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Abstract

This paper addresses the challenge of making
complex healthcare information more accessi-
ble through automated Plain Language Adap-
tation (PLA). PLA aims to simplify technical
medical language, bridging a critical gap be-
tween the complexity of healthcare texts and
patients’ reading comprehension. Recent ad-
vances in Large Language Models (LLMs),
such as GPT and BART, have opened new pos-
sibilities for PLA, especially in zero-shot and
few-shot learning contexts where task-specific
data is limited. In this work, we leverage the
capabilities of LLMs such as GPT-4o0-mini,
Gemini-1.5-pro, and LLaMA for text simplifi-
cation. Additionally, we incorporate Mixture-
of-Agents (MoA) techniques to enhance adapt-
ability and robustness in PLA tasks. Key con-
tributions include a comparative analysis of
prompting strategies, finetuning with QLoRA
on different LLMs, and the integration of MoA
technique. Our findings demonstrate the ef-
fectiveness of LLM-driven PLA, showcasing
its potential in making healthcare information
more comprehensible while preserving essen-
tial content.

1 Introduction

Healthcare information is often presented in com-
plex, technical language that can be challenging
for the general public to understand. Yet, research
highlights a persistent gap between the language
used in medical documentation and the reading
comprehension abilities of patients (Guo et al.,
2020; Goldsack et al., 2022; Luo et al., 2022; Gold-
sack et al., 2023a). Hence, PLA aims to bridge
this gap by simplifying complex healthcare texts,
making vital health information more accessible
and promoting better health outcomes (Goldsack
et al., 2023a; McCray, 2004).

Developing automated solutions for PLA in med-
ical terminology faces considerable challenges due
to the complexity of extracting and simplifying

specialized terms within biomedical texts. Re-
cent methods have begun to incorporate semantic-
sensitive approaches alongside word embedding
techniques, such as the neighborhood context-
based "Snowball" method, which has demonstrated
promise in initial evaluations with expert-validated
standards for term extraction (Bay et al., 2020).
Another study attempts to provide comprehensive
background explanations for key medical concepts
in abstracts, relying on LLMs to accurately identify
and interpret these concepts (Luo et al., 2024).

Recently, advancements in LLMs, such as TS5,
GPT and BART, have transformed various Nat-
ural Language Processing (NLP) tasks, offering
potential solutions to PLA challenges (Li et al.,
2024; Knappich et al., 2023). LLMs demonstrate
promising abilities in lay summarization, particu-
larly in zero-shot and few-shot learning contexts,
where minimal task-specific data is available (Tur-
bitt et al., 2023). Other research addresses this
problem by finetuning LL.Ms to improve their per-
formance in enhancing the readability of biomed-
ical texts (Li et al., 2024; Knappich et al., 2023;
Sim et al., 2023; Reddy et al., 2023).

This paper compares and utilizes the latest
models, including GPT-40-mini, Gemini-1.5-pro,
LLaMA, Gemma, and Mistral, along with tech-
niques such as zero-shot, few-shot, QLoRA finetun-
ing, and the advanced MoA methodology, which
leverages the collective strengths of multiple LLMs
(Wang et al., 2024). MoA has demonstrated supe-
rior performance across various benchmarks, mak-
ing it a compelling choice for complex tasks like
PLA. The primary contributions of this work are
outlined as follows:

1. Comparison of prompting techniques: We
conduct a thorough comparison of differ-
ent prompting strategies, including zero-shot
prompting, in-context learning (ICL), and ICL
with semantic similarity (Liu et al., 2021).



2. Evaluation of finetuning approaches: We ex-
plore the effectiveness of finetuning advanced
LLMs using QLoRA (Dettmers et al., 2023),
assessing how this technique impacts the mod-
els’ ability to generate simplified medical lan-
guage.

3. Integration of MoA techniques: We utilize
the MoA technique, effectively combining the
unique capabilities of various LLMs to com-
pare and analyze its impact on overall perfor-
mance in PLA tasks.

4. Automated evaluation and LLM judging: To
enhance the robustness of our results, we im-
plement an automated evaluation framework
alongside LLM judging mechanisms. This
dual approach allows for a comprehensive
analysis of the outputs, ensuring that our find-
ings are both reliable and actionable.

5. We evaluate the new term replacement task
introduced in PLABA 2024 using various
prompt techniques.

2 Related Work

In this section, we first introduce previous Plain
Language Adaptation of Biomedical Abstracts
(PLABA) work (Attal et al., 2023), then intro-
duce biomedical text simplification, followed by
lay summarization, and finally the efficient finetun-
ing approach used in our work.

2.1 PLABA

The PLABA dataset addresses the challenge of sim-
plifying complex biomedical literature in sentence
level for general audiences. Despite the availabil-
ity of health-related resources like MedlinePlus ',
many scientific articles remain inaccessible to the
public due to their specialized language. While var-
ious efforts have aimed to adapt technical terms for
readability, creating manual plain language sum-
maries for every medical article is impractical. Au-
tomated adaptation, supported by language models,
has emerged as a promising solution, but requires
high-quality, sentence-aligned datasets to train ef-
fective models. Existing datasets often suffer from
imperfect alignments or lack sufficient scale, mak-
ing them suboptimal for training and evaluation.
PLABA fills this gap by providing 750 manually

"https://medlineplus.gov/

adapted abstracts from PubMed, offering sentence-
level alignment for 7,643 pairs, each crafted by
expert annotators. This dataset enables document-
and sentence-level simplification and incorporates
sentence-splitting to improve readability, making it
a valuable gold standard for evaluating adaptation
techniques in biomedical text simplification.

