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In conversational information-seeking (CIS), the ability to tailor responses to individual user contexts is essential
for enhancing relevance and accuracy. The TREC Interactive Knowledge Assistance Track addresses this need by
advancing research in personalized conversational agents that adapt dynamically to user-specific details and
preferences. Our study aligns with this framework, which involves three core tasks: personal textual knowledge
base (PTKB) statement ranking, passage ranking, and response generation. To address these tasks, we propose a
comprehensive framework that incorporates user context at each stage. For PTKB statement ranking, we integrate
embedding models with large language models (LLMs) to optimize relevance-based ranking precision, allowing
for more nuanced alignment of user characteristics with retrieved information. In the passage ranking stage,
our adaptive retrieval strategy combines BM25 with iterative contextual refinement, enhancing the relevance
and accuracy of retrieved passages. Finally, our response generation module leverages a Retrieval-Augmented
Generation (RAG) model that dynamically synthesizes user-specific context and external knowledge, producing
responses that are both precise and contextually relevant. Experimental results demonstrate that our framework
effectively addresses the complexities of personalized CIS, achieving notable improvements over traditional static
retrieval methods.

1 INTRODUCTION
The TREC Interactive Knowledge Assistance Track (iKAT) builds on the success of previous tracks,
particularly the Conversational Assistance Track (CAsT) [2], to advance research in conversational
information-seeking (CIS). iKAT encourages the development of personalized conversational agents
that adapt dynamically to the unique needs and preferences of individual users, transforming static
information retrieval into adaptive, multi-turn dialogue systems. Unlike general conversational search
models, iKAT emphasizes a personalized approach by equipping systems with user-specific inputs to
enhance response relevance and accuracy. This track provides a structured interaction context, where
each query is shaped by user details stored in a PTKB, which consists of factual statements that describe
the user’s specific characteristics and preferences, along with previous conversational exchanges and the
user’s current query. However, conventional CIS methods typically rely on static retrieval mechanisms,
which, while effective for broad information retrieval tasks, often fall short in integrating user-specific
contexts or adapting to the dynamic nuances of real-time queries. This limitation can impede response
relevance in CIS applications, where user intents and contextual dependencies are diverse. For instance,
a query on “diet alternatives” may involve distinct requirements, such as vegan preferences or medical
dietary restrictions, each necessitating a tailored response strategy. Traditional systems may lack the
flexibility to discern and address these subtleties, underscoring the need for an advanced approach that
fully incorporates user context and customizes responses dynamically.
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This work introduces a structured three-stage pipeline tailored to the primary components of per-
sonalized conversational search for the TREC 2024 iKAT task. This approach is organized into the
following stages: (i) Query Rewriting, (ii) PTKB Statement Ranking, and (iii) Passage Ranking and Response
Generation. The following sections provide an in-depth description of each stage in the framework.

2 METHODOLOGY
This section describes the methodologies applied to the main components of our approach, as illustrated
in Figure 1. The following subsections provide detailed explanations of the key processes within our
framework.

Fig. 1. Our iKAT submission overall framework.

2.1 Query Rewriting
The query rewriter module is responsible for refining the initial user query 𝑢𝑡 by integrating contextual
information and relevant entries from the PTKB. This refinement process aims to improve the accuracy
of subsequent retrieval and classification by aligning the query in closer conformity with relevant
information within the PTKB. The module takes three inputs: the user’s current utterance 𝑢𝑡 , the
contextual information 𝑐𝑡 , and the PTKB statements 𝐾𝑡 . The primary function of the query rewriter
is to transform these inputs into an enriched query representation that reflects both the user’s intent
and the surrounding conversational context. This transformation is particularly beneficial when the
original query lacks clarity or specificity, as it helps reduce ambiguity and better aligns the query
with the content in the knowledge base. To achieve this, the Query Rewriter employs a fine-tuned
Llama3 model [3], specifically trained to rephrase queries by using information from up to three
preceding conversational turns, as well as selected PTKB entries. The initial rewriting phase generates
𝑢′𝑡 „ a refined query that more explicitly incorporates contextual and relevant PTKB statements. This
refined query 𝑢′𝑡 is then passed to the PTKB Statement Classifier module, which performs an initial
selection of PTKB entries by identifying those classified as relevant. This produces a subset 𝐾∗

