
Monster Ranking

Charles L. A. Clarke Siqing Huo Negar Arabzadeh

School of Computer Science
University of Waterloo

Canada

1 Introduction

Participating as the UWClarke group, we focused on the RAG track; we also submitted runs
for the Lateral Reading Track. For the retrieval task (R) of the RAG Track, we attempted
what we have come to call “monster ranking”. Largely ignoring cost and computational
resources, monster ranking attempts to determine the best possible ranked list for a query by
whatever means possible, including explicit LLM-based relevance judgments, both pointwise
and pairwise. While a monster ranker could never be deployed in a production environment,
its output may be valuable for evaluating cheaper and faster rankers. For the full retrieval
augmented generation (RAG) task we explored two general approaches, depending on if
generation happens first or second: 1) Generate an Answer and support with Retrieved
Evidence (GARE). 2) Retrieve And Generate with Evidence (RAGE).

2 Monster Ranking

At the beginning of August, we defined our monster ranking process as follows:

1. Expand the initial query Q in as many ways as possible to give queries Q0, Q1,

2. Run each Qi on as many different ranking stacks as possible to give rankings Rij.

3. Pool the top k from each Rij and perform LLM-based graded relevance assessment
on the pool. Optionally perform secondary pairwise assessment on the top graded
passages from the pool.

4. Fuse the Rij using reciprocal rank fusion (RRF)[4] to give R.

5. Stably sort R by relevance grade, so that the ordering of R is retained in each grade.
The result is a monster ranking M.

1

runid
Description Q0 Q1

R00, R10 BM25F (title: = 1; segment: = 1 ; headings: = 0) - uwcBQ

R01 BM25F (weights above) + RSJ PRF uwcBA

R02, R12 Pyserini BM25 + RM3 PRF - -
R03, R13 DiskVectorIndex using Cohere Embed V3 model uwcCQ uwcCQA

R04, R14 Pyserini QL - -
R05, R15 Reranking top-100 from Cohere Embed V3 by RankGPT uwcCQR uwcCQAR

R06, R16 SPLADE-v3 - -
R07, R17 TCT-ColBERT - -

Reciprocal Rank Fusion uwc0

Monster uwc1

Table 1: Summary of rankings (Rij) used by Step 2 of the uwc1 monster ranking. Note that
what would be R11 was not generated, so that the pool for Step # 3 consisted of 15 runs.
The reciprocal rank fusion of these runs was submitted as uwc0. Some runs were submitted
individually to the track under the runids indicated in the last two columns. BM25F field
weights are based on ad-hoc experimentation on TREC Deep Learning test collections, rather
than a formal parameter sweep, but we could not find a non-zero value for headings: that
provided any benefit.

For query expansion (Step #1) we tested various published and idiosyncratic methods
through pilot experiments on older TREC Deep Learning test collections. One method
in particular gave such a consistent improvement relative to the others that we decided to
use only two queries for each topic: Q0, the original query; and Q1, which adds a generated
answer to the original query.

For all LLM support we employed GPT-4o as it existed in early August. To generate
answers for Q1 we used the system message:

You are a helpful assistant with outstanding general knowledge. Your

user likes questions answered simply and factually using as few words

as possible.

Relative to older models, GPT-4o is remarkably good at formatting output according to
stated requirements. On average, Q1 is 3.6 times larger than Q0, including the original
question. Subjectively, the answers are clear and concise, with very little chit-chat or junk.

Table 1 summarizes the 15 runs contributing to the uwc1 monster ranking. Thee runs
were pooled to depth 20 and judged on a 4-point relevance scale using the prompt of Faggioli
et al. [5]. Top-graded qrels were then judged pairwise following the procedure of Clarke et al.
[2] but using LLM-based assessments, rather than crowdsourced human judgments. Pairs
were judged twice, with a pair A/B also judged as B/A. If the judgments were inconsistent,
the tie was broken in favor of the longest passage. The reciprocal rank fusion of these
runs (R) was submitted as uwc0 (Step #4). As a final step (Step #5) uwc0 was re-ranked

2

according to the relevance judgments and submitted as uwc1. Overall, end-to-end query
processing time for this monster ranking process took 12 minutes per query, at a cost of $1
per query.

As a second attempt at monster ranking, we started with the official baseline run and
judged the top 25 using the prompt from Arabzadeh and Clarke [1], essentially jumping
directly to Step #3. We then re-ranked the baseline (Step #2) and submitted it as uwc2.
Finally, we fused uwc2 and uwc2, submitting it as monster.

Figure 1 show pre-conference results, based on differences from the median NDCG@20
scores.

3 Retrieval Augmented Retrieval

For the full retrieval augmented generation (RAG) task we explored two general approaches.

GARE Generate an Answer and support with Retrieved Evidence. We prompt an LLM
for an answer and annotate the answer with any supporting evidence we find. We
submitted one GARE run (UWCgarag).

RAGE Retrieve-And-Generate-with-Evidence. We retrieve passages and then generate an
answer directly based on the passages. We submitted two RAGE runs (UWCrag and
UWCrag stepbystep).

For all submissions, the retrieval stage used uwcCQA. We did not use monster ranking for our
RAG submissions since we believe it could not be realistically deployed in any production
environment, and here we are interested in solving the end-to-end problem.