2.2 Biomedical text simplification

Language models like LLaMA-2 have been effec-
tively applied to this task. For example, a LLaMA
2-based system achieved top performance in the
previous PLABA shared task, focusing on simpli-
fying complex biomedical text (Knappich et al.,
2023). This approach highlights the difficulty in
training models with high token overlap between
input and output texts, which can limit the model’s
ability to perform substantive edits. To address this,
sentence- and token-level loss weights were intro-
duced, giving more emphasis to modified tokens,
which led to simplifications closely aligned with
human-generated adaptations, showing improved
SARI and FKGL scores.

Another study explored various powerful LLMs,
including encoder-decoder models (TS, SciFive,
BART), GPT models (GPT-3.5, GPT-4), and
control-token mechanisms within BART-based
models, to simplify biomedical abstracts using
the PLABA dataset (Li et al., 2024). Through
domain-specific finetuning and prompt-based learn-
ing, these models were evaluated on both auto-
mated and human metrics. The BART-Large model
with control token achieved the highest SARI score,
while T5-Base scored best on BERTScore, balanc-
ing simplicity and meaning preservation.

2.3 Lay summarization

The BioLaySumm shared tasks in 2023 and 2024
represent significant efforts in advancing lay sum-
marization of biomedical research (Goldsack et al.,
2023b, 2024). These tasks, unlike PLABA tasks,
focus on generating comprehensible summaries for
non-expert audiences by using abstractive summa-
rization techniques. In the 2023 task, models were
trained to produce “lay summaries” that capture
the essence of a full article while remaining acces-
sible to general readers. Building on its success,
the 2024 edition expanded participation and saw a
trend towards innovative approaches, particularly
with LLMs, reflecting the growing emphasis on
this area.



2.4 Efficient finetuning

Efficient finetuning techniques like QLoRA are
crucial for reducing computation costs and accel-
erating the finetuning process while retaining the
full performance of 16-bit finetuning (Dettmers
et al., 2023). This is achieved by using a 4-bit
quantized model and Low Rank Adapters (LORA)
to backpropagate gradients without unfreezing the
pretrained model weights (Hu et al., 2021), lead-
ing to a substantial reduction in memory usage
without sacrificing output quality. QLoRA’s ef-
ficiency allows extensive experimentation across
multiple model architectures, parameters, and
instruction-following datasets, highlighting that
high-quality, smaller datasets often outperform
large, less-focused datasets in instruction finetun-
ing. QLoRA’s open-source release, along with
comprehensive analyses, provides a valuable frame-
work for efficient, high-performance finetuning in
natural language processing.

2.5 MoA

The MoA methodology represents an innovative
approach in leveraging the combined expertise of
multiple LLMs to enhance natural language under-
standing and generation tasks (Wang et al., 2024).
Unlike traditional single-model setups, MoA or-
ganizes LLMs into layers, with each agent in
a given layer receiving input from the outputs
of agents in the previous layer. This collabora-
tive structure capitalizes on the "collaborativeness"
phenomenon—where LLMs produce improved re-
sponses when they can build upon outputs from
other models, even those of lower quality. MoA
achieves state-of-the-art performance on several
benchmarks and surpasses leading models like
GPT-4 Omni.

3 Methodologies

The overall framework of our experimental design
is illustrated in Figures 1 and 2, which outline the
methodologies for the PLA task and the term re-
placement task.

The PLA Task aims to simplify each abstract
while keeping sentences separate and ensuring
accuracy and clarity for general readers. To ac-
complish this, we employ models using zero-shot
prompting, random few-shot ICL, few-shot ICL
enhanced by semantic similarity, and a zero-shot
approach following QLoRA finetuning of LLMs
on training data.
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Figure 1: Pipeline of the PLA task in a few-shot setting.
The provided annotated data is split into training and
validation sets.

New to PLABA 2024, the Term Replacement
Task focuses on identifying and simplifying techni-
cal terms within abstracts. Our approach starts by
identifying complex terms in medical texts, then
classifies the type of replacement needed, and fi-
nally generates lay language equivalents. This pro-
cess is performed using few-shot ICL, with a focus
on enhancing semantic similarity for more accurate
replacements.

3.1 Models

Our experiments utilize a diverse set of advanced
LLMs, each with unique capabilities suited to NLP
tasks.

3.1.1 Gemini

Gemini-1.0-pro, Gemini-1.5-flash, Gemini-1.5-pro
are developed by Google, the Gemini models are
multimodal, capable of handling image, audio,
video, and text. Gemini-1.5 models, such as Pro
and Flash, are particularly known for their effi-
ciency in handling large contexts, enabling detailed
recall over long text and multimedia inputs.