𝑡 that



represents PTKB statements preliminarily aligned with the refined query. These selected entries are
then reintroduced into the Query Rewriter in an iterative feedback loop. The second rewriting phase,
using 𝐾∗

𝑡 , produces a further refined query representation, denoted 𝑢′′𝑡 , which integrates both the initial
contextual information and the filtered PTKB content for greater precision.

2.2 PTKB Statement Ranking
In our PTKB statement ranking process, we employ a multi-stage approach to progressively refine the
relevance of selected statements. The process begins with the SBERT model [6], which uses the refined
query 𝑢′′𝑡 as input to conduct an initial classification of PTKB entries. SBERT identifies a preliminary
subset, denoted 𝐾∗

𝑡 , by evaluating the semantic alignment of statements with 𝑢′′𝑡 . This initial step
functions as a coarse filtering mechanism, eliminating less relevant statements while retaining those
that demonstrate a general alignment with the query context.

Fig. 2. PTKB Statement Ranking Pipeline.

Subsequently, the system transitions into a reranking phase, which involves two sequential models,
RankGPT and RankBGE, each providing a more granular assessment of relevance within the subset 𝐾∗

𝑡 .
Initially, RankGPT, which leverages the GPT-4o model [4], performs a detailed semantic analysis of each
entry within 𝐾∗

𝑡 to assess its contextual relevance to 𝑢′′𝑡 and assigns individual relevance scores. This
stage refines the preliminary ranking by capturing subtler aspects of semantic alignment. Following
this, the RankBGE model further processes the outputs from RankGPT. RankBGE, a fine-tuned version
of the BGE (Gemma-2b) model [7], applies a weighted scoring function that integrates the scores from
RankGPT along with its own assessments. The combined relevance score 𝑆rel is calculated as follows:

𝑆rel = 𝛼 · 𝑃 (MiniLM) + (1 − 𝛼) · 𝑃 (BGE) (1)

where 𝛼 is a hyperparameter optimized through cross-validation to balance the influence of each
model’s relevance score. This composite score, 𝑆rel, synthesizes insights from both models to provide a
robust estimation of relevance. In the final decision-making stage, an indicator function L(s) classifies
each PTKB statement based on 𝑆rel, a dynamically adjusted threshold 𝜃dyn, and a voting mechanism.
Specifically, a PTKB statement is classified as relevant if 𝑆rel > 𝜃dyn and at least two of the models
classify the entry as relevant. The indicator function is defined as:



L(s) =

{
1 if 𝑆rel > 𝜃dyn and

∑𝑛
𝑖=1 𝑣𝑖 ≥ 2

0 otherwise
(2)

where
∑𝑛

𝑖=1 𝑣𝑖 represents the number of positive votes from the models. By combining score-based
filtering with model consensus, this approach applies rigorous selection criteria. The outcome of this
multi-stage process is a final refined set of PTKB statements, denoted 𝐾 ′

𝑡 , which consists of entries
classified as relevant and arranged in descending order of their relevance scores. This ranking ensures
that statements most aligned with the refined intent of the query are prioritized, thereby facilitating
more effective downstream retrieval and response generation by providing a highly relevant and
organized set of statements for further processing.

2.3 Passage Ranking
This section describes our methodology for passage ranking and response generation, as shown in
Figure 3, which leverages a retrieval-augmented generation (RAG) framework configured with Llama
RAG. This configuration utilizes the dynamic retrieval capabilities of RAGmodels, making it appropriate
for complex information retrieval tasks that require iterative refinement and context-aware response
generation.

