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Abstract. The Softbank-Meisei team participated in the ad-hoc video search

(AVS) and video-to-text (VTT) tasks at TREC 2024. In this year’s AVS task,

we submitted four fully automatic systems for both the main and progress

tasks. Our systems utilized pre-trained vision and language models, including

CLIP, BLIP, and BLIP-2, along with several other advanced models. We also

expanded the original query texts using text generation and image generation

techniques to enhance data diversity. The integration ratios of these models were

optimized based on results from previous benchmark test datasets. In this year’s

VTT, as last year, we submitted four main task methods using multiple model

captioning, reranking, and generative AI for summarization. For the subtasks,

we submitted three methods using the output of each model. Last year’s test

data for the main task showed improvements of about 0.04 points in CIDEr-D

and about 0.03 points in SPICE, based on the indices we had on hand.

1 AVS Task

1.1 System Overview

Our system utilized multiple state-of-the-art pre-trained multimodal models, includ-

ing CLIP [1], BLIP [2], and BLIP-2 [3], as well as several other advanced models, to

improve the accuracy of video retrieval. We extracted frame images from videos by

sampling approximately every 10 frames and computed the similarity between each

extracted frame and the query. The videos were then ranked based on their similarity

scores in descending order. To further enhance data diversity, we expanded the original

query texts using advanced text generation techniques and generated the corresponding

images using image generation models. These expanded query representations allowed

for a broader exploration of potential matches between the query and visual content.

Furthermore, the integration ratios of the models were optimized using results from

previous benchmark test datasets, ensuring that each model contributed optimally to

the overall performance of the system.
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1.2 Pre-traiend Visuion and Language Multimodal Models

First, we adopted models based on CLIP (Contrastive Language-Image Pretraining) [1],

which enables effective alignment between visual and textual data for multimodal tasks.

CLIP’s framework has proven to be highly effective in tasks requiring the integration

of vision and language, making it a cornerstone for our video retrieval system.

In particular, we leveraged a wide range of models provided by OpenCLIP, a major

platform offering numerous cutting-edge models for multimodal applications. Among

the available models are SigLIP [4], EVA-CLIP [5], and MetaCLIP [6], which are exam-

ples of models trained on large-scale datasets and are well-suited for handling complex

interactions between images and text. These vision and language models, in general,

have been trained on massive captioned datasets such as LAION-2B and LAION-5B

[7], which contain billions of image-text pairs. This extensive training allows the models

to capture a wide range of semantic relationships, enhancing their generalization across

diverse queries and visual content.

In addition to the models provided by OpenCLIP, we also explored and experi-

mented with other advanced vision and language models, such as BLIP [2], BLIP-2 [3],

ALIGN [8], Long-CLIP [9], VeCLIP [10], ViTamin [11], LLaVA [12], and Phi3-Vision

[13]. Through detailed evaluation, we selected the models that demonstrated superior

accuracy and performance in line with our system requirements.

1.3 Query Expansion

We utilized GPT-3.5 to expand the original queries. Specifically, we provided prompts

that instructed the model to generate 10 alternative sentences that conveyed the same

meaning as the original query but used different expressions. This process was repeated

10 times, resulting in a large pool of generated sentences. Afterward, we removed any

duplicates, ensuring that only unique sentences were retained. To address the issue of

generated sentences that diverged too far from the original meaning, we employed a

multimodal model to evaluate the semantic similarity between the original query and

the generated sentences. Only sentences with a high similarity score were kept, while

those with a lower similarity were automatically discarded to maintain consistency with

the original query.

For image generation, we employed both the Stable Diffusion v2.1 and Stable Dif-

fusion XL 1.0 models [14] provided by Stability AI to generate multiple images from

the expanded queries. These models allowed for the creation of diverse visual repre-

sentations based on text inputs. However, to ensure that the generated images were

contextually aligned with the original query, we again applied a multimodal model to

measure the similarity between the original query and each generated image. Images

that showed a low degree of relevance or deviated from the original query’s context were

automatically filtered out, leaving only those that were closely related to the query in

both content and theme.

These expansions offer several advantages. First, by generating diverse yet seman-

tically similar queries, we increase the coverage of potential matches during video re-

trieval, enhancing the system’s ability to find relevant results that may not have been

captured by the original query alone. In addition, the use of multiple image represen-

tations improves the robustness of the system, allowing it to handle a wider variety of

visual content.



3

1.4 Optimization of Integration Ratios

Table 1. Priorities and increments for integration ratio optimization.

