
CIR at TREC 2024 RAG: Task 2 - Augmented Generation with
Diversified Segments and Knowledge Adaption
Jüri Keller

TH Köln - University of Applied

Sciences

Cologne, Germany

jueri.keller@th-koeln.de

Björn Engelmann

TH Köln - University of Applied

Sciences

Cologne, Germany

bjoern.engelmann@th-koeln.de

Fabian Haak

TH Köln - University of Applied

Sciences

Cologne, Germany

fabian.haak@th-koeln.de

Philipp Schaer

TH Köln - University of Applied

Sciences

Cologne, Germany

philipp.schaer@th-koeln.de

Hermann Kroll

Institute for Information Systems,

TU Braunschweig

Braunschweig, Germany

krollh@acm.org

Christin Katharina Kreutz

TH Mittelhessen - University of

Applied Sciences

Gießen, Germany

Herder Institute

Marburg, Germany

ckreutz@acm.org

Abstract
This paper describes the CIR team’s participation in the TREC 2024

RAG track for task 2, augmented generation. With our approach,

we intended to explore the effects of diversification of the segments

that are considered in the generation as well as variations in the

depths of users’ knowledge on a query topic. We describe a two-

step approach that first reranks input segments such that they are

as similar as possible to a query while also being as dissimilar as

possible from higher ranked relevant segments. In the second step,

these reranked segments are relayed to an LLM, which uses them

to generate an answer to the query while referencing the segments

that have contributed to specific parts of the answer. The LLM

considers the varying background knowledge of potential users

through our prompts.

github.com/irgroup/TREC2024-RAG-CIR

Keywords
Retrieval Augmented Generation (RAG), Diversity, Maximal Mar-

ginal Relevance (MMR), Reranking

1 Introduction
Retrieval-Augmented Generation (RAG) provides direct answers to

users’ information needs that are grounded in potentially relevant

documents. RAG comprises multiple steps that are reflected in the

TREC RAG sub-tasks. We work on the Augmented Generation Task

(Task 2), where we are given a list of segments ranked by relevance

to a query topic. From these segments, we generate an answer that

contains references back to the individual segments.

Usually, when reranking retrieved information for queries, users

are expected to assess results until their information need is satisfied.

In RAG, we assume that users want answers, not single result

segments. Therefore, we derive that multiple segments containing

the same information do not contribute much to form an answer.

We expect a diversification of segments used in the generation step

of RAG to potentially better reflect multiple different viewpoints on

a topic. This variety should produce a more nuanced answer than

only considering segments that are as similar as possible to a query

topic. Additionally, we expect diversified result lists to enable the

usage of smaller models for the generation step, as fewer segments

need to be handled compared to purely similarity-ranked result

lists. As a side effect, such diversified input might help to address

the lost in the middle phenomenon [5].

In order to effectively support users in fulfilling their information

needs, generated answers should fit the depth of knowledge of a

user. The perfect answer from an information retrieval perspective

detailing different viewpoints might be useless for a user who is

overstrained by unfamiliar domain jargon. Therefore, an adaption

of the generated answer to the depth of knowledge of a user, similar

to the efforts found in text simplicity [2–4], could be worthwhile.

In our approach, we consider both the diversification of segments

used for the generation as well as the adaption of produced answers

for the depth of knowledge of potential users. We rerank segments

using MMR [1] and either Jaccard or cosine similarity. With four

different prompting options, we model the users’ differing depths

of knowledge.

2 Pipeline
Our pipeline consists of two parts: an optional reranking step for

the pre-ranked segments and a generation step for generating the

RAG output from reranked or pre-ranked segments. Figure 1 gives

an overview of our approach.

2.1 Step 1: Reranking
We experiment with two variants: not reranking and reranking. In

cases where we do not rerank, we use the top 𝑗 pre-ranked segments

as input for the generation step.

In cases where we rerank, we rerank the top 𝑗 segments from the

pre-ranked input to diversify the given ranked result list. Here, we

apply the Maximum Marginal Relevance [1] (MMR) criterion. The

key intuition behind MMR is to minimize redundant information

while maintaining query relevance when selecting documents. As

the authors note, this approach is particularly suitable for choosing

documents for summarization. Texts are ranked such that they are

https://github.com/irgroup/TREC2024-RAG-CIR

Keller et al.

𝑗 segments from
pre-ranked input

query

MMR-based
reranking

𝜆: weighting
relevance and diversity

similarity function: cosine
similarity or Jaccard coefficient

k reranked segments generation prompt

user context:
knowledge adaption

GPT-4o mini
generation

removing hallucinated
references

formatted RAG
output

Reranking Generation

Figure 1: Overview of our approach for augmented generation with diversified segments and knowledge adaption. Gray-
highlighted components are not used in all run configurations.