Fig. 3. Our Response Generation Pipeline.

The process begins by inputting a user query 𝑢′𝑡 along with relevant contextual information 𝐾 ′
𝑡 . In

the initial retrieval phase, the BM25 algorithm, implemented through Pyserini, retrieves an initial set
of 1,000 candidate passages (𝑃∗𝑡 ) from a comprehensive document corpus. This broad retrieval step
establishes a diverse set of semantically relevant passages, forming a foundational evidence base for
subsequent refinement. In the next stage, the BGE-base-en-v1.5 model [5] is applied to re-rank these
candidate passages based on embedding-based semantic similarity, refining the selection to identify
the top 5 passages (𝑃∗∗𝑡 ) most closely aligned with the intent of the query. Additionally, the re-ranking



process incorporates the top 3 contextual statements from the PTKB, thereby augmenting the selected
passages with user-specific contextual information.
Upon completing the re-ranking phase, the Self-RAG model [1], configured as “selfrag/selfrag-llama2-

7b,” progresses to the final stages of retrieval validation and response generation. Unlike traditional
retrieval models, Self-RAG integrates an adaptive retrieval mechanism that continuously assesses the
sufficiency of information within the selected passages (𝑃∗∗𝑡 ). During response generation, the model
uses “reflection tokens” to evaluate the need for additional information, adjusting the retrieval scope
dynamically in response to the complexity and specificity of the query. When further detail is required,
the model accesses an expanded set of resources, which includes the initial collection of 1,000 candidate
passages as well as comprehensive external corpora, such as an extensive Wikipedia dataset. This
adaptive retrieval mechanism enables flexible adjustments to the information scope, accommodating
diverse informational needs and enhancing the relevance of responses. The integration of Wikipedia
[8] as an additional knowledge base provides access to contextual information that may complement
the initial retrieval set. Through this structured process of retrieval, re-ranking, and adaptive response
generation, as illustrated in Figure 3, the approach supports the handling of advanced information
retrieval tasks that require both contextual sensitivity and information depth.

2.4 Implementation Details
Query rewriting was conducted using a Llama3 model fine-tuned over 10 epochs, employing a learning
rate of 4.0e-4 and a warmup ratio of 0.05. In the PTKB statement ranking task, the performance of
the BGE reranker was enhanced through fine-tuning and subsequent integration with the Gemma-2b
model. This integration leveraged the merge_llm function, which combined outputs from both the
bge-reranker-v2-gemma and the pre-trained gemma-2b models. Hyperparameters for fine-tuning the
BGE reranker included a learning rate of 2.0e-4, 5 training epochs, and a batch size of 4 per device. To
optimize computational efficiency, LoRA (Low-Rank Adaptation) was applied with a rank of 32 and
an alpha of 64, and flash attention was used to accelerate the training process. The maximum input
sequence length for both queries and passages was set to 512 tokens, and gradient checkpointing was
activated to minimize memory usage. Model weights were dynamically adjusted through five-fold
cross-validation to balance the contributions of each model in the scoring mechanism. The Self-RAG
model was configured for passage ranking and response generation, with a temperature set to 0 and a
top-p value of 1 to ensure deterministic outputs. The retrieval depth parameter, max_depth, was set
to 2 to achieve a balance between iterative retrieval and response relevance. This configuration was
designed to support precise and contextually relevant responses, effectively managing the trade-off
between retrieval scope and output accuracy.

3 RESULTS EVALUATION
In this section, we provide a comprehensive analysis of the proposed methods by evaluating their
performance across multiple key metrics. The tables included summarize the results, presenting com-
parative statistics and benchmarks across a range of topics to assess the model’s ranking accuracy and
relevance in handling complex information retrieval tasks.