3.1.2 GPT-40-mini

A cost-efficient model from OpenAl, GPT-40-mini
is optimized for high performance on natural lan-
guage tasks while lowering the costs and latency.

3.1.3 LLaMA

LLaMA?2 (7B), LLaMA3 (8B, 70B), LLaMA3.1
(8B, 70B) are developed by Meta, offer enhanced
support for multilinguality, reasoning, and long-
context processing. LLaMA 3.1 supports up to
128K tokens, allowing for complex understanding
and generation tasks.

3.14 Gemma?2

The Gemma 2 (2B, 9B, 27B) series from Google
DeepMind is a lightweight yet capable family of
models, scaling up to 27 billion parameters. These
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Figure 2: Pipeline of term replacement, containing Identifying process and Classifying process. The provided

annotated data is split into training and validation sets.

models leverage advanced techniques such as inter-
leaving local-global attentions and grouped-query
attention, along with knowledge distillation, en-
abling smaller models to achieve performance com-
parable to larger ones.

3.1.5 Mistral

The Mistral 7B model uses grouped-query attention
and sliding window attention, which significantly
improves inference speed and allows handling of
longer sequences, making it suitable for real-time
applications. Mistral NeMo, developed in collab-
oration with NVIDIA, is a larger model designed
to handle even more extensive tasks with a context
window of up to 128K tokens.

3.2 QLoRA

In our experiments, we applied QLoRA finetuning
to optimize model efficiency and memory usage.
The finetuning process employed a 4-bit quantized
model to significantly reduce computational load.
We set both the LoRA rank and LoRA alpha to 16,
used a learning rate of 2e-4, kept the training batch
size minimal at 2, and completed the finetuning in
a single epoch.

3.3 MoA

We apply the MoA approach across different
settings, utilizing Gemini-1.5-Flash to perform
Aggregate-and-Synthesize while simplifying the
process by employing only a single-layer MoA.
Our approach builds upon the 5-shot setting from
previous steps, using the following models as
the adaptation models: Gemini-1.0-Pro, Gemini-
1.5-Flash, Gemini-1.5-Pro, Gemma-2-27B, GPT-
40-Mini, Meta-Llama-3.1-8B, and Mistral-Nemo-
Instruct-2407. Additionally, we explore the in-
tegration of finetuned models within the MoA

framework by incorporating Gemma-2-27B, Meta-
Llama-3.1-8B, and Mistral-Nemo-Instruct-2407,
allowing us to assess the impact of finetuning on
MoA’s performance in PLA tasks.

3.4 Metrics for PLA task

We apply automatic evaluation metrics to assess the
performance of the PLA task, referencing the scor-
ing methods used in PLABA2023 works and Bio-
LaySumm (Li et al., 2024; Goldsack et al., 2024,
2023b).

* Relevance: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2020), and SARI (Xu et al., 2016).

* Readability: Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score
(DCRS), Coleman-Laiu Index (CLI).

* Factuality: AlignScore (Zha et al., 2023),
SummaC (Laban et al., 2021).

e LLM Judge: Simplicity, Accuracy, Complete-
ness, Brevity 2.

Metrics like BLEU, ROUGE, BERTScore, and
SARI are used to evaluate how closely the gener-
ated text aligns with reference summaries or simpli-
fied texts. BLEU and ROUGE measure the overlap
of n-grams between generated and reference texts,
with BLEU focusing on precision and ROUGE on
recall. BERTScore uses contextual embeddings
to evaluate semantic similarity, capturing meaning
beyond surface-level token matches. SARI specif-
ically assesses simplification by measuring edits
made to the source text to match references, re-
warding appropriate additions, deletions, and mod-

Zhttps://bionlp.nlm.nih.gov/plaba2024/



ifications, making it particularly suited for PLA
tasks.

To gauge the accessibility of the text, readability
metrics such as the Flesch-Kincaid Grade Level
(FKGL), Dale-Chall Readability Score (DCRS),
and Coleman-Liau Index (CLI) are employed.
FKGL estimates the education level needed to un-
derstand the text, DCRS assesses readability based
on word familiarity, and CLI evaluates readabil-
ity through character and sentence length, with all
three metrics indicating if the text is accessible to a
general audience. In all three metrics, lower scores
indicate greater simplicity and ease of comprehen-
sion.

For ensuring factual consistency, we apply Align-
Score and SummaC. AlignScore is a versatile met-
ric developed to handle factual inconsistency across
diverse input-output pairs, leveraging a unified
training approach that integrates data from multiple
tasks, including NLI and QA, thus enhancing its
generalizability. SummacC is designed specifically
for summarization, using sentence-level analysis
within documents to aggregate consistency scores.
Both metrics provide a robust framework for de-
tecting contradictions and ensuring the generated
text remains factually aligned with the input infor-
mation.

For LLM Judge, we utilized Gemini-1.5-flash
and referenced prompts from previous work and
made modifications to better suit our needs (Luo
etal., 2024). The evaluation criteria were refined to
focus on four main aspects: Simplicity, Accuracy,
Completeness, and Brevity.

