the post title, we ob-
tained 1,387 celebrity queries with answers. Simi-
larly, we used our pipeline on 117 landmark-related
posts we identified in TOMT-KIS by searching for
tags such as [Landmark] or [Place]. We also manu-
ally searched over the r/TipOfMyTongue subreddit1

for recent landmark-related posts (c. 2023–2024) to
feed into our pipeline or process by hand. In total,
we collected 57 landmark queries with answers and
82 without answers. Discounting queries reserved for
our test sets, we obtained a total of 1,187 celebrity
queries and 114 landmark queries to use as few-shot
examples.

Following collection of few-shot examples, we ob-
tained the names of various celebrities and landmarks
to serve as the answers for our synthetically generated
queries. We scraped names from 96 Wikipedia arti-
cles containing lists of celebrities or notable people.
We additionally scraped names of highly popular in-
dividuals whose articles appeared in the top 5,000
Wikipedia articles for each month from December
2015 to July 2024. To identify if an article was about
a person, we checked whether the phrase “born” and

1https://www.reddit.com/r/tipofmytongue

a month or an open parenthesis followed by a month
appeared in the first few sentences of the article body.
In total, we collected 36,491 unique celebrity names
using these two approaches. We also collected 18,449
unique landmark names from 296 Wikipedia articles
containing lists of landmarks and places using the
same webscraping techniques.

We decided to effectively double the size of our
training datasets by randomly assigning a third of the
answers to one of the nine total categories, a third to
two categories, and a third to three categories. Re-
peated answers were sent to different categories to en-
sure generation of different types of queries for each
occurrence. For our synthetic celebrity dataset, we
utilized 8,000 answers per category to achieve a total
of 72,000 answers. For our landmark dataset, we uti-
lized 4,000 answers per category to achieve a total of
36,000 answers.

Your task is to generate a question for the answer

of "{answer}" from the perspective of someone who is

trying to remember the name of this {domain} they

have forgotten. You must use the exact same writing

style as the questions below. Your question cannot

contain the answer. {difficulty requirement} Your

question must have a similar length to Question #3,

which has {L} words. You will be penalized if your

question is shorter than {max(0, L - 10)} words or

longer than {L + 10} words.

Answer #1: {few shot answer 1}
Question #1: {few shot query 1}
...

Answer #4: {answer}
Question #4:

Figure 1: Few-shot prompt for generating a query.
Few-shot examples #2 and #3 omitted for brevity.

Finally, we generated synthetic queries to pair with
these answers using GPT-4o mini. In addition to 3-
shot prompting, we utilized custom prompts for each
difficulty and query length setting as shown in Fig-
ures 1 and 2. To control for the difficulty of queries,
we substituted the {difficulty requirement} spec-
ification in the prompt template (Figure 1) with one
of the three options shown in Figure 2. We observed
that the difficulty of ToT queries often corresponds
to their level of vagueness. Thus, we prompted GPT-
4o mini to generate specific and helpful queries for
the “easy” setting, vague and unhelpful queries for
the “difficult” setting, and a mix of both for the
“medium” difficulty setting. We validate that our ap-
proach results in measurable differences in difficulty
between categories in Section 3.1.

While we explicitly encouraged GPT-4o mini to
generate false memories for the “difficult” setting as

2



Easy: The person in your question remembers many

details about the {domain} they have forgotten, so

your question must include multiple specific facts

and helpful details. You will be penalized if the

question is vague or difficult to answer.

Medium: The person in your question remembers

only a few details about the {domain} they have

forgotten, so your question must include one or two

specific and helpful facts but also some vague and

unhelpful details.

Difficult: The person in your question remembers

almost nothing about the {domain} they have

forgotten, so your question must only include

unhelpful vague details and false memories. You

will be penalized if the question is too specific or

easy to answer.

Figure 2: Difficulty requirement prompts by category.

seen in Figure 2, we also did not fact check any of
the generated queries. Thus, we utilized both inten-
tional and unintentional hallucinations from LLMs to
better simulate the ToT task.
To encourage GPT-4o mini to emulate the writing

style observed in real celebrity or landmark queries,
we performed 3-shot prompting. Few-shot examples
were randomly drawn from one of three pools cre-
ated by sorting all few-shot examples by query length
and dividing the list into thirds. We sampled from
the lower third of the length distribution for “short”
queries, the middle third for the “medium” length
queries, and the upper third for “long” queries. We
prompted GPT-4o mini to generate its query to have
the same number of words as the third few-shot exam-
ple query. We found the most success in generating
queries that met a length target when the given ex-
amples had the same or similar lengths to the target.