Variable Explanation Values
𝑗 Number of considered segments from the pre-ranked segment list 100

𝑟𝑒𝑟𝑎𝑛𝑘𝑖𝑛𝑔 Indication, if a reranking is conducted Yes, No

𝜆 Weighting factor in MMR for trade-off between similarity of candidate to query and dissimilarity of

candidate to ranked segments

0.25, 0.5, 0.75, 1

𝑀𝑀𝑅_𝑠𝑖𝑚 Similarity calculation measure in MMR Jaccard, Cosine

𝑘 Number of reranked segments given to generation step 20, 50

𝑝𝑟𝑜𝑚𝑝𝑡 Prompt used to generate the answer to an input query from the segments given to the generation step,

the base prompt is extended with a user context, details in Table 2

P.0, P.1, P.2, P.3

Table 1: Variables and their explanations.

𝑝𝑟𝑜𝑚𝑝𝑡 Prompt Text
Base "Do retrieval augmented generation with the following texts\n" + USER_CONTEXT + "according to the following query:

" + QUERY + "\n" + "make short and concise sentences while combining multiple texts into one sentence if they convey

the same information\n" + "these are the texts, ordered by relevance with their ids:\n" + SEGMENTS + "\ngive the
output as a json, where all sentences are seperate and are assigned the ids of the texts, where the information appears\n"
+ """’answer’: [’text’: ’The frequency with which you should take your toddler to the potty depends on their readiness

for potty training.’, ’citations’: [msmarco_passage_25_113697330, msmarco_passage_14_113668330], ’text’: ’Some sources

suggest that toddlers should be taken to the potty about three times a day: first thing in the morning, after mealtimes, and

again before bedtime.’, ’citations’: [msmarco_passage_25_113697330, msmarco_passage_21_113697362]]"""

P.0 ""

P.1 "Please bear in mind that I am a beginner in this field and have little prior knowledge.\n"
P.2 "Please bear in mind that I am an expert in this field and have substantial prior knowledge.\n"
P.3 "Please bear in mind that I have some foundational knowledge in this field but am not deeply experienced.\n"

Table 2: Base prompt for the generation step consisting of the general prompt, user context, query presentation and query,
prompt details, text introduction and segments, the output method and a few-shot example. Parts of the base prompt which
are marked in bold are replaced: For User_Context either P.0, P.1, P.2 or P.3 can be inserted. For QUERY the query is inserted,
for SEGMENTS the Python dictionary-formatted pairs of segment IDs and segment texts are inserted.

as similar as possible to the query and as dissimilar as possible from

the segments that have already been ranked. The iterative structure

of the result list, which maximizes the MMR criterion, is described

by the following equation:

MMR = arg max

𝐷𝑖 ∈𝑅\𝑆

[
𝜆 · Sim1 (𝐷𝑖 , 𝑄) − (1 − 𝜆) · max

𝐷 𝑗 ∈𝑆
Sim2 (𝐷𝑖 , 𝐷 𝑗)

]
(1)

Here, 𝐷𝑖 is a candidate item, 𝑅 is the set of all candidates, 𝑆 is

the set of selected items, and 𝑄 is the query. Sim1 (𝐷𝑖 , 𝑄) measures

relevance between 𝐷𝑖 and 𝑄 , while Sim2 (𝐷𝑖 , 𝐷 𝑗) measures diver-

sity between 𝐷𝑖 and selected items 𝐷 𝑗 . The parameter 𝜆 controls

the balance, where 𝜆 emphasizes relevance and 1 − 𝜆 emphasizes

diversity. A 𝜆=0.5 weights both the similarity of a candidate seg-

ment to a query as well as the dissimilarity of a candidate segment

to all already ranked segments equally. A 𝜆>0.5 gives more weight

to the similarity of a candidate segment to a query, while 𝜆<0.5

gives more weight to the dissimilarity of a candidate segment to all

already ranked segments.

As similarity function in our experiments we use cosine similar-

ity or Jaccard coefficient for Sim1 as well as Sim2.

CIR at TREC 2024 RAG: Task 2 - Augmented Generation with Diversified Segments and Knowledge Adaption

Run ID 𝑗 𝑟𝑒𝑟𝑎𝑛𝑘𝑖𝑛𝑔 𝜆 𝑀𝑀𝑅_𝑠𝑖𝑚 𝑘 𝑝𝑟𝑜𝑚𝑝𝑡 Priority
1 cir_gpt-4o-mini_Jaccard_50_0.5_100_301_p0 100 Yes 0.5 Jaccard 50 P.0 5