3.5 Metrics for term replacement task

After identifying difficult terms, we evaluate per-
formance using the F1 score. For replacement type
classification, we use the multilabel F1 score to
measure accuracy. As for generating replacements,
since no prior work offers a suitable reference, we
did not conduct automatic evaluation for this aspect
in this study.

4 Experiments and Evaluations

The PLABA dataset includes 750 biomedical ab-
stracts that have been manually adapted into plain
language by annotators, totaling 7,643 sentence
pairs. In the 2024 PLABA track, additional tasks
build upon this foundation. For the PLA task, 40
new consumer questions are introduced, each ac-
companied by 10 corresponding abstracts, resulting

in a total of 400 test cases. In the Term Replace-
ment Task, introduced exclusively in the PLABA
2024 track, 40 questions were selected from the
original PLABA dataset. Each question is linked to
10 abstracts, with 10 questions provided as training
data and the remaining 30 designated as test cases.

4.1 Data preprocessing and splitting

In the PLA task, we followed the data-splitting
methodology outlined in the original PLABA
dataset paper (Attal et al., 2023). The 921 abstracts
were divided into approximately 85% for the train-
ing set and 15% for the validation set. Each topic
was grouped and contained exclusively within ei-
ther the training or test set to ensure unbiased eval-
uation. For the term replacement task, we split the
provided annotated data into a 70/30 ratio.

4.2 PLA task

4.2.1 Baseline from previous work

We implemented the method from the original
work (Attal et al., 2023) and applied our evalu-
ation method to establish a baseline comparison.
The results are presented in Table 1.

4.2.2 Zero-shot vs ICL

Table 2 compares Gemini-1.0-pro, Gemini-1.5-
flash, and GPT-40-mini across different prompt
methods. It shows that using few-shot ICL im-
proves Relevance score, with ICL using semantic
similarity performing slightly better than random
few-shot selection. Different few-shot methods
have minimal impact on the Readability and Factu-
ality metrics.

4.2.3 Finetuning

Table 3 presents a comparison of various model
series after finetuning. Results indicate a compre-
hensive improvement in Relevance and Factual-
ity scores across all models. While Readability
scores also increased. Using Gemini-1.5-flash as
the LLM Judge, we observe that Simplicity remains
relatively consistent, while Accuracy generally im-
proves. Completeness and Brevity metrics show a
uniform increase across models, highlighting the
effectiveness of finetuning in enhancing these as-
pects.

4.24 MoA

Table 4 presents a comparison of various model
series after finetuning. Results indicate a compre-
hensive improvement in Relevance and Factual-



Model BLEU | SARI | R-1 R-2 R-L | BertS | FKGL | DCRS | CLI | AlignS | SummaC
TOPP 090 | 3297 | 24.07 | 12.60 | 2235 | 85.55 | 14.68 | 13.29 | 16.19 | 68.86 44.01
Bart-base 24.37 | 40.13 | 59.39 | 30.41 | 56.71 | 89.21 | 12.89 | 10.88 | 13.85 | 61.53 45.71
Bart-large-cnn | 24.31 | 40.29 | 59.32 | 31.09 | 56.72 | 89.25 | 12.72 | 11.20 | 13.83 | 70.42 50.57
Bart-large 24.62 | 40.27 | 59.56 | 31.03 | 56.94 | 89.42 | 12.60 | 10.99 | 13.88 | 69.39 50.83
Pegasus-large | 25.83 | 37.70 | 60.47 | 32.51 | 57.88 | 89.70 | 12.93 | 11.00 | 14.40 | 74.80 55.89

Table 1: Baseline evaluation scores for the models mentioned in the original paper. TOPP is not finetuned,
while the others are finetuned models. In FKGL,DCRS,CLI, lower scores indicate greater simplicity and ease of
comprehension. R = ROUGE, BertS = BertScore, AlignS =AlignScore

Model Type FewShot | BLEU | SARI | R-1 R-2 R-L | BertS | FKGL | DCRS | CLI | AlignS | SummaC
Gemini-1.0-pro Zero 0 16.27 | 42.35 | 48.37 | 23.70 | 41.57 | 91.57 | 9.36 11.36 | 11.44 | 82.45 49.66
Gemini-1.0-pro | Closest 1 23.73 | 42.59 | 54.63 | 32.25 | 49.23 | 9235 | 11.27 | 12.01 | 12.86 | 85.13 57.91
Gemini-1.0-pro | Closest 2 24.81 | 42.51 | 55.33 | 33.24 | 50.04 | 92.43 | 11.43 | 11.93 | 12.76 | 86.01 58.85
Gemini-1.0-pro | Closest 3 26.23 | 42.52 | 56.41 | 34.45 | 51.37 | 92.57 | 11.67 | 12.08 | 12.94 | 85.99 60.26
Gemini-1.0-pro | Closest 4 26.62 | 41.02 | 56.57 | 3491 | 51.53 | 92.53 | 11.80 | 12.15 | 13.10 | 85.85 59.86
Gemini-1.0-pro | Closest 5 27.26 | 4145 | 57.08 | 35.53 | 52.19 | 92.59 | 11.99 | 12.17 | 13.21 | 85.50 60.08

