Runtag | Org | Is this run manual or automatic? | Briefly describe this run | What other datasets were used in producing the run? | Briefly describe LLMs used for this run (optional) | Please give this run a priority for inclusion in manual assessments. |
---|---|---|---|---|---|---|
baseline_splade_fq_fd (trec_eval) | h2oloo | automatic | Baseline run using splade ensemble distil concondenser using full queries and the full database | MSMARCO | 3 | |
baseline_splade_sq_fd (trec_eval) | h2oloo | automatic | Baseline run using splade concondenser ensemble distil with short queries and the full database. | MSMARCO | 3 | |
baseline_clip_fq_fd (trec_eval) | h2oloo | automatic | Baseline run using the multimodal CLIP (laion/CLIP-ViT-L-14-laion2B-s32B-b82K) with full queries and full database | MSCOCO
Flickr_30k | 3 | |
baseline_blip_fq_fd (trec_eval) | h2oloo | manual | Baseline run with Salesforce/blip-itm-large-coco using full queries and the full database | COCO | 3 | |
baseline_bm25_fq_fd (trec_eval) | h2oloo | automatic | Baseline run using pyserini BM25 with the full query on the full database | none | 3 | |
baseline_blip_clip_fq_fd (trec_eval) | h2oloo | automatic | Baseline run combining blip and clip with RRF. | COCO
Flickr
datasets that trained both clip and blip | 3 | |
baseline_bm25_clip_fq_fd (trec_eval) | h2oloo | automatic | Baseline run combining BM25 and CLIP using RRF | Flickr
COCO
datasets used to train CLIP | 3 | |
baseline_splade_clip_fq_fd (trec_eval) | h2oloo | automatic | Baseline run combining SPLADE and CLIP using RRF | MSMARCO
FLICKR
COCO
datasets that trained CLIP | 3 | |
baseline_bm25_splade_fq_fd (trec_eval) | h2oloo | automatic | Baseline run combining BM25 and SPLADE using RRF | MSMARCO | 3 | |
baseline_bm25_blip_splade_fq_fd (trec_eval) | h2oloo | automatic | Baseline run combining BM25, BLIP and SPLADE with RRF | MSMARCO
COCO
FLICKR
datasets that trained BLIP | 3 | |
baseline_jina_clip_v1_fq_fd.trec (trec_eval) | h2oloo | automatic | Baseline run with the Jina CLIP model using full queries and the full dataset | The ones used to train Jina | 3 | |
siglip_dense (trec_eval) | IRLab-Amsterdam | automatic | SigLIP dense vector representations of the text and query (page title, section title, section description, categories) following the code snippet at https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384 | None; SigLIP was used zero-shot | 1 (top) | |
siglip_lsr (trec_eval) | IRLab-Amsterdam | automatic | SigLIP sparse representations of images (page title, section title, section description, categories) | The text (query) encoder was trained on MS MARCO, and the image encoder was trained on AToMiC data | 2 | |
baseline_jina_clip_v1_sq_fq (trec_eval) | h2oloo | automatic | Baseline run with the Jina CLIP V1 model using short queries and the full database | Datasets used to train jina CLIP | 3 | |
baseline_blip_sq_fq (trec_eval) | h2oloo | automatic | Baseline run with Salesforce/blip-itm-large-coco using short queries and the full database | COCO | 3 | |
baseline_bm25_blip_splade_sq_fd (trec_eval) | h2oloo | automatic | Baseline run combining BM25, BLIP and SPLADE with RRF using short queries for blip and splade | MSMARCO COCO FLICKR datasets that trained BLIP | 3 |