Priority Details

1 Best integration ratio for tv22 + tv23 (increment: 0.1)

2 Best integration ratio for tv22 + tv23 (increment: 0.05)

3 Best integration ratio for tv22 (increment: 0.1)

4 Best integration ratio for tv23 (increment: 0.1)

To achieve optimal integration of the models, we performed normalization and

increment-based optimization. The similarity scores for each model were normalized

using min-max scaling to a range of 0.0 to 1.0, ensuring consistency across different

models and datasets as a uniform basis for integration.

The integration ratios were optimized for both combined and individual models

from the tv22 and tv23 datasets. For the combined models, increments of 0.1 were

used initially, with finer adjustments in increments of 0.05 where necessary. The op-

timization process used forward selection, where the models were integrated one by

one. At each step, the integration ratio for the selected model was determined, start-

ing with the model achieving the highest mean Average Precision (mAP), which was

initially adopted with an integration ratio of 1.0. Subsequent models were integrated

incrementally, with ratios adjusted between 0.1 and 2.0 (or 0.05 and 2.0 for finer ad-

justments), and the performance was reassessed. This process was repeated until no

further performance improvements could be achieved.

The priorities and increments used during this optimization are summarized in

Table 1.

1.5 Submissions and Results

Fig. 1. Results of all fully automatic systems for all teams that submitted to the main task.
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As shown in Fig. 1, our submitted systems ranked between 3rd and 6th among all

submitted runs for the main task. This performance placed our team in the second

overall among the participating teams.

Fig. 2. Progress task results (Set-A). Our team ranked 2nd, with mAP improving from 0.256

(2022) to 0.286 (2023) and 0.351 (2024) due to advancements in visual-semantic embedding

models and query expansion.

Fig. 3. Progress task results (Set-B). Our team achieved 2nd place, with mAP increasing from

0.278 (2022) to 0.335 (2023) and 0.417 (2024), driven by improved models and image-based

query expansion.

In the Progress task, our team achieved second place in both Fig. 2 (Set-A) and

Fig. 3 (Set-B).
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Over the years, the mean average precision (mAP) has improved significantly from

2022 to 2023 and further to 2024 in both sets. For set-A, mAP increased from 0.256

in 2022 to 0.286 in 2023, and further to 0.351 in 2024. For set-B, mAP improved from

0.278 in 2022 to 0.335 in 2023, and further to 0.417 in 2024. The improvements from

2022 to 2023 can be attributed to leveraging the latest visual-semantic embedding

models, which enhanced the baseline accuracy, and expanding the query texts. From

2023 to 2024, the improvements were achieved not only by utilizing state-of-the-art

visual-semantic embedding models, but also by incorporating query expansion through

image generation from textual queries. This approach contributed to a broader and

more diverse search space, resulting in higher overall accuracy.

2 VTT Task

2.1 Overview

This year, our team continued to participate in the VTT task and submitted both the

main task and sub-task inferences.

This year’s approach to the main task is based on last year’s components with some

updates. The first update is the variation of the individual finetuned base models. This

year, in addition to BLIP2, GIT, and InstructBLIP, which were used last year, we also

used LLaVa. (We also used BLIP3;xGen-MM as the base for reranking and refining,

although we are not finetuning it.) The second update is prompt tuning of LLM. We

used LLM to summarize the captions that are the output of each model, by tuning

the prompt used for generation. We also implemented another approach by generating

EntityGraph of each caption using LLM, and then referencing the generated Entity-

Graphs for summarization. The third update is Data Augmentation. We augmented

the data using BackTranslation and similar sentence generation with GPT, and used

the augmented data for fine-tuning. This year, we added these updates to last year’s

components and submitted four run files to the main task. Compared to last year’s

test data, we have seen improvements of about 0.04 points in CIDEr-D and about 0.03

points in SPICE, based on the indicators we have.

For each subtask, we submitted three files with the highest validation scores among

the individual models.

2.2 Methods

Our approach consists of three main components.

The first is fine-tuning. In this process, we fine-tune multiple image/video captioning

models on the VTT dataset(V3C). The four base models used were BLIP2, GIT, and

InstructBLIP, which were also used last year, as well as the newly adopted LLaVa.

In addition, this time we also used data that was augmented during finetuning. Data

augmentation involves back translation using Google Translation and similar sentence

generation using GPT3.5.

