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ABSTRACT
Learned Sparse Retrieval (LSR) is a group of neural methods de-
signed to encode queries and documents into sparse lexical vectors.
These vectors can be efficiently indexed and retrieved using an
inverted index. While LSR has shown promise in text retrieval,
its potential in multi-modal retrieval remains largely unexplored.
Motivated by this, in this work we explore the application of LSR
in the multi-modal domain, i.e., we focus on Multi-Modal Learned
Sparse Retrieval (MLSR). We conduct experiments using several
MLSR model configurations and evaluate the performance on the
image suggestion task. We find that solving the task solely based
on the image content is challenging. Enriching the image content
with its caption improves the model’s performance significantly,
implying the importance of image captions to provide fine-grained
concepts and context information of images. Our approach presents
a practical and effective solution for training LSR retrieval models
in multi-modal settings.
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1 INTRODUCTION
Learned Sparse Retrieval (LSR) is a neural retrieval method that
encodes queries and documents to bags of tokens, which could be
indexed and retrieved efficiently by an inverted index.
Image Suggestion Task. The task is defined as follows: given a
query and a set of candidates, we rank all candidates w.r.t. their
relevance to the query. The query is a text, whereas the set of
candidate items are images. Hence, we aim to retrieve relevant
images that accurately describe the textual query.
Vision-Language Learned Sparse Retriever. We propose to ad-
dress the task using a Vision-Language Sparse Retriever approach.
The architecture is a bi-encoder, including a query encoder and doc-
ument encoder. Both query and document encoders are based on
transformer encoder architecture with either a Multi-Layer Percep-
tron (MLP) or Masked Language Model (MLM) sparse projection
head on top. We experiment with the following model configura-
tions:

• 𝑀T→I : themodel uses image information to build document
representations.
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• 𝑀T→T : the model uses textual information to build docu-
ment representations.

• 𝑀T→T+I : the model uses both textual and image informa-
tion to build document representations.

2 APPROACH
We follow the same terminology and notation as in [14, 32]. The
input dataset can be represented as image-text pairs. For the image
suggestion task, we use textual data as a query and we aim to
retrieve a ranked list of top-𝑘 images that describe the textual
query.
Vision-Language Learned Sparse Retrieval. To address the task,
we explored the application of learned sparse retrieval that lever-
ages visual and textual information. The model comprises a query
and document encoder. Depending on the modality of the query
and document, the encoder could either be an MLP and MLM en-
coder. The MLP encoder can only used with text modality, while
the MLM is applicable to both textual and visual data. Note that in
this task, the document could be either an image, caption, or both.
Figure 1 illustrates the architecture of the MLP and MLM encoder.
MLP Encoder. The MLP encoder takes a text as input and produces
an important weight for each token of the input text. For example,
for the input text “text image retrieval”, an MLP encoder outputs
weights, such as {"text": 10 , "image": 20 , "retrieval": 50 }.

An MLP encoder is a network that takes a sequence of contex-
tualized embeddings ℎ 𝑗 produced by the dense encoder for each
input term to generate the term’s score:

𝑤𝑖 (𝑡) =
∑︁
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𝑙𝑜𝑔

(
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)
+ 1
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where𝑤𝑖 is the i-th token in the vocabularyV .
As described in Figure 1, anMLP is comprised of a Linear layer on

top of a transformer encoder. The Linear layer takes the last hidden
states of the transformer’s encoder as input and projects each state
to a positive scalar representing the weight of the corresponding
input token.

An MLP encoder requires the input to be tokenized into a se-
quence of vocabulary words; therefore, it can only encode textual
data and not images. In addition, MLP encoder does not have the
capability to expand the input to relevant terms.
MLM Encoder. Unlike the MLP encoder, the MLM encoder can
be applied to both text and image and has the freedom to expand
the input to any relevant terms in the vocabulary. As described in
Figure 1 (right), the MLM encoder consists of a transformer encoder
and a sparse projection layer on top. The transformer encoder takes
either a textual or visual input and outputs a single intermediate
dense vector which is then passed into a sparse MLM projection:
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Figure 1: MLP and MLM encoder

𝑤𝑖 (𝑡) = 𝑅𝑒𝐿𝑈 (ℎ⊺0 𝑒𝑖 + 𝑏𝑖 ) (2)

where𝑤𝑖 is the i-th item (token) in the vocabularyV .