Queries Movies Celebrities Landmarks

Total 74,449 75,561 36,320
Real 71,449 1,187 (x3) 32 (x10)
Synthetic — 72,000 36,000
Provided 300 (x10) — —

Table 1: Breakdown of the different types of queries
present in the training datasets for each domain. Up-
sampling by a factor of 3 is denoted by (x3).

We provide a breakdown of our single-domain
training datasets in Table 1. We used the 300 queries
in the train and dev1 sets provided to us by the
TREC ToT organizers in our movie dataset. We up-
sampled these queries by a factor of 10 to give them
greater weight during training. We upsampled the
real queries in the celebrity and landmark domains

to encourage our DPR models to improve upon both
real and synthetic queries during training.

We also combined these individual datasets into
our full training dataset with 74,449 movie queries,
75,561 celebrity queries, and 72,640 landmark queries
for a total of 222,650 queries. We obtained the
72,640 landmark queries by upsampling our landmark
dataset by a factor of 2. This allowed us to achieve
approximately equal representation for each domain.
We used our full dataset to train a single “general”
DPR model to handle all domains and provide more
training details in Section 3.2.

2.2 Routing

In addition to training a single general DPR model
on all domains, we developed an approach to route a
query to one of multiple “expert” DPR models. Each
expert model was trained on a single domain’s train-
ing set for over three times as many epochs compared
to the general model. In this section, we refer to the
general model as DPR-All and the expert models for
the movie, celebrity, and landmark domains as DPR-
M, DPR-C, and DPR-L, respectively. We investigate
both approaches to determine their relative efficacy
for the ToT task across domains.

Our preliminary experiments demonstrated that
DPR-M and DPR-L outperformed DPR-All by a
small margin on our internal test sets. On the
other hand, DPR-All outperformed DPR-C by a no-
ticeable margin. These results may be due to the
slight overrepresentation of the celebrity domain in
our multi-domain training dataset, which contains
about 1k more celebrity queries than movie queries
and roughly 3k more than landmark queries. There-
fore, we concluded that training a model on a single
domain offers increased performance for underrepre-
sented domains in DPR-All’s training dataset. How-
ever, the general model is comparable and may offer
greater robustness due to the increased diversity of
its training queries.

To ensure our routing approach directs queries to
the best possible model, we route movie and land-
mark queries to their respective expert models while
sending celebrity and “uncertain” queries to the gen-
eral model. We used GPT-4o mini as our router and
iterated on our prompting strategy until we achieved
near-100% accuracy in our experiments with only a
small amount of “uncertain” classifications. Our final
router prompt is included in Figure 3.

As shown in Figure 3, we used the labels of MOVIE,
PERSON, and PLACE to refer to the movie, celebrity,
and landmark domains respectively, and remove am-
biguity inherent in the definitions of celebrity and

3



You are given a question where someone is trying

to remember the name of either a person, movie, or

place they have forgotten.

Respond with PLACE if the person asking the question

is describing a place. Respond with PERSON if they

are describing a person. Respond with MOVIE if they

are describing a movie. If an actor from a movie is

being described, respond with PERSON.

If this task was difficult due to ambiguity or

multiple categories being present in the question,

respond with your best guess along with the phrase

UNCERTAIN.

Figure 3: Domain router prompt.

landmark. As celebrity queries about actors were
overwhelmingly classified as MOVIE by GPT-4o mini,
we added a sentence to handle this case. We also
found that requiring the model to respond with both
its best guess and UNCERTAIN for ambiguous cases in-
stead of only UNCERTAIN stopped it from overusing
this tag.