Gemini-1.5-flash Zero 0 14.15 | 43.21 | 46.82 | 21.47 | 40.58 | 91.42 | 9.97 10.88 | 11.16 | 71.05 36.92
Gemini-1.5-flash | Random 1 16.90 | 44.00 | 49.03 | 24.12 | 42.83 | 91.72 | 10.39 | 11.21 | 11.60 | 74.76 41.01
Gemini-1.5-flash | Random 2 18.17 | 44.11 | 50.19 | 25.30 | 44.10 | 91.84 | 1034 | 11.29 | 11.78 | 74.47 41.16
Gemini-1.5-flash | Random 3 19.31 | 45.07 | 51.51 | 26.72 | 4542 | 92.02 | 1049 | 11.36 | 11.84 | 75.18 42.94
Gemini-1.5-flash | Random 4 20.18 | 44.77 | 52.34 | 28.15 | 46.68 | 92.06 | 10.84 | 11.43 | 11.98 | 74.13 43.09
Gemini-1.5-flash | Random 5 21.24 | 45.51 | 53.06 | 28.97 | 47.36 | 92.13 | 11.05 | 11.52 | 12.08 | 74.29 43.71
Gemini-1.5-flash | Closest 1 16.97 | 44.21 | 49.11 | 2433 | 42.86 | 91.70 | 10.31 | 11.10 | 11.49 | 73.99 40.87
Gemini-1.5-flash | Closest 2 18.85 | 45.30 | 50.55 | 26.12 | 44.41 | 91.82 | 10.44 | 11.19 | 11.57 | 74.08 41.78
Gemini-1.5-flash | Closest 3 19.81 | 45.59 | 51.77 | 27.47 | 45.88 | 92.00 | 10.67 | 11.25 | 11.72 | 72.51 41.88
Gemini-1.5-flash | Closest 4 21.00 | 46.11 | 52.98 | 28.95 | 47.07 | 92.08 | 1093 | 11.37 | 11.93 | 73.09 42.75
Gemini-1.5-flash | Closest 5 21.37 | 46.04 | 53.57 | 29.70 | 47.97 | 92.08 | 11.11 | 11.43 | 11.98 | 7191 42.47
GPT-40-mini Zero 0 12.37 | 41.95 | 45.07 | 18.89 | 38.00 | 91.31 | 11.22 | 11.30 | 11.52 | 76.24 38.09
GPT-40-mini Random 1 15.58 | 43.65 | 48.02 | 22.20 | 41.15 | 91.76 | 11.20 | 11.57 | 11.96 | 79.45 41.86
GPT-40-mini Random 2 16.62 | 44.03 | 49.02 | 23.21 | 42.48 | 9190 | 11.43 | 11.74 | 12.19 | 79.89 42.53
GPT-40-mini Random 3 17.05 | 4441 | 49.54 | 23.73 | 43.00 | 91.97 | 11.51 | 11.77 | 12.16 | 81.01 43.39
GPT-40-mini Random 4 17.36 | 44.67 | 50.33 | 24.19 | 43.45 | 92.00 | 11.64 | 11.81 | 12.21 | 80.66 43.73
GPT-40-mini Random 5 18.15 | 45.07 | 50.85 | 25.01 | 44.10 | 92.05 | 11.79 | 11.83 | 12.33 | 80.47 43.78
GPT-40-mini Closest 1 16.10 | 44.17 | 48.57 | 22.67 | 41.77 | 91.82 | 11.43 | 11.61 | 11.91 | 79.63 42.19
GPT-40-mini Closest 2 16.85 | 44.72 | 49.48 | 23.68 | 42.89 | 91.90 | 11.53 | 11.67 | 11.92 | 79.21 42.03
GPT-40-mini Closest 3 17.45 | 45.07 | 50.34 | 24.40 | 43.74 | 91.99 | 11.51 | 11.67 | 11.99 | 80.11 42.55
GPT-40-mini Closest 4 18.08 | 45.47 | 50.97 | 25.11 | 44.47 | 92.08 | 11.60 | 11.72 | 12.05 | 79.91 43.14
GPT-40-mini Closest 5 18.44 | 45.62 | 51.34 | 25.70 | 4491 | 92.12 | 11.67 | 11.74 | 12.11 | 79.62 42.95

Table 2: Auto Evaluation of zero-shot versus different few shots type. "Type" refers to the few-shot ICL method:
"Zero" indicates zero-shot, "Closest" represents few-shot ICL with closest semantic similarity, and "Random"
indicates randomly selected few shots. "FewShot" indicates the number of few shots. In FKGL,DCRS,CLI, lower
scores indicate greater simplicity and ease of comprehension. R = ROUGE, BertS = BertScore, AlignS = AlignScore

ity scores across all models. While Readability
scores also increased. Using Gemini-1.5-flash as
the LLM Judge, we observe that Simplicity remains
relatively consistent, while Accuracy generally im-
proves. Completeness and Brevity metrics show a
uniform increase across models, highlighting the
effectiveness of finetuning in enhancing these as-
pects.