2.1 Full Bi-Encoder Configuration
The full bi-encoder configuration includes a query encoder, 𝑓 Q

\
,

and a document encoder, 𝑓 D
𝜙

. Each query and document encoder
is either a MLP or MLM as described in the previous section. In
this paper, we experimented with different configurations as listed
in Table 1. We did not explore all possible configurations due to
resource constraints. Among all of the abovementioned configura-

Document Encoder 𝑓 D
𝜙

Model Query encoder 𝑓 Q
\ Caption Image

M1 MLM - MLM
M2 MLP - MLM
M3 MLP MLP (*) -
M4 MLP MLP (*) MLM

Table 1: Sparse Bi-encoder Variants. (*) The MLP encoder is
re-used from the query side for encoding caption.

tions, the first model (M1) is the multi-modal version of Splade [8].
M2 is the multi-modal version of EPIC[27]. In M3 andM4, we re-use
the MLP query encoder from M2 to encode the caption associated
with each image.

3 EXPERIMENTS
Dataset. We conducted our experiments on the AToMiC dataset[46]
which has around 11 million images and more than 10 million text
queries collected fromWikipedia. Each text query contains four dif-
ferent fields, including page_title, section_title, context_page_description,
context_section_description.We exclude the context_page_description
and concatenate the remaining fields with space between them to
form a single text query. Each image in the dataset also comes with
a multilingual caption (caption_reference_description), we tested
different configurations where we use either or both of them to
represent the document. Due to computing resource limitations, our
experiments were only conducted on images with English captions.
For training, we only use the 4.4 text-image pairs provided by the
dataset’s authors and train for 5 epochs with InforNCE loss and
only in-batch negatives.
Metrics. To evaluate model performance, we report NDCG@k,
MAP@K, and R@k where 𝑘 = {5, 10, 100, 500, 1000}.

4 DISCUSSION
One of our criteria for model selection is that the model should
produce meaningful, interpretable sparse vectors (bags of terms).
However, we found that model M1 does not meet this requirement.
As demonstrated in Table 5, M1 generates terms that do not reflect
the content of the image and are difficult for humans to interpret.
The reason is that M1 uses the MLM encoder both on query and
document sides, allowing the input text and image to be projected
into any latent dimensions as long as these dimensions are co-
activated (having non-zero values) in both query and document
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Table 2: Performance of the submitted models on the image suggestion task, evaluated on NDCG@k scores.

Run NDCG@5 NDCG@10 NDCG@100 NDCG@500 NDCG@1000

𝑀T→I 0.40 0.39 0.28 0.50 0.58
𝑀T→T 9.39 10.79 15.59 18.67 19.59
𝑀T→T+I 9.77 10.74 15.63 18.79 19.68

Table 3: Performance of the submitted models on the image suggestion task, evaluated on MAP@k scores.

Run MAP@5 MAP@10 MAP@100 MAP@500 MAP@1000

𝑀T→I 0.02 0.04 0.04 0.05 0.05
𝑀T→T 3.51 4.48 5.82 6.04 6.07
𝑀T→T+I 3.58 4.48 5.84 6.07 6.10

Table 4: Performance of the submitted models on the image
suggestion task, evaluated on Recall@k scores.

Run R@20 R@100 R@500 R@1000

𝑀T→I 0.37 0.43 1.31 1.61
𝑀T→T 15.54 24.54 37.00 41.24
𝑀T→T+I 15.50 24.57 37.48 41.37

Table 5: Demonstration of not interpretable output. Top-10
highest-scored terms are shown for both M1 and M2 models.

Image M2 (MLP, MLM) M1 (MLM, MLM)

mountain moun-
tains bike bee dirt
mo red path ##oot
person

accent ship natural
de crown yourself "
ra now wild

representations. The projection freedom of MLM leads to the issue
of high co-activation, forming a sub-dense space inside the vocabu-
lary space as described in Figure 2. This high co-activation could
also harm the retrieval efficiency of the inverted index employed in
LSR. Because of the above issues, we did not submit the run from
M1 for evaluation.

One solution to the above issues is to constrain the projection
to semantically relevant terms in the vocabulary. This constraint
could be achieved by using the MLP encoder on the query side.
Indeed, the design of the MLP encoder only allows it to score the
impact of the input tokens but does not allow it to expand to other
tokens. MLP only produces positive weights for tokens in the input
query and keeps the remaining tokens in the vocabulary to be
zero. In order to match an image to a relevant query, the image
encoder (MLM) needs to project the image into terms appearing
in the relevant query. This constraint forces the model to produce
more interpretable and sparsely co-activated image representation.
However, we observe that using the MLP query encoder still does
not prevent the problems entirely as it could still rely on stop words
and punctuation marks for encoding latent senses. The stop words
and punctuation marks are especially popular in long texts, as in
the Atomic queries, which are taken from Wikipedia articles. For
this reason, we resorted to using the short caption and image pairs

d3

d1
d2

d3

d1
d2

vocabulary vocabulary

(a) Output dimensions are densely co-activated

d3

d1
d2

d3

d1
d2

vocabulary vocabulary

(b) Output dimensions are sparsely co-activated
Figure 2: Dense activation vs. sparse co-activation. All docu-
ments have 4 vocab terms activated (yellow colors).

for training our M2, M3, and M4 models. An example output of
M2’s document encoder-trained caption, image pairs is shown in
Table 5.