2.3 Reranking

For reranking, we develop an initial pointwise rerank-
ing stage to pair with Borges et al.’s [3] round-robin
approach. To rerank the results retrieved by our DPR
models, we adopt Borges et al.’s successful round-
robin strategy of using batches during listwise rerank-
ing. We used GPT-4o mini as our reranker to balance
cost and efficacy of the process. While Borges et al.
[3] ranked 100 results at once with GPT-4, we limited
the reranking process to a maximum of 20 results at a
time to reduce costs. For larger inputs, we observed
that GPT-4o mini’s performance would quickly de-
grade and become prone to meaningless repetition of
variations of the same title or name.

More generally, letN be the total number of results
to be reranked in a round-robin manner and B be the
number of batches. To evenly distribute theN results
among the B batches, the ith result is sent to batch
i mod B at position ⌊ i

B ⌋. Then, listwise reranking

is performed on each batch of N
B results and the top

N
B2 results are collected from each batch to create a
final batch. Finally, the final batch is reranked to
determine the top N

B spots in the final ranking. For
the remaining results, the ith result in batch j is sent
to position B · i+ j in the final ranking.

For our runs that only used listwise reranking, we
employed a smaller-scale version of Borges et al.’s ap-
proach that only reranked the top 100 results of the
1000 results retrieved by our DPR models. We used
5 batches of 20 results (i.e., N = 100 and B = 5).

To expand the scope of our reranking to all 1000
results retrieved by DPR, we developed a pointwise
reranking stage to select the 100 most relevant results
according to scores generated by GPT-4o mini. These
results were then passed on to our top 100 round-
robin reranker to produce the final ranking.

We first distributed the 1000 results retrieved by
our DPR models into 50 batches of 20 results (i.e.,
N = 1000 and B = 50). For each batch, we prompted
GPT-4o mini to generate relevance scores on a scale
of 1 to 10 for 20 names as shown in Figure 4.

You are given a question and a list of 20 names of

either all movies, celebrities, or landmarks. For

each name in the list, respond with the line number

and the name followed by a score from 1 to 10 on how

likely this name is the answer to the question.

Figure 4: Pointwise reranking prompt.

In our experiments, we found the most success
when using an open-ended prompt that did not give
explicit scoring criteria beyond setting a range. We
observed that GPT-4o mini tended to give the ma-
jority of results low scores from 1 to 4 and would give
high scores of 7+ to a small group of results that it
deemed the best. We found this behavior to be help-
ful as it prevented the upper end of the score range
from becoming saturated.

After generating scores with GPT-4o mini for all
1000 results, we sorted the results in a pointwise fash-
ion in descending order to form the ranking S. Ties
were broken by choosing the result that appeared ear-
lier in the original DPR ranking. We passed the top
100 results in S to our round-robin reranker and as-
signed its output to the top 100 slots of the final
ranking. We filled in the remaining slots with the
results in S that appeared after the top 100.

3 Implementation

3.1 Data Statistics

We provide example queries from our synthetic train-
ing datasets in Table 2. We can observe character-
istics of real ToT queries in these synthetic queries
such as the use of an informal writing style, recol-
lections of memories, and expressions of uncertainty.
Note that the two “easy” queries in Table 2 contain
specific and helpful clues while the “medium” and
“difficult” queries are much more vague (i.e., the in-
tended outcome of our query generation prompts in
Figure 2).

We evaluate each category of our synthetic datasets
with the BM25 retriever and provide plots of the

4



Example Synthetic Queries By Category

Short
Length
+ Easy

Famous athlete known for javelin throwing, has a unique record with a
notable technique, competed in the 1980 Olympics. Who is he?

Short
Length
+ Diff.

some kind of historical building I vaguely remember from a trip with
my family ages ago. I think it was in Europe, maybe in a small town?
It had a lot of beautiful gardens around it, and I feel like there
were some old paintings or something inside. I keep confusing it
with other castles, but this one definitely stood out. Any ideas?
Thanks!

Med.
Length
+ Med.
Diff.

Modern sculptor known for his large-scale, geometric metal pieces.
I think his work often incorporates light in interesting ways,
and he might have been influenced by contemporary architecture or
mid-century design. He created some installations for public spaces,
but I’m really struggling to recall his name. He doesn’t come to
mind easily, so any hints would help!