The second is reranking. In this process, the captions generated by the fine-tuned

model are compared to the original video, and then sorted by score. We also hope

that the Image Captioning model will be able to generate captions for each frame in

a video and then rerank them to select captions that will more comprehensively cover

the content of the video.
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The third is refining. Similar to reranking, we merge captions using captions gener-

ated from fine-tuned models. However, while the concept of reranking is to select the

best sentence from the generated captions, the concept of refining is to summarize into

a single sentence from multiple generated captions, and cover the overall image/video

from each caption. In addition to summarizing each caption and correcting grammar,

this year the prompts also generate an Entity-Graph for each caption and match entities

between captions. We also used the pre-trained model BLIP3(xGen-MM) for reranking

and refining, although we were unable to train it on time this time.

We used these approaches for the main task, and for the subtask, we selected and

submitted the inferences of the Finetuned models.

BLIP2 BLIP2 [3] is an abbreviation for “Bootstrap vision-language pretraining model.”

and is a model that connects the vision model and LLM. BLIP2 introduces a Q-former

that connects the encoder and decoder, and the learning process is divided into two

steps. In the first training step, the parameters of the large language model (LLM) were

fixed, and in the second step, the parameters of the image encoder were fixed. Dividing

the learning process into two steps helps to bridge the modality gap and reduces the

number of parameters trained simultaneously, resulting in better efficiency.

GIT GIT[15], which was proposed by Microsoft, is a lightweight vision language model

with high performance in tasks such as captioning and VQA, and is comparable to

SOTA method on various major benchmarks. Specifically, GIT is recognized as a model

that places significant emphasis on the visual recognition ability. For this contest, we

employed the video-compatible version of the model, which is pre-trained on Vatex[?]

video datasets. This model takes 6 frames of images and describes the content of given

image sequences. To feed the model, we sample 6 frames from each video with equal

intervals, regardless of the length of the video and output single caption from each

video. We fine-tuned this GIT-vatex model with the V3C dataset and updated all

parameters.

InstructBLIP InstructBLIP, as introduced in [16], augments the process of extract-

ing visual features and instructions from images and prompts. This is achieved by

integrating instructions into not only the frozen LLM, but also into the Query Trans-

former (QFormer). During the fine-tuning phase of InstructBLIP, we designated the

instruction as “Describe.” We fed only the instruction into QFormer, whereas both the

instruction and ground truth were input into the LLM layer for loss computation. Dur-

ing inference, both QFormer and the LLM were furnished with the same instruction

to generate captions. We also tuned the instruction fed into the model, and used the

fine-tuned inference as the final run of the InstructBLIP model.

LLaVA LLaVA[19] connects pre-trained CLIP ViT-L/14 visual encoder and large

language model Vicuna, using a simple projection matrix. LLaVA is trained to follow

the instructions that include both text and visual features. In this contest, we employed

LLaVA-1.5-7b model and fine-tuned the model with the fixed prompt ”Describe the

picture.”. We trained the model using DMO[24], which can directly optimize non-

differentiable metrics with fewer computational cost than conventional Reinforcement

learning. DMO is a variant of offline reinforcement learning and can maximize metrics
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such as BLEU[21] and CIDEr[22], which are non-differentiable. During the training,

only the parameters of projection layers were updated.

BLIP3(xGen-MM) BLIP3 (xGen-MM)[20] is an extension of BLIP2, which (1) ex-

pands it to large and diverse datasets, (2) makes it scalable to image sizes by replacing

the Q-Former layer with an embedding that uses ViT[23] image patches, and (3) sim-

plifies the training steps by standardizing the loss across multiple training stages. The

pre-trained model xgen-mm-phi3-mini-base-r-v1.5 is used with fixed parameters and is

set as the target caption for reranking and refinement. The prompt uses the default

”USER: <image>\n What’s the content of the image? ASSISTANT:”, and about four

Few-Shots from V3C are used for inference.

Reranking We generated captions from BLIP2, GIT, InstructBLIP, LLaVA and

BLIP3 and calculated the similarity between each caption and the video using vi-

sion/text encoders. The caption with the highest similarity was used as the final output

for submission. To measure the similarity, eight frames were sampled equally from the

video, and the embedding of the image in each frame along with the embedding of

the query text were obtained. The final similarity scores were calculated as the cosine

similarities between those embeddings. We employed EVA-CLIP[18] as the vision and

text encoder to calculate the embeddings.

Refining For the refining, the reranked generated captions from BLIP2, GIT, Instruct-

BLIP, LLaVA and BLIP3 were used to create a single summarized caption using LLM.

The intuition behind performing LLM-based summarization is to capture the missing

information when compared to captioning by a single model. The custom prompt for

the summarization was refactored several times to capture the information across the

multiple captions. Apart from performing general summarization based on described

features on captions, we also experimented using entity graphs for the summarization

task.