Regarding the effectiveness, for each model (M2, M3, M4), we
submitted one run for evaluation. The results are shown in Table 4,
Table 3, and Table 2 for Recall, MAP, and NDCG respectively. We
observe that M2 performs poorly across different metrics, implying
that the task of image suggestion for writing assistants solely based
on the images’ content is a challenging task. We hypothesize that
the context information of an image, which is critical for the task,
could not be encoded in the images, but in text captions. Given a
picture of World War 2 (WW2), for example, it is generally very dif-
ficult for a model to predict that this picture is about WW2 because
any war picture has similar concepts (e.g., “soldiers”, “weapon”).
Similarly, given a picture of a less-popular street in Amsterdam, it is
difficult to infer any terms relevant to Amsterdam based on the im-
age content only. For this reason, we argue that to solve the image
suggestion task well, the image caption should be used to provide
more fine-grained and contextual information that is challenging
to infer from the visual data. This argument is supported by the
result of our second run produced by my M3 model. By using only
image caption, the M3 model could outperform M1 significantly
and by a large margin. The result of M4 also shows that using both
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images and captions could slightly improve the overall performance
of the task, but the improvement is not consistent across different
metrics.

5 RELATEDWORK
Learned sparse retrieval (LSR). LSR is a neural retrieval method
encoding queries and documents into sparse lexical vectors, ef-
ficiently indexed and searched with an inverted index. Various
LSR approaches exist, using MLP or MLM encoders [8, 31, 48].
MLP encoders predict term importance without expansion, while
MLM encoders use masked language model logits for weighting
and expansion. Splade is a recent text-oriented LSR approach em-
ploying MLM encoders [7, 8], while other methods use MLP en-
coders [4, 22, 27]. Recent research suggests a cancellation effect
between query and document expansion [32].
Cross-Modal Retrieval (CMR). CMR methods create a multi-
modal representation space, measuring concept similarity across
modalities [2]. Early CMR approaches used canonical correlation
analysis [11, 15], followed by RNN-CNN encoders with hinge loss [9,
44], hard-negative mining [6] and attention mechanisms such as
dual attention, stacked cross-attention, and bidirectional focal at-
tention [17, 25, 29, 37]. Other approaches include modality-specific
graphs [43] and image-text generationmodules [12]. Domain-specific
research targets CMR in fashion [10, 16], e-commerce [13], con-
versational systems [35, 36, 38], and music video recommenda-
tions [42].

Recent methods use transformer-based dual encoders trained on
extensive data. ALBEF [19] aligns unimodal representations before
fusion, X-VLM [49] adds a cross-modal encoder for fine-grained VL
representations. Florence [47] uses adaptation models for object-
level representations, and CLIP [33] predicts image-caption pairs.
ALIGN [19] uses a dual encoder on image alt-text pairs.

Another line of work adopts transformer encoders [41] for the
CMR task [28], adapting BERT-like models [5]. ViLBERT [26] and
LXMERT [40] introduce a two-stream architecture, while B2T2 [1],
VisualBERT [20], Unicoder-VL [18], VL-BERT [39], and UNITER [3]
feature single-stream architectures. Oscar [21] incorporates caption
object tags with region features, and BEIT-3 [45] adapts multiway
transformers.

Our focus. Unlike prior work that focuses on sparse to dense
conversion [23, 24], we focus on dense to sparse conversion in the
multi-modal domain. Challenges include dimension co-activation
and semantic deviation [34].

6 CONCLUSION
In this work, we explored the application of learned sparse re-
trieval (LSR) for the image suggestion task to support multimedia
content creation. We identify the challenges that arise when trans-
ferring state-of-the-art LSR techniques from the text domain to the
multi-modal domain and propose a simple solution to mitigate the
problems. We analyze the effectiveness of our trained models with
various configurations and conclude that using image captions is
critical for the task as image captions provide fine-grained concepts
and context information that are difficult to encode in the visual
content itself. We address this problem in the follow-up work [30].
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