3.1 Passage Ranking Evaluation Results
The Passage Ranking task presented notable challenges, as the majority of the results for metrics such
as ndcg_cut_10, P_5, and recip_rank fell below the median benchmarks, as summarized in Table 1.
This indicates that while the retrieval and re-ranking components capture some relevant passages,
they struggle to consistently distinguish between highly relevant and marginally relevant content,
particularly under ambiguous or implicit query contexts.
One key factor influencing this performance could be the reliance on BM25 for initial retrieval.

Although it effectively retrieves a broad set of passages, its lexical matching approach may fail to
capture deeper semantic relationships between the query and the passages. While the BGE-base-en-v1.5
model provides re-ranking based on embeddings, its impact may be limited by the quality of the initial
retrieval set. Additionally, integrating PTKB contextual statements into the ranking process introduces
complexity, which may inadvertently amplify noise in some scenarios. However, isolated successes,
such as higher P_5 scores for certain topics, suggest that the re-ranking mechanism is effective when the
initial retrieval set contains highly relevant candidates. This points to opportunities for improvement,
such as refining the initial retrieval process to better align with downstream re-ranking and leveraging
external context more dynamically. Furthermore, incorporating a broader and more diverse training
dataset could enhance the model’s generalization, enabling it to handle a wider variety of queries and
topics.

Pn ndcg_cut_10 recip_rank P_5

better_than_median 1 3 3
worse_than_median 107 101 101
equal_best 1 13 1
equal_worst 80 80 80

Table 1. Passage Ranking Statistics Results of Our Submitted Runs’ Evaluation Results

3.2 PTKB Statement Ranking Evaluation Results

PTKB ndcg_cut_10 recip_rank P_5

better_equal_median 81 95 90
worse_equal_median 67 83 84
only_worse 33 19 24
equal_best 35 75 40
equal_worst 37 37 37

Table 2. Statistics Results of Our PTKB Statement Ranking Evaluation Results

Table 2 summarizes the performance of our PTKB statement ranking evaluation runs across various
metrics. Our approach demonstrated strong results, with 81, 95, and 90 topics achieving ndcg_cut_10,



recip_rank, and P_5 scores better than or equal to the median, respectively. Furthermore, 75 topics
reached the best score for recip_rank, highlighting the method’s effectiveness in certain scenarios.
However, areas for improvement are evident, as 33, 19, and 24 topics fell below the median exclusively
in ndcg_cut_10, recip_rank, and P_5. Additionally, 37 topics across all metrics matched the worst scores,
signaling challenges with specific query contexts. These results indicate that while our approach is
robust overall, targeted refinements are necessary to address these weaker cases.

4 CONCLUSION
In this study, we introduced a structured and adaptive framework for personalized conversational
information-seeking (CIS) within the TREC 2024 iKAT framework, enhancing response relevance and
accuracy through user-specific contextual integration. Our methodology spanned query rewriting,
PTKB statement ranking, and passage ranking with response generation, each dynamically tailored
to meet individual user needs and preferences. By integrating advanced models—Llama3 for query
rewriting, a multi-model approach for PTKB ranking, and the Self-RAG model for passage ranking—this
framework effectively leverages both user context and external information. The evaluation results
reveal strong performance on precision-focused tasks, particularly for the P_5 and recip_rank metrics,
where our framework consistently ranks relevant content among the top results for select topics. These
findings highlight the framework’s efficiency in prioritizing relevant information and maintaining
responsiveness to user-specific nuances. However, the variation in ndcg_cut_10 scores across topics
suggests potential areas for optimization. While the approach effectively captures relevance in certain
contexts, further fine-tuning could enhance its adaptability to a broader range of topic complexities
and content variations. Our findings emphasize the importance of a tailored, context-aware approach
in advancing CIS and the need for refined retrieval and ranking mechanisms to balance precision and
relevance. Future work will focus on strengthening robustness through cross-domain adaptability,
model parameter refinement, and additional methods to optimize user-specific context integration. We
anticipate these improvements will expand the framework’s applicability to real-world, multi-turn
dialogue systems, advancing personalized CIS to meet diverse and dynamic user needs.
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