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Abstract

This paper describes the participation of the jonu team in the TREC 2024 Product Search Track. This
study addresses two key challenges in product search related to sparse and dense retrieval models. For
sparse retrieval models, we propose modifying the activation function to GELU to filter out products that,
despite being retrieved due to token expansion, are irrelevant for recommendation based on the scoring
mechanism. For dense retrieval models, product search document indexing data was generated using the
generative model T5 to address input token limitations. Experimental results demonstrate that both
proposed methods yield performance improvements over baseline models.

1. Introduction

The TREC 2024 Product Search Track[1] aims to identify relevant products within an Amazon dataset for
given queries, with the goal of optimizing retrieval methods and improving evaluation metrics. Our team
submitted 12 run files employing both the Learned Sparse Retrieval and Dense Retrieval approaches.

In the context of Learned Sparse Retrieval, SPLADE++[2] utilizes BERT’s MLM(Masked Language
Model) task to expand tokens and extend input sentences for search. However, due to the ReL U activation
function in its scoring mechanism, the model may fail to adequately capture the influence of certain key
terms within similar phrases. For example, in the query 'my hero academia kids shirt," while the term "shirt'
is crucial, products labeled as 'Mens' or 'Girls Boys' should be ranked lower. However, the model fails to
properly account for this distinction.” To address this issue, we modified the model’s activation function to
GELUI[3], allowing for the incorporation of negative weights. Compared to ReLU, GELU facilitates a
smoother transition in weighting functions, mitigating abrupt cutoff effects and improving ranking
adjustments.

To address input token limitations in dense retrieval models, we summarized and indexed product
information using the T5[4] model. To evaluate the impact on product search performance, we used the
TAS-B[5] and ColBERTV2[6] models.

2. Submitted Runs

In our experiments, we evaluated each model individually and conducted comparative analyses of the
combined results from four models using the Ranx[7] library. For the Product Ranking Track, we submitted



12 runs, consisting of five single models and seven fusion models, with the latter leveraging Ranx. The
combination weights were determined based on the development data.

Single Model:

jbnu0l:
jbnu02:

Modification of the SPLADE++ model's activation function to GELU (without training)

SPLADE++ model is trained on product search data, with product title and T5-generated

summarized data indexed

jbnu0a3:

jbnu04:
indexed

jbnu09:

Fusion Model:

jbnu05:
jbnu06:
jbnu07:
jbnu08:
jbnulo:
jbnull:
jbnul2:

TAS-B zeroshot model, with product title and T5-generated summarized data indexed

ColBERTV2 zeroshot model, with product title and T5-generated summarized data

jbnu01 model, using product titles and summaries for indexing

Fusion of jbnu01 and jbnu03
Fusion of jbnu01 and jbnu04
Fusion of jbnu02 and jbnu03
Fusion of jbnu02 and jbnu04
Fusion of BM25 model, after data preprocessing, with jbnu04 model
Fusion of jbnu09 and jbnu03
Fusion of jbnu09 and jbnu04

3. Experimental Results

The experimental results were evaluated based on the metrics provided by TREC 2024, including the
median values, NDCG, NDCG@100, P@100, and MAP. The performance of the jonu01 model was
compared against the median values, as illustrated in Figures 1, 2, and 3. Overall, the results for each query
exceeded the average performance. The performance metrics for each model are summarized in Table 1.
According to the experimental findings, jbnu01 and jbnu02 demonstrated strong performance as single
models, while jbnu05 and jbnul0 achieved competitive results among the fusion models.



cut_20
cut_20

g_
—— med_ndc

—— min_ndc

g_cut_

—— max_ndc

t 20

_ndcg_cu
—— ndcg_cut_20_jbnu2

Figure 1. Comparison of TREC2024 min, median, and max values with jonu02's NDCG@20 results
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Figure 2. Comparison of TREC2024 min, median, and max values with jonu02's P@5 results
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Figure 3. Comparison of TREC2024 min, median, and max values with jonu01's MAP results
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Run Name NDCG NDCG@20 | NDCG@100 P@5 P@100 MAP

Single model
jbnuo1 0.7376 0.6704 0.6854 0.8025 0.7014 0.5490
jbnu02 0.7189 0.6739 0.6728 0.8150 0.6925 0.5322
jbnu03 0.6389 0.5974 0.5959 0.7750 0.6240 0.4394
jbnuo4 0.6952 0.6607 0.6648 0.8050 0.6759 0.5141
jbnu09 0.6887 0.6526 0.6552 0.8000 0.6775 0.4952

Fusion model
jbnu05 0.7595 0.6786 0.6904 0.7975 0.7034 0.5805
jbnu06 0.7513 0.6936 0.6960 0.8325 0.6992 0.5752
jbnuo7 0.7324 0.6719 0.6763 0.8075 0.6953 0.5474
jbnu08 0.7265 0.6781 0.6835 0.8175 0.6956 0.5485
jbnul0 0.7330 0.6968 0.7003 0.8250 0.7061 0.5602
jbnull 0.7183 0.6614 0.6672 0.8125 0.6819 0.5289
jbnul2 0.7233 0.6739 0.6787 0.8125 0.6866 0.5424

Table 1. Results of Product Ranking Task.
4. Conclusion

The experimental results demonstrated that the model incorporating negative weights outperformed the
standard SPLADE++ model. Furthermore, in the Dense Retrieval approach, integrating product summary
information generated by a generative model as indexing data led to performance improvements.
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