2 cir_gpt-4o-mini_Jaccard_50_1.0_100_301_p0 100 Yes 1.0 Jaccard 50 P.0 7

3 cir_gpt-4o-mini_Cosine_50_0.5_100_301_p1 100 Yes 0.5 Cosine 50 P.1 1

4 cir_gpt-4o-mini_Cosine_50_0.25_100_301_p1 100 Yes 0.25 Cosine 50 P.1 8

5 cir_gpt-4o-mini_Cosine_50_0.75_100_301_p1 100 Yes 0.75 Cosine 50 P.1 9

6 cir_gpt-4o-mini_Cosine_50_1.0_100_301_p1 100 Yes 1.0 Cosine 50 P.1 6

7 cir_gpt-4o-mini_Cosine_20_0.5_100_301_p1 100 Yes 0.5 Cosine 20 P.1 10

8 cir_gpt-4o-mini_Cosine_50_0.5_100_301_p2 100 Yes 0.5 Cosine 50 P.2 3

9 cir_gpt-4o-mini_Cosine_50_0.5_100_301_p3 100 Yes 0.5 Cosine 50 P.3 4

10 cir_gpt-4o-mini_no_reranking_50_0.5_100_301_p1 100 No - - 50 P.1 2

Table 3: Submitted run configurations.

When applying Jaccard, we tokenize texts, remove stopwords

according to the nltk corpus stopword list for English, and stem the

remaining tokens with the Porter stemmer. For cosine similarity

we use text embeddings produced by the OpenAI text-embedding-

3-small model
1
. The number of reranked segments to return is

𝑘 .

2.2 Step 2: Generation
We generate a RAG output for the queries and segments using

GPT-4o mini
2
and generation prompts constructed from a set of

parts, some of which are varied for different run configurations

(see Table 2). The query is combined with the top 𝑘 reranked

segments in configurations using reranking (described in subsec-

tion 2.1) or the top 𝑗 pre-ranked segments in cases where we do

not use reranking. Depending on the run configuration, the model

is asked to generate the output for a beginner, an expert, a user

with some knowledge, or no specific user. Few-shot examples are

provided, and the model is prompted to produce a JSON output

both in the prompt and in the API call.

The generated responses are then parsed, and hallucinated refer-

ences that are not part of the input are counted and removed from

the final RAG output.

3 Submitted Runs and Code
Table 1 describes the variables we used in our implementation. In

general, we submitted one baseline run (run # 1) without rerank-

ing and a simple variant of our RAG prompt. We experimented

with different similarity measures in our runs (Cosine and Jaccard;

found in runs # 1, 2, 3, 6 even though the prompts differ slightly),

different weightings of similarity of segments to the query versus

similarity of the segments to segments which have already been

considered as relevant (through runs # 3, 4, 5, 6), different cutoff

values for the number of segments considered by the generation

step (through runs # 3, 7) and different prompts representing vary-

ing user knowledge on the query topic (through runs # 3, 8, 9). The

priorities for evaluation are set to enable meaningful comparisons

between parameter variations, even if not all runs are evaluated. A

1
Note that these similarity values then can lie between -1 and 1, they need to be trans-

formed to a non-negative range. https://platform.openai.com/docs/guides/embeddings/

embedding-models

2
snapshot gpt-4o-mini-2024-07-18

detailed description of the properties of our ten submitted runs can

be found in Table 3.

References
[1] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based rerank-

ing for reordering documents and producing summaries. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Melbourne, Australia) (SIGIR ’98). Association for Computing

Machinery, New York, NY, USA, 335–336. https://doi.org/10.1145/290941.291025

[2] Björn Engelmann, Fabian Haak, Christin Katharina Kreutz, Narjes Nikzad-

Khasmakhi, and Philipp Schaer. 2023. Text Simplification of Scientific Texts for

Non-Expert Readers. InWorking Notes of the Conference and Labs of the Evaluation
Forum (CLEF 2023), Thessaloniki, Greece, September 18th to 21st, 2023 (CEUR Work-
shop Proceedings, Vol. 3497). CEUR-WS.org, 2987–2998. https://ceur-ws.org/Vol-

3497/paper-250.pdf

[3] Björn Engelmann, Christin Katharina Kreutz, Fabian Haak, and Philipp Schaer.

2024. ARTS: Assessing Readability & Text Simplicity. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2024, Miami, Florida, November 12-16.
Association for Computational Linguistics.

[4] Christin Kreutz, Fabian Haak, Björn Engelmann, and Philipp Schaer. 2024. BATS:

BenchmArking Text Simplicity. In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024.
Association for Computational Linguistics, 11968–11989. https://doi.org/10.18653/

V1/2024.FINDINGS-ACL.712

[5] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,

Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models

Use Long Contexts. Trans. Assoc. Comput. Linguistics 12 (2024), 157–173. https:

//doi.org/10.1162/TACL_A_00638

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://doi.org/10.1145/290941.291025
https://ceur-ws.org/Vol-3497/paper-250.pdf
https://ceur-ws.org/Vol-3497/paper-250.pdf
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.712
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.712
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638

	Abstract
	1 Introduction
	2 Pipeline
	2.1 Step 1: Reranking
	2.2 Step 2: Generation

	3 Submitted Runs and Code
	References

