TMU at TREC Clinical Trials Track 2023

Aritra Kumar Lahiri, Emrul Hasan, Qinmin Vivian Hu, and Cherie Ding

Toronto Metropolitan University, Toronto, Canada
aritra.lahiri@torontomu.ca, elhasan@torontomu.ca,
vivian@torontomu.ca, cding@torontomu.ca

Abstract. This paper describes Toronto Metropolitan University’s participation
in the TREC Clinical Trials Track for 2023. As part of the tasks, we utilize ad-
vanced natural language processing techniques and neural language models in our
experiments to retrieve the most relevant clinical trials. We illustrate the overall
methodology, experimental settings, and results of our implementation for the run
submission as part of (Team - V-Ryerson).

Keywords: clinical trials - information retrieval - language models - ranking -
ndcg

1 Introduction

The 2023 TREC Clinical Trials track shifts from traditional clinical trial recruitment
methods to simulating a scenario where patients or clinicians fill out questionnaires
to identify suitable clinical trials. Instead of synthetic patient cases, the track employs
questionnaire templates tailored to specific disorders (e.g., glaucoma, COPD). Each
template contains 5-12 fields customized to the disorder, representing various patient
profiles. The clinical trials are retrieved from ClinicalTrials.gov'!, focusing on inclu-
sion/exclusion criteria. Evaluation distinguishes between eligible, excluded, and non-
relevant trials, allowing assessment of retrieval methods’ ability to differentiate between
insufficiently qualified patients and explicitly excluded ones.

The primary goal of our task involves finding suitable clinical trials for that patient
from a text summary of a patient’s health record. There are 40 topics provided this year
for 8 different disorders. Fig 5 shows a snippet of the topic template.

The trial responses for the topic templates for this year included unstructured XML
schema with free-form tags. Our approach for data extraction was twofold - initially,
we parsed the XML data using Pubmed Parser [1] and then extracted the summary and
description tags from the clinical trial responses. The next steps involved the application
of neural language models to retrieve the most similar clinical trial responses for each
topic. In the following sections, we will discuss the methodology and experimental
results obtained through our approach to completing the task.

2 Methodology

We divide the methodology into two parts - 1) Data preparation, and 2) Information
Retrieval and Document Ranking.

! https://clinicaltrials.gov/

2 Aritra et al.

s
isual field">moderat
sual acuity"»@.3
rior cataract s
rior LASIK surg
name="comorbid ocular diseases">corneal edema</field:

="glaucoma" >

ve diagnosis"»pigmentary</field>

»15 mmHg</field
ield>

Fig. 1. Topics for TREC Clinical Trials Track 2023

2.1 Data Preparation

The corpus for the source data is extracted in an XML format. The data is parsed
using a PubMed document parser [1]. It is an open-source Python library for pars-
ing the PubMed Open-Access (OA) dataset, MEDLINE XML repositories, and Entrez
Programming Utilities (E-utils). It uses the Ixml library to parse this information into
a Python dictionary which can be extensively used for text mining and natural lan-
guage processing pipelines. We extract the following XML tags for retrieving the most
relevant trials for a given topic - i) <brief_summary>, ii) <detailed_description> iii)
<id_info> iv) <eligibility>. Inclusion criteria and exclusion criteria are extracted from
the <eligibility> tag using Regular Expression to form two passages (one for inclusion
criteria and another one for exclusion criteria if the exclusion criteria exist). After that,
we clean and pre-process the text data from the summary and description fields to make
it a suitable fit as an input to the neural language models used in the next step.

2.2 Information Retrieval and Document Ranking

The Clinical Trial Retrieval tasks involve retrieving the top-most similar trials for a
given topic. To achieve this, first, we extract the features from both the topic and trials
followed by computing the similarity score using Cosine similarity between the topic
and the documents. We employ two different techniques for feature extraction tasks:

— Sentence Transformer [3] is a transformer-based technique that maps sentences
and paragraphs to a 1024-dimensional dense vector space and can be used for tasks
like clustering or semantic search. First, we compute sentence embeddings using
the RoBERTa-large model encode function and then compare the semantic similar-
ity between the topic template and the article summary.

— Doc2Vec [2] is an effective paragraph embedding technique that relies on Word2Vec
[4] word embedding method. Doc2Vec generates a single vector for a document
and invokes embedding based on two frameworks: Distributed Memory (DM) and
Distributed Bag of Word (DBOW). The former method involves taking both words
and the document vector into account, the model predicts the target word while the
latter focuses on using document ID as a feature ignoring the word order.