4.3 Term replacement task

Table 5 shows the evaluation of term replacement
task. Compared to zero-shot, using few-shot ICL
with the closest semantic similarity improves per-
formance in both identifying difficult terms and

classifying replacement types.

4.4 Shared Task Results on Test Dataset

Table 6 and Figure 3 present the results of the test
dataset as evaluated by the organizers (Ondov et al.,
2024) for the PLA and term replacement tasks. The
evaluation was conducted through human assess-
ment, measuring four key criteria: Accuracy, Com-
pleteness, Simplicity, and Brevity, each scored on
a scale of -1, 0, or 1. The final scores represent the
average ratings across all evaluated samples. Some
values remain unavailable due to the organizers’ in-
complete evaluation, attributed to a limited number
of judges.



Model FT | BLEU | SARI | R-1 R-2 R-L | BertS | FKGL | DCRS | CLI | AlignS | SummaC | Sim | Acc | Com | Bre
Llama-2-7b-chat X | 736 |40.58 | 3592 | 14.77 | 30.79 | 88.92 | 10.62 | 10.36 | 11.63 | 46.00 31.68 8.22 | 846 | 8.09 | 6.32
Llama-2-7b-chat O | 2479 | 39.42 | 51.67 | 32.87 | 48.04 | 91.21 | 12.16 | 12.83 | 15.16 | 58.20 48.32 8.47 | 832 | 8.13 | 8.21

Llama-3-8b-Instruct X | 1144 | 4133 | 4488 | 18.62 | 36.80 | 91.01 | 11.20 | 11.28 | 12.11 | 73.58 38.50 8.83 | 9.06 | 8.69 | 7.88
Llama-3-8b-Instruct O | 33.77 | 3531 | 61.67 | 43.04 | 58.44 | 93.14 | 13.17 | 12.79 | 1447 | 88.82 70.85 8.70 | 9.46 | 9.48 | 9.12
Llama-3-70b-Instruct X | 10.79 | 40.77 | 42.24 | 16.45 | 35.02 | 90.90 | 10.82 | 10.77 | 10.94 | 72.52 34.22 8.86 | 9.01 | 8.60 | 7.92
Llama-3-70b-Instruct O | 33.38 | 37.84 | 61.81 | 42.82 | 58.48 | 93.23 | 13.00 | 12.67 | 14.29 | 86.63 67.84 8.77 1 9.38 | 9.37 | 9.13
Llama-3.1-8B-Instruct X 9.41 | 38.96 | 39.69 | 14.80 | 32.82 | 90.41 | 9.76 10.53 | 10.87 | 71.03 34.43 8.84 | 859 | 7.99 | 8.03
Llama-3.1-8B-Instruct O | 31.75 | 40.57 | 60.19 | 40.21 | 56.40 | 92.95 | 12.50 | 12.41 | 13.75 | 80.79 61.38 8.79 19.24 | 9.15 | 8.82
Llama-3.1-70B-Instruct X | 1325 | 42.81 | 45.05 | 19.97 | 38.18 | 91.18 | 10.26 | 10.52 | 1040 | 73.52 38.17 8.82 19.03 | 8.63 | 7.95
Llama-3.1-70B-Instruct O | 31.85 | 41.39 | 60.87 | 41.17 | 57.14 | 93.07 | 12.51 | 12.41 | 13.80 | 81.61 61.12 8.81 19.20 | 9.09 | 8.90
Mistral-7b-instruct-v0.3 X | 15.08 | 41.81 | 47.45 | 21.87 | 39.83 | 91.41 | 10.60 | 11.69 | 12.23 | 84.74 48.31 891 | 9.18 | 8.88 | 8.30
Mistral-7b-instruct-v0.3 O | 33.82 | 33.75 | 60.71 | 42.27 | 57.61 | 92.88 | 13.22 | 12.78 | 14.52 | 87.08 72.15 8.44 1944 | 942 | 8.83
Mistral-Nemo-Instruct-2407 | X | 13.09 | 41.09 | 44.36 | 19.55 | 38.14 | 91.35 | 8.94 11.41 | 11.34 | 81.14 44.52 8.92 | 9.10 | 8.66 | 8.29
Mistral-Nemo-Instruct-2407 | O | 31.83 | 42.83 | 60.37 | 40.75 | 56.85 | 92.98 | 12.17 | 12.23 | 13.48 | 75.02 56.36 8.90 | 9.04 | 891 | 8.84
Gemma-2-2b-it X 1.97 | 40.30 | 34.71 | 13.04 | 29.13 | 89.05 | 8.59 8.73 | 10.36 | 60.25 31.08 8.18 | 8.59 | 8.31 | 6.39
Gemma-2-2b-it O | 33.03 | 34.17 | 61.09 | 42.25 | 57.85 | 93.07 | 13.06 | 12.77 | 14.44 | 90.46 73.02 8.60 | 9.45 | 9.48 | 9.08
Gemma-2-9b-it X 8.73 | 38.89 | 38.73 | 14.14 | 32.07 | 90.32 | 9.17 10.09 | 10.15 | 65.73 31.64 8.80 | 8.93 | 8.46 | 7.67
Gemma-2-9b-it O | 33.51 | 3535 | 61.66 | 42.82 | 58.41 | 93.12 | 13.09 | 12.76 | 1446 | 88.52 70.92 8.68 | 9.47 | 9.48 | 9.08
Gemma-2-27b-it X | 1029 | 39.75 | 41.41 | 15.75 | 34.19 | 90.76 | 8.89 10.59 | 10.52 | 71.31 34.35 8.87 1 9.05 | 859 | 7.95
Gemma-2-27b-it O | 33.78 | 36.80 | 61.84 | 42.90 | 58.60 | 93.20 | 12.99 | 12.66 | 14.34 | 86.15 68.68 8.66 | 9.46 | 9.40 | 9.00