Long
Length
+ Easy

A luxury accommodation near a famous golf course overlooking stunning
coastal views I visited this beautiful place a few years back, and
I’ve been trying to recall its name ever since. It’s located near
Pebble Beach on California’s Monterey Peninsula, surrounded by
picturesque landscapes, featuring lush green fairways and majestic
cypress trees. The building itself had a classic, elegant design
with a cozy fireplace in the lobby. I remember enjoying a superb
meal at their highly-rated restaurant that focused on local seafood
and fine wines. There was also an inviting outdoor patio where we
could soak in the ocean breeze. If anyone can help jog my memory
about the name of this amazing lodge, that would be fantastic!

Table 2: Example synthetic queries by category from
the celebrity and landmark training sets.

BM25 Recall@1000 scores per category in Figure 5.
We use this metric as a proxy for the average difficulty
of a category’s synthetic queries because it tests the
most basic ability of queries to simply be retrieved at
all. Under this framework, we validate that our query
generation approach succeeded in creating noticeable
differences in difficulty between categories with dif-
ferent difficulty settings.

Short Medium Long
0

0.2

0.4

0.6

0.8

1

Length Setting

B
M
25

R
ec
al
l@

10
00

Difficulty Distribution of Celebrity Dataset

Easy

Medium

Difficult

Short Medium Long
0

0.2

0.4

0.6

0.8

1

Length Setting

B
M
25

R
ec
al
l@

10
0
0

Difficulty Dist. of Landmark Dataset

Easy

Medium

Difficult

Figure 5: Plots of the difficulty distribution across
categories for the celebrity and landmark datasets.
Each one of a dataset’s nine categories is represented
a point, and points corresponding to the same diffi-
culty setting are connected in a line.

For categories with the same difficulty setting in
the celebrity dataset, we observed an increase in dif-
ficulty as query length increased (Figure 5), which is
consistent with Arguello et al.’s [1] findings in TREC
ToT 2023. For the landmark dataset, we observed an
exception to this trend, possibly due to biases affect-
ing difficulty that arose from the extremely small size
of the landmark few-shot example pools.

In addition, we include the average query word
length for each category of our synthetic datasets in
Table 3. We designed our query generation process to
randomly sample each synthetic query’s target length

from few-shot pools of actual ToT queries. Thus, the
average query lengths in Table 3 are consistent with
the natural length distribution of real ToT queries in
the celebrity and landmark domains.

Celebrity Dataset Landmark Dataset
Short Medium Long Short Medium Long

Easy 40.95 77.33 135.70 53.92 90.89 134.28
Medium 40.08 75.74 135.44 52.29 90.05 134.21
Difficult 41.05 79.18 142.31 54.55 93.35 139.20

Table 3: Average number of words per query for each
category in the celebrity and landmark datasets.

3.2 Experimental Setup

We used the Tevatron framework created by Gao et
al. [5] to train our DPR models, which we initialized
from the bert-base-uncased checkpoint [6]. We uti-
lized a learning rate of 2e-5, a batch size of 32, a
maximum query size of 128 tokens, and a maximum
passage size of 512 tokens. We used the sole answer
for each query as its positive document and provided
two negative documents per query during training.

We used the baseline bm25 code provided by the
TREC ToT organizers to run BM25 on our training
queries [1]. We then chose the two highest ranked
non-answers according to BM25 as each query’s neg-
ative documents. We also employed the organizers’
baseline gpt4 db code to match our reranked titles to
document IDs in the corpus [1].

DPR models handling a single domain were trained
for 10 epochs. Our DPR model handling all three do-
mains together was trained for 3 epochs to maintain
approximately equal overall training time.

4 Results

We submitted three runs to TREC and share evalu-
ation results on the official TREC 2024 ToT test set
in Table 4. We used our “routing” retrieval approach
from Section 2.2 in the dpr-router-lst-rerank run
and our “general” model approach described at the
end of Section 2.1 in our other two submitted runs.
We used our combined pointwise and listwise rerank-
ing approach in the dpr-pnt-lst-rerank run and
only performed listwise reranking in our other two
runs as described in Section 2.3.

To compare our two retrieval approaches, we exam-
ine dpr-lst-rerank and dpr-router-lst-rerank,
which differ in only the retrieval method used. As
both runs displayed similarly high Recall@1000 per-
formance, the two retrieval approaches share simi-
lar recall performance with reranking only slightly

5



Table 4: Results of the three runs submitted to TREC.