Auto-AAQA 3

Considering a topic te7, and a document de D where T" and D represent a collection
of topics and documents respectively. The Cosine similarity between the individual
topic ¢ and the individual document d is computed as follows

t-d

Cosine Similarity(¢, d) = Tl

ey

|t| and |d| represents the magnitude of ¢ and d repectively. The value of cosine
similarity ranges from -1 to 1.

Once the similarity scores between each topic and the corpus of documents are
obtained, documents are ranked based on the similarity score. Finally, the top 1000
documents are stored for each of the topics.

3 Results and Evaluation

As part of the experiments, we have submitted four runs in total - 1. vltmurun, 2.
v2tmurun, 3. v3tmurun, 4. v4tmurun. Runs 1 and 4 are computed using the Doc2Vec
model and runs 2 and 3 are computed using the Sentence Transformer (RoBERTa large)
model. Overall the results retrieved from the Sentence Transformer model fare better
among the two. the obvious reason could be attributed to the cross-encoder architecture
for sentence similarity. Sentence Transformers works similarly to BERT [5] but drops
the final classification head, and processes one sentence at a time. It then uses mean
pooling on the final output layer to produce a sentence embedding. Table 1 below shows
the NDCG [6] cut score for all the topics combined used for the evaluation of the run
submissions.

Table 1. NDCG scores for the submitted runs

Run NDCG@5 NDCG@10 NDCG@15 NDCG@20

1 0.0727 0.0731 0.0713 0.0649
2 0.1748 0.1713 0.1723 0.1568
3 0.1724 0.1673 0.1481 0.1370
4 0.0373 0.0391 0.0377 0.0350

Table 2 describes the overall evaluation results of our submission in comparison to
the median performance of all the topics combined.

Fig.1, Fig.2, Fig.3, and Fig.4, demonstrate the NDCG@ 10 performance for each
topic for our four submitted runs.

4 Conclusion

We have presented our experimental results and overall approach with two different
feature extraction and semantic similarity computation techniques. We observe that the

4 Aritra et al.

Table 2. Evaluation Results of the submitted runs for cut 10

Run P@10 map@10 recall@10
1 0.0405 0.0005 0.0010
2 0.0973 0.0034 0.0012
3 0.0892 0.0032 0.0020
4 0.0270 0.0012 0.0003

vltmurun

0.6

05

0.4

NDCG@10

0.2

01

0.0

ANMTAORDO g NMYNENE RSN NN RN AT AL RS
2 AB3A8353I2RRRRAIARINRA RAARATARERA

Topics

Fig. 2. NDCG @10 scores for each topic for Run 1

Sentence-Transformer performs better in terms of the overall results for the topics con-
sidered for evaluation. We have submitted four different runs for conducting the clinical
trial retrieval task keeping in mind the inclusion/exclusion criteria and appropriate data
preparation to improve the accuracy of our article retrieval and document ranking

References

1. Achakulvisut et al., (2020). Pubmed Parser: A Python Parser for PubMed Open-Access XML
Subset and MEDLINE XML Dataset XML Dataset. Journal of Open Source Software, 5(46),
1979, https://doi.org/10.21105/joss.01979

2. Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents."
International conference on machine learning. PMLR, 2014.

3. Reimers, Nils, and Iryna Gurevych. "Sentence-bert: Sentence embeddings using siamese bert-
networks." arXiv preprint arXiv:1908.10084 (2019).

4. Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv
preprint arXiv:1301.3781 (2013).

5. Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language under-
standing." arXiv preprint arXiv:1810.04805 (2018).

6. Wang, Yining, et al. "A theoretical analysis of NDCG type ranking measures." Conference on
learning theory. PMLR, 2013.

5

Auto-AAQA

v2tmurun

0.6 4

054

bt
=]

“

5
01®0daN

0.1 4

0.0-

=1

ANmTAO~N® O o

Fig. 3. NDCG @10 scores for each topic for Run 2

v3tmurun

0.5

0.4 4

-
S
0T®0daN

0.2+

0.14

0.0+

=]

ANMmTNON®O o

Fig.4. NDCG@ 10 scores for each topic for Run 3

vatmurun

0.16

0.14

0.12

o
1
=]

@
=4

S
0T@92aN

©
S
S

0.04

0.02

0.00

=]

ANMYTne~©® o

Fig. 5. NDCG @10 scores for each topic for Run 4