Table 3: Auto Evaluation of LLMs w/ or w/o finetuning. “FT” indicates whether finetuning is applied. R = ROUGE,
BertS = BertScore, AlignS =AlignScore, Sim = Simplicity, Acc = Accuracy, Com = Completeness, Bre = Brevity

Model | FT | BLEU | SARI | R-1 R-2 R-L | BertS | FKGL | DCRS | CLI | AlignS | SummaC
MoA | X | 8.49 38.35 | 40.43 | 15.05 | 33.0 | 90.56 | 9.07 12.16 | 12.74 | 53.88 | 32.64
MoA | O | 8.21 38.05 | 40.57 | 15.14 | 33.99 | 90.53 | 9.08 12.27 | 12.83 | 54.84 | 32.52

Table 4: Auto Evaluation of MoA w/ or w/o finetuned models. “FT” indicates whether finetund models are included.

R = ROUGE, BertS = BertScore, AlignS =AlignScore

Model Identify shots | Idendify (F1) | Classify shots | Classify (F1)
Gemini-1.5-flash 0 27.36 0 53.87
Gemini-1.5-flash 0 27.36 1 52.93
Gemini-1.5-flash 0 27.36 3 59.22
Gemini-1.5-flash 0 27.36 5 65.63
Gemini-1.5-flash 1 35.99 0 54.38
Gemini-1.5-flash 1 35.99 1 54.45
Gemini-1.5-flash 1 35.99 3 61.22
Gemini-1.5-flash 1 35.99 5 66.75
Gemini-1.5-flash 3 35.69 0 56.77
Gemini-1.5-flash 3 35.69 1 56.19
Gemini-1.5-flash 3 35.69 3 63.75
Gemini-1.5-flash 3 35.69 5 68.52
Gemini-1.5-flash 5 38.98 0 55.98
Gemini-1.5-flash 5 38.98 1 55.46
Gemini-1.5-flash 5 38.98 3 62.33
Gemini-1.5-flash 5 38.98 5 67.12
Gemini-1.5-pro 0 36.62 0 61.89
Gemini-1.5-pro 0 36.62 1 60.99
Gemini-1.5-pro 0 36.62 3 61.78
Gemini-1.5-pro 0 36.62 5 64.86
Gemini-1.5-pro 1 39.02 0 63.79
Gemini-1.5-pro 1 39.02 1 62.22
Gemini-1.5-pro 1 39.02 3 61.24
Gemini-1.5-pro 1 39.02 5 64.90
Gemini-1.5-pro 3 40.78 0 61.52
Gemini-1.5-pro 3 40.78 1 59.00
Gemini-1.5-pro 3 40.78 3 60.91
Gemini-1.5-pro 3 40.78 5 63.99
Gemini-1.5-pro 5 41.67 0 63.31
Gemini-1.5-pro 5 41.67 1 62.30
Gemini-1.5-pro 5 41.67 3 63.24
Gemini-1.5-pro 5 41.67 5 66.96

Table 5: F1 Scores for the Identification process and
Multilabel F1 Scores for the Classification process in the
Term Replacement Task. All few-shot examples were
selected using ICL with closest semantic similarity

For the PLA task, we applied the MoA approach
as described earlier. Our method ranked 4th when
using finetuned models and 8th without finetuning.

In the term replacement task, all three models
employed a 5-shot In-Context Learning (ICL) ap-
proach, selecting examples with the highest seman-
tic similarity for both identification and classifica-
tion. Our team ntu_nlp achieved 2nd place in both
the identification task and the overall average score
for text generation, demonstrating its effectiveness
in structured term adaptation.

5 Discussion

5.1 Readability

From the results in this study, models that were
not finetuned showed greater variation in readabil-
ity scores, likely due to differences in how each
model interpreted the prompts. Most of these mod-
els tended to generate overly simplified outputs,
potentially sacrificing content coherence and detail.
Once finetuned, the readability of outputs across
different models became more consistent, indicat-
ing that finetuning helped the models internalize
the style and structure of expert-written plain lan-
guage texts. This consistency suggests that finetun-
ing enabled the models to adopt expert practices in
plain language adaptation, improving the quality