For the entity graph based summarization, we first instructed the LLM to generate

individual entity graphs for the reranked captions from different VLMs.The generated

entity graphs were then provided along with the instruction to generate a single cap-

tion, which serves as the final response. From our validation results, we observed that

the entity graph based summarization resulted in the better results when compared to

general summarization.

2.3 Experiments

The base models, GIT5, BLIP26, InstructBLIP7, LLaVA8 and BLIP39, use models

implemented by Hugging Face as the basis for fine-tuning. These models were fine-

tuned using the TV22 training dataset and the model parameters were selected based

on the evaluation results of the TV22 test dataset. The input videos were divided into

eight frames with a resolution of 224×224. For the image captions, one random frame

5 https://huggingface.co/microsoft/git-large-vatex
6 https://huggingface.co/Salesforce/blip2-opt-2.7b
7 https://huggingface.co/Salesforce/instructblip-vicuna-7b
8 https://huggingface.co/liuhaotian/llava-v1.5-7b
9 https://huggingface.co/Salesforce/xgen-mm-phi3-mini-base-r-v1.5

https://huggingface.co/microsoft/git-large-vatex
https://huggingface.co/Salesforce/blip2-opt-2.7b
https://huggingface.co/Salesforce/instructblip-vicuna-7b
https://huggingface.co/liuhaotian/llava-v1.5-7b
https://huggingface.co/Salesforce/xgen-mm-phi3-mini-base-r-v1.5
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from the set of frames was selected and used for training. For text preprocessing, texts

longer than 150 words were excluded from the training data. Additionally, a period

was included for sentences without periods. The pretrained tokenizers specific to each

model were used for tokenization. The training parameters for each model are listed

in Table 2. Pretrained models were used as is for reranking and refining. A refining

prompt was created, as mentioned in the Methods section.

Table 2. Hyperparameters for fine-tuning GIT, BLIP2, InstructBLIP, and LLaVA

Hyperparameters GIT w/ SCST BLIP2 InstructBLIP LLaVA

batchsize 256 48 24 256

epochs 5 20 20 5

optimizer AdamW AdamW AdamW AdamW

learning rate 1e-05 1e-06 1e-04 1e-05

warmup-step none 1000 none none

beamsize 1 20 20 1

2.4 Results

Our team’s results are shown in Table 3 for the main task and Table 4 for the robustness

task. In the main task results, SPICE came in first, METEOR came in second, and

the others came in third, as compared to other teams. This year, Runfile3, which was

set as Primary, was as expected and seemed to produce better results overall than the

other Runfiles. Although they achieved a good score in SPICE, just like last year they

were left far behind other teams in CIDEr and other areas, so this remains an area

they need to work on. As with the main task, the robustness task also saw their team

leave a large gap behind compared to the team in first place among CIDEr.

Table 3. Results of our submitted runs for TREC2024 VTT task.

Runfile Method Primary CIDER CIDER-D BLEU METEOR SPICE
STS

table 1 table 2 table 3 table 4 table 5

1 Reranking 0.801 0.435 0.1364 0.4002 0.182 0.487 0.476 0.518 0.481 0.483
2 Refining1 0.789 0.378 0.0943 0.3982 0.174 0.491 0.4483 0.507 0.48 0.485
3 Refining2

√
0.841 0.441 0.1283 0.4067 0.199 0.505 0.502 0.525 0.488 0.5

4 BLIP2 w/pseudo data 0.848 0.523 0.1354 0.4092 0.18 0.485 0.483 0.509 0.485 0.484

Table 4. Robustness results of our submitted runs for TREC2024 VTT task.

Runfile Method Primary CIDER CIDER-D BLEU METEOR SPICE
STS

table 1 table 2 table 3 table 4 table 5

1 GIT 0.761 0.435 0.1145 0.3741 0.150 0.457 0.456 0.474 0.446 0.448
2 BLIP2 0.831 0.510 0.1606 0.4017 0.168 0.485 0.475 0.5 0.473 0.478
3 BLIP2 w/pseudo data

√
0.830 0.501 0.1371 0.4029 0.174 0.482 0.48 0.506 0.48 0.48
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Fig. 6. Main task results BLEU
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Fig. 7. Main task results METEOR
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Fig. 8. main task results SPICE
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A.2 VTT robustness task
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Fig. 9. Robustness task results CIDEr
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Fig. 10. Robustness task results CIDEr-D
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Fig. 11. Robustness task results BLEU
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Fig. 12. Robustness task results METEOR
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Fig. 13. Robustness task results SPICE
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