Run NDCG@10 NDCG@1000 MRR@1000 Recall@1000
dpr-pnt-lst-rerank 0.5708 0.6049 0.5482 0.8417
dpr-lst-rerank 0.5010 0.5424 0.4860 0.8400
dpr-router-lst-rerank 0.4664 0.5098 0.4515 0.8333

changing the Recall@1000 score if at all. The
“general” model approach resulted in higher NDCG
performance for dpr-lst-rerank compared to the
“routing” approach for dpr-router-lst-rerank,
suggesting the advantage of the former retrieval ap-
proach over the latter.
We compare our two reranking approaches by in-

specting dpr-pnt-lst-rerank and dpr-lst-rerank,
which differ only by the addition of the initial point-
wise reranking stage we propose. We observe a sig-
nificant jump in NDCG@1000 performance from 0.54
in dpr-lst-rerank to 0.60 in dpr-pnt-lst-rerank,
demonstrating the effectiveness of pointwise rerank-
ing for the ToT task.

5 Conclusions

This paper described our submissions to the TREC
2024 ToT track. We proposed a two-stage pipeline
of DPR-based retrieval followed by reranking using
GPT-4o mini, swapping in two different retrieval
strategies and two reranking approaches. We devel-
oped a few-shot prompting approach using GPT-4o
mini to reliably generate synthetic training queries of
multiple difficulties and lengths. We observed that
training a “general” DPR model to handle queries
from all domains outperformed routing queries to
single-domain “expert” DPR models. We found that
our combined pointwise and listwise reranking ap-
proach improved performance when compared to our
runs that only utilized listwise reranking. Possi-
ble future extensions of these retrieval and reranking
strategies include using them upon a greater number
of domains or with a different set of models.

Acknowledgments

We gratefully acknowledge the support and feedback
provided by members of the Yale NLP Lab through-
out this project. We are thankful to the Yale Col-
lege Dean’s Office and the YES Scholars program for
funding this research and making it possible.

References

[1] Jaime Arguello, Samarth Bhargav, Fernando
Diaz, Evangelos Kanoulas, and Bhaskar Mi-

tra. Overview of the TREC 2023 Tip-
of-the-Tongue Track. In The Thirty-Second
Text REtrieval Conference (TREC 2023). NIST,
2024. https://trec.nist.gov/pubs/trec32/

papers/Overview_tot.pdf.

[2] Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense Pas-
sage Retrieval for Open-Domain Question An-
swering. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6769–6781.
ACL, 2020. https://doi.org/10.18653/v1/

2020.emnlp-main.550.

[3] Lúıs Borges, Jamie Callan, and Bruno Mar-
tins. Team CMU-LTI at TREC 2023 Tip-
of-the-Tongue Track. In The Thirty-Second
Text REtrieval Conference (TREC 2023). NIST,
2024. https://trec.nist.gov/pubs/trec32/

papers/CMU-LTI.T.pdf.

[4] Maik Fröbe, Eric Oliver Schmidt, and Matthias
Hagen. A Large-Scale Dataset for Known-Item
Question Performance Prediction. In QPP++@
ECIR, 2023. https://ceur-ws.org/Vol-3366/

paper-03.pdf.

[5] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie
Callan. Tevatron: An Efficient and Flexible
Toolkit for Dense Retrieval. In Proceedings of
the 46th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 3120–3124, 2023. https://doi.

org/10.1145/3539618.3591805.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186. ACL, 2019. https:

//doi.org/10.18653/v1/N19-1423.

6

https://trec.nist.gov/pubs/trec32/papers/Overview_tot.pdf
https://trec.nist.gov/pubs/trec32/papers/Overview_tot.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://trec.nist.gov/pubs/trec32/papers/CMU-LTI.T.pdf
https://trec.nist.gov/pubs/trec32/papers/CMU-LTI.T.pdf
https://ceur-ws.org/Vol-3366/paper-03.pdf
https://ceur-ws.org/Vol-3366/paper-03.pdf
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

	Introduction
	Methods
	Query Generation
	Routing
	Reranking

	Implementation
	Data Statistics
	Experimental Setup

	Results
	Conclusions