Model Acc Com Sim Bre Avg
GPT 0.9307 | 0.8118 | 0.9232 | 0.8755 | 0.8853
LLaMA-8B-4bit-Medical Abstract-seq-to-seq-v1l | 0.8831 | 0.8447 | 0.7792 | 0.5240 | 0.7578
LLaMa_3.1_70B_instruction_2nd_run 0.7440 | 0.7725 | 0.7044 | 0.5903 | 0.7028
TREC2024_SIB_runl 0.9374 | 0.8614 | 0.8363 | 0.6594 | 0.8236
TREC2024_SIB_run3 0.8170 | 0.7324 | 0.8756 | 0.7392 | 0.7910
TREC2024_SIB_run4 0.9433 | 0.8891 | 0.6965 | 0.6210 | 0.7875
UAms-BART-Cochrane 0.9772 | 0.9466 | 0.4881 | 0.6906 | 0.7756
UAms-ConBART-Cochrane 0.9546 | 0.9238 | 0.5653 | 0.6781 | 0.7804
bart_base_ft 0.8424 | 0.7132 | 0.4500 | 0.4177 | 0.6058
gpt-final 0.9537 | 0.8996 | 0.7850 | 0.3782 | 0.7541
gpt35_dspy 0.9117 | 0.8700 | 0.7654 | 0.6533 | 0.8001
mistral-FINAL 0.8788 | 0.8567 | 0.7188 | 0.4122 | 0.7166
mistral-fix 0.8818 | 0.8603 | 0.7118 | 0.4155 | 0.7174
plaba_um_fhs_subl 0.8985 | 0.8427 | 0.8421 | 0.7618 | 0.8363
plaba_um_ths_sub2 0.9447 | 0.8588 | 0.8909 | 0.7930 | 0.8718
plaba_um_fhs_sub3 0.9504 | 0.8681 | 0.7949 | 0.6728 | 0.8215
task2_moa_tierl_post (Ours MoA) 0.8948 | 0.8463 | 0.8197 | 0.6272 | 0.7970
task2_moa_tier2_post (Ours MoA w/ FT) 0.9307 | 0.8537 | 0.8642 | 0.6468 | 0.8238

Table 6: PLA Task Results (Ondov et al., 2024): Human evaluations for text generation. “FT” indicates whether
finetund models are included. Evaluation metrics include Simplicity (Sim), Accuracy (Acc), Completeness (Com),

Brevity (Bre), and an overall Average (Avg).

and readability of the outputs.

5.2 Auto Evaluation

Automated evaluation posed several challenges in
this study. One of the primary issues was that stan-
dard readability metrics such as FKGL and DCRS
are not designed to capture the nuances of plain
language adaptation in medical texts. While these
metrics provide a general measure of readability,
they often fail to reflect the balance between simpli-
fying content and maintaining its accuracy, which
is critical in healthcare communication.

5.3 Other Dataset

This study was limited to using the PLABA dataset
for training and testing, which may not fully rep-
resent the range of medical and healthcare texts
encountered in real-world applications. To more
comprehensively evaluate the models’ capabilities
in text simplification, additional datasets specific
to other medical domains or containing varied text
structures would be beneficial. Access to a broader
range of datasets could enable a more robust as-
sessment of the model’s ability to generalize across
different contexts and further validate its adapt-
ability to varied plain language adaptation tasks in

healthcare.

6 Conclusion

In conclusion, this study demonstrates the poten-
tial of LLMs to simplify complex medical texts
through PLA, leveraging few-shot ICL, finetun-
ing, or the MoA approach. The few-shot approach
with the closest semantic similarity improved the
models’ ability to generate relevant and readable
outputs. finetuning also enhanced the effectiveness
of PLA, enabling the models to adopt expert writ-
ing styles in plain language adaptation. While our
results indicate that general-purpose models can
effectively adapt to PLA tasks with suitable fine-
tuning, the study also highlights limitations. All
models tested were general-purpose LLMs, and
none were pre-trained on medical datasets, which
may have limited their ability to understand and
perform on domain-specific tasks. Future work
could explore the impact of models pre-trained on
healthcare-specific data to further advance the ef-
fectiveness and accuracy of PLA in medical con-
texts.



Task 1A (F1) Task 1B (F1) Accy

Task 1C (manual judgments, 0-1)

Comp Simp Brev Avg.

BU MLPClassifier- 1 0.0459
identify-classify-
replace-v1
CLAC  mistral 1 0.441
CLAC gpt 2 0.3767
IITH First 1 0.1956
um Roberta-base 1 0.4787
ntu_nlp gemini-1.5- 1 0.4885
pro_demon5_repla
ce-demon5
ntu_nlp gemini-1.5- 2 0.4431
flash_demon5_rep
lace-demon5
ntu_nlp gpt-4o- 3 0.4518
mini__demon5_rep
lace-demon5
Yseop roberta-gbc 1 0.5036

0.7788 0.7500 0.7258 0.9274 0.9435  0.8367

0.6661  0.9505 0.9483 0.9738 0.6702 0.8857
0.3795
0.7014
0.7765
0.6335 0.9117 0.9010 0.9511

0.5871 0.8377

0.6544
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Figure 3: Term Replacement Task Results (Ondov et al., 2024): F1 scores for identifying difficult terms and
classifying replacement types, with human evaluations for text generation. Evaluation metrics include Simplicity
(Simp), Accuracy (Accy), Completeness (Comp), Brevity (Brev), and an overall Average (Avg.).
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