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Abstract. The SoftBank-Meisei team participated in the Retrieval (R), Aug-

mented Generation (AG), and Retrieval Augmented Generation (RAG) tasks at

TREC RAG 2024. In the retrieval task, we employed the hierarchical retrieval

process of combining the sparse and dense retrieval methods. We submitted two

runs for the task; one with the baseline implementation with additional prepro-

cessing on the topic list and the other with the hierarchical retrieval results.

In the Augmented Generation task, we used the GPT-4o API, as well as the

LLama3-70b model along with our custom prompt for the generation. As for

the Retrieval Augmented Generation task, we submitted two runs same as the

R-task. The prompt used for the AG-task was used for the generation stage of

the RAG-task too.

1 Retrieval Task

1.1 System Overview

Our pipeline consists of three stages including topics list pre-processing stage, retrieval

stage and finally re-ranking stage. We implemented two pipelines where the differences

between the two lies in the retrieval stage. For the first run, we used the baseline

method BM25[1] indexing for retrieval, and a hybrid approach of combining sparse as

well as dense retrieval for the second run.

Topics pre-processing : The pre-processing stage consists of correcting the grammat-

ical/spelling errors in topics by prompting GPT-4o. It was noticed that the automated

pre-processing by GPT-4o not only corrected the grammar/spelling errors but also did

text completions for some incomplete topics. Once the automated pre-processing was

done, we did a manual check to correct any improper additional texts. This mostly

involved deleting the prefix to some of the pre-processsing results which contained the

original topic. This check could also have been automated with a second stage process-

ing, but we skipped it this time since the topics list was small enough to do a quick
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manual check.

Retrieval :

Sparse Retrieval : We employed the baseline method for sparse retrieval, which is using

the BM25 algorithm for ranking and Lucene[2] inverted data structure to store the

index. Top-100 results are returned as output.

Dense Retrieval : We first created flat dense embeddings of the msmarco-v2.1-doc-

segmented corpus[3]. Search index was created using the Faiss library from Pyserini5

for each document in the corpus. Hence 59 vector search indexes were created in total

corresponding to the doc id.

For the first run, we employed sparse retrieval method using the msmarco-v2.1-

doc-segmented prebuilt BM25 index from the Pyserini. First step retrieval results was

obtained using the LueceneSearchlibrary from the pyserini toolkit.

For the second run, we first used sparse retrieval retrieval results to list up the doc

ids that contains relevant information. Then the dense retrieval indexes of those filtered

doc ids were used for the second stage retrieval. The resulting top-100 candidates from

the dense retrieval results of each doc id candidates of the sparse retrieval results

were combined together to have (sparse retreival candidates count x 100) number of

candidates. The combined list were then sorted in descending order of the retrieval

score to get the top-100 retrieval results. This run will be referred to as hierarchical

retrieval from here on since the retrieval was done from document to segment level.

Reranking : We used RankZephyr[4] from RankLLM for reranking the top-100 results

from the retrieval stage.

2 Augmented Generation Task

The retrieval candidates list given as input was used along with the pre-processed topics

list to generate answers using custom prompt.

2.1 System Overview

Azure OpenAI GPT-4o instance setup with content filtering was used for the genera-

tion process. Meta’s LLama3-70b[5] model was used for the generation of those topics

which got caught in content filtering.

3 Retrieval Augmented Generation Task

3.1 System Overview

We submitted two runs for the task; one with the sparse retrieval/generation results as

described in R-task/Sparse retrieval and AG-task sections. And the second run with

the hierarchical retrieval/generation results as described in R-task/Dense retrieval and

AG-task sections.
5 https://github.com/castorini/pyserini

https://github.com/castorini/pyserini
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4 Post-processing

As for the final processing step, we used the validator script provided by the organizers

to drop sentences at the end of the generated response, so as to limit the total number

of tokens as specified by the competition rules. The validator script also pointed out

warnings of citations out of index 20.

5 Evaluation

The TREC RAG6 evaluation process combines automatic and manual assessments,

focusing on constructing information nuggets, which serve as ”ground truth” for eval-

uating system answers.

For relevance assessment, ”Auto Qrels” are initially constructed using relevance es-

timators with UMBRELA[6]. These auto-assessed Qrels are then post-edited by human

annotators to create ”Post-Edited Qrels,” which serve as ground truth for the Retrieval

task evaluation[7].

Evaluation criteria for the AG and RAG generation tasks include three metrics:

Support, Fluency, and Nugget Assignment[8]. Support assesses how well each sentence

in the answer is supported by its relevant cited segments. Fluency is assessed using

LLMs to score the overall fluency and coherence of the generated answers. Finally,

nugget assignment evaluates how well the generated answer captures the required and

necessary information pertaining to the question.

Before submitting results, we attempted an automated LLM-based evaluation, com-

paring our output with the shared AG/RAG task baseline to determine which better

answered the question. We used GPT-3.5-turbo[9] with a custom evaluation prompt

and tabulated results for a few queries. However, because this evaluation method does

not necessarily align with the actual evaluation guidelines, we did not pursue it exten-

sively.

We manually reviewed several generated responses to verify they addressed the

corresponding queries. Due to time constraints, we could not review the entire topic

list or the correctness of citations. We plan to address citation correctness in future

work.

6 Submissions and Results

We submitted a total of 5 runs for the three tasks:

R-task: Sparse retrieval run, Hierarchical retrieval run

AG-task: GPT-4o+LLama3-70b generation run

RAG task: Sparse retrieval run, Hierarchical retrieval run

According to the initial Nugget assessment results shared in[8], our submission se-

cured the second-highest score for the primary metric among the AG task runs. This

assessment is based on the fully automated evaluation of 301 topics. A separate tabu-

lated result of 21 manually evaluated topics from NIST was also provided. These results

also show that our AG task run secured second rank in terms of the primary metric.

However, our retrieval-based runs did not achieve high evaluation scores, indicating the

6 https://trec-rag.github.io/

https://trec-rag.github.io/
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need for further improvement.

In the future, we plan to conduct further analyses to understand the conditions

under which the accuracy improves and refine our approach accordingly.
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