For UWCgarag, our only GARE run, we first prompted an LLM (GPT-4o) to generate
a complete answer for the original query Q0, longer and more complete than than the one
used for Q1:

You are a helpful assistant with outstanding general knowledge. Your

user likes questions answered in a concise but complete paragraph, about

a dozen sentences long.

Then, we prompt the LLM with the original query Q0, the longer generated answer, and a
list of retrieved evidence. The LLM is prompted to attribute each sentence of the generated
answer to one or more reference documents. The LLM is also asked to delete sentences
that cannot be attributed and modify sentences that are contradicted by the evidence. The
overall approach operationalizes Huo et al. [6].

Given a query, a proposed answer and a list of reference documents,

attribute each sentence of the proposed answer to one or more reference

documents. If a claim in the answer cannot be attributed, it should

be omitted from the final output. If a sentence in the answer is contradicted

by a reference document, it should be modified based on the reference

3

(a) monster under LLM Evaluation (b) monster under Human Evaluation

(c) uwc1 under LLM Evaluation (d) uwc1 under Human Evaluation

(e) uwc2 under LLM Evaluation (f) uwc2 under Human Evaluation

Figure 1: Comparison of monster submissions under LLM-based vs. human-based evaluation
processes. Each bar shows the difference from the median NDCG@20 for a topic, with topics
sorted by decreasing difference. Perhaps because the submissions themselves incorporate an
LLM-based evaluation process, performance under LLM-based evaluation appears superior.

4

document and then attributed to it. Remember the reference documents

are the source of truth and the answer can be modified based on them.

Each sentence in the answer should have its own list of citations, and

citations should be done using the document number (its index in the

list of references).

For our RAGE submission UWCrag we simply prompted the LLM to generate an answer
and to attribute each sentence of the generated answer in one prompt:

Given a query and a list of reference documents, generate a summarized

answer, with each sentence attributed to one or more reference documents.

Each sentence in the answer should have its own list of citations, and

citations should be done using the document number (its index in the

list of references).

For UWCrag stepbystep we experimented with breaking generation and attribution into
more fine-grained steps, where each prompt only handles one simple task. We first prompt
the LLM to generate an answer using the evidence:

Given a question and a list of reference documents, write an accurate,

engaging, and concise answer for the given question using only the provided

reference documents (some of which might be irrelevant).

Then, for each sentence in the generated answer, we prompted the LLM to support it:

Given a claim and a list of numbered reference documents, cite the given

claim. Respond with a list of reference document number that support

the given claim.

For all RAG task experiments, we used one-shot prompting where an example is provided
in the prompt.

4 Lateral Reading

For the Question Generation task, we experimented with one-shot prompting and the system
message:

Perform lateral reading on web document to evaluate its credibility

by posing 10 questions the reader should ask to evaluate its trustworthiness,

ranked from the most important to the least important to ask.

For the Document Retrieval task, we used MonoT5 to rerank all the documents and then
using DuoT5 to rerank the top 10 documents.

5

5 Conclusion

We do not argue that the specific process of Section 2 represents the only or best monster
ranking process. For example, the results of the pooling process in Step #3 might be used to
guide the fusion process in Step #4 by eliminating poorly performing runs from the fusion.
Multiple prompts and LLMs might be tried in Step #3, with the results combined. Of
course it’s always possible to add moooar rankers, with moooar query expansions. We might
even loop the whole process, prompting an LLM to extract nuggets from judged relevance
passages and generating new expansions from the result. It is harmless to add rankings
because the judging process will weed out the non-relevant results. It’s monster ranking, not
kitchen sink ranking. Other, entirely different, monster ranking processes might work better
than ours. The core idea is to throw cost and efficiency out the window in order to produce
an ideal ranking, which can be used for evaluation purposes [3].

References

[1] Negar Arabzadeh and Charles L. A. Clarke. A comparison of methods for evaluating
generative ir, 2024. URL https://arxiv.org/abs/2404.04044.

[2] Charles L. A. Clarke, Alexandra Vtyurina, and Mark D. Smucker. Assessing top-k pref-
erences. ACM Transactions on Information Systems, May’ 2021.

[3] Charles L.A. Clarke, Alexandra Vtyurina, and Mark D. Smucker. Offline evaluation
without gain. In ACM SIGIR on International Conference on Theory of Information
Retrieval, page 185–192, 2020.

[4] Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal rank fusion
outperforms condorcet and individual rank learning methods. In 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval, page
758–759, 2009.

[5] Guglielmo Faggioli, Laura Dietz, Charles L. A. Clarke, Gianluca Demartini, Matthias Ha-
gen, Claudia Hauff, Noriko Kando, Evangelos Kanoulas, Martin Potthast, Benno Stein,
and Henning Wachsmuth. Perspectives on large language models for relevance judg-
ment. In ACM SIGIR International Conference on Theory of Information Retrieval,
page 39–50, 2023.

[6] Siqing Huo, Negar Arabzadeh, and Charles Clarke. Retrieving supporting evidence for
generative question answering. In 1st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval in the Asia Pacific Region, page
11–20, 2023.

6

