
Sequencing Matters: A Generate-Retrieve-Generate Model for
Building Conversational Agents

Quinn Patwardhan
∗

qroshan5@gmail.com

Sidwell Friends School

Washington, D.C., USA

Grace Hui Yang

grace.yang@georgetown.edu

InfoSense, Dept. of Computer Science

Georgetown University, Washington, D.C., USA

ABSTRACT
The Text Retrieval Conference (TREC)’s Interactive Knowledge

Assistance (iKAT) Track has the goal of combining conversational

and personalizable elements with existing information retrieval

(IR) technologies to facilitate information-seeking. To accomplish

this, an iKAT system is given two pieces of information from the

user: 1) a Personal Textual Knowledge Base (PTKB), which is a

persistent set of a handful of factual statements about the user (like

"I am lactose intolerant" or "I am afraid of roller coasters") that

lasts throughout a conversation, and 2) the user utterance, which

is usually written from an information-seeking standpoint. In an

automatic run, the system must find both the PTKBs relevant to

each utterance and provide relevant responses to both the current

utterance and the conversation history. Answers must be generated

based on passages retrieved from the ClueWeb 22B Corpus.

This paper contains what the Georgetown InfoSense group has

done in regard to solving the challenges presented by TREC iKAT

2023. Our submitted runs outperform the median runs by a sig-

nificant margin, exhibiting superior performance in nDCG across

various cut numbers and in overall success rate. Our approach uses a

Generate-Retrieve-Generate method, which we’ve found to greatly

outpace Retrieve-Then-Generate approaches for the purposes of

iKAT. Our solution involves the use of Large Language Models

(LLMs) for initial answers, answer grounding by BM25, passage

quality filtering by logistic regression, and answer generation by

LLMs again. We leverage several purpose-built Language Models,

including BERT, Chat-based, and text-to-transfer-based models, for

text understanding, classification, generation, and summarization.

The official results of the TREC evaluation contradict our initial

self-evaluation, which may suggest that a decrease in the reliance

on our retrieval and classification methods is better. Nonetheless,

our findings suggest that the sequence of involving these different

components matters, where we see an essentiality of using LLMs

before using search engines.

1 INTRODUCTION
The Text Retrieval Conference (TREC) Interactive Knowledge As-

sistance (iKAT) Track has the goal of combining conversational

and personalizable elements with existing information retrieval

(IR) technologies to facilitate information-seeking. The iKat Track

builds upon and replaces a previous track of TREC, CAST, whose

goals were similar in that it also involved elements of both conver-

sation and information retrieval. The new iKAT Track differs in

that it adds the challenge of personalizing responses to the user,

based on the PTKBs. A Personal Textual Knowledge Base (PTKB)

∗
Work done during summer internship at Georgetown University.

is a persistent set of a handful of factual statements about the user

(like "I am lactose intolerant" or "I am afraid of roller coasters") that

lasts throughout a conversation. The iKAT Track is in the domain

of both conversational agents and Task-based information seeking.

The most common traditional approach to the iKAT challenge

could be fully retrieval-based [XJC08], where retrieval models are

used to retrieve relevant passages and answers are extracted, sum-

marized, or generated from these relevant passages. After the in-

troduction of Large Language Models (LLMs) such as ChatGPT,

many began using one Large Language Model to do everything,

including using them for information retrieval and information

seeking. This came with drawbacks, due to the issues LLMs face

from hallucinations [Zha+23] and bias [Fer23]. Without grounding

or correction, Large Language Models tend to hallucinate and state

false information. Thus, their ability to generate factual responses,

as required by iKAT, is limited. On the contrary, most retrieval

methods work much better for finding relevant passages, although

they lack the conversationality of LLMs. For the task of generating

responses directly from the corpus, many rely on Extractive QA

Models [Seo+20], although this method lacks some of the inference

abilities of LLMs to combine their knowledge base with provided

information to form a fluent response directly to the user utterance.

To augment the text generation capabilities of Large Language

Models, researchers have started to work on combining LLMs’

strengths with retrieval methods, so that LLMs’ outputs can be

backed upwithmore trustworthy and accurate content and grounded

in corpora that they exist. These LLM Grounding methods can

be grouped into three categories: Fact-Checking, Retrieve-Then-
Generate, and Generate-Then-Retrieve.

The Fact-Checking type works by fact-checking and citing the

claims made by the LLM, and rewriting any claim identified as false

and/or unciteable [Gao+23]. In these approaches, a majority of the

text content was LLM generated, which allows for the conversa-

tional and deeper language-understanding benefits of Language

Models. However, this still leaves room for model bias, and the pro-

cess of fact-checking and citing is not 100% effective. Fact-checking

also poses the problem of layered hallucinations, in which the LLM

hallucinations both in the output text and when finding the cita-

tion, making incorrect information appear to be truthful and cited

[ZKS23].

The Retrieve-Then-Generate approaches [Ma+23] involves finding

supporting information, then using an LLM to generate a response

based on that information. We initially considered using a similar

approach, although ran into issues with the LLM not solely draw-

ing from given information and instead drawing mostly from its

training data. This method does not guarantee full accuracy, and

Quinn Patwardhan and Grace Hui Yang

User Utterance PTKBs

Sentence-BERT to

Rank PTKBs

Prompt Generator

LLama2 Response

BM25 on Clueweb-

22B

Logistic Regression

Passage Classifier

Rank Passage

Sentence Relevance

with Sentence-

BERT; Prompt

Generator

Summarize

Passages with

FastChat-T5 &

Combine Top n

Summaries

Yes

Llama Answer

Question From

Prompt

Continue

Grounding?

No

Fluent Response

Cut-Off

End

Figure 1: System Architecture.

still has the same problems, although to a lesser extent, as just pure

generation techniques.

The Generate-Then-Retrieve methods [HAC23] use a prompting

technique, where they find supporting passages (either from using

an LLM response or just the user utterance), then ask the LLM to

answer the question from the passage.

Our approach is mainly a Generate-Retrieve-Generate approach.
We use the LLM to generate a response to the user utterance with

minimal prompting (only providing the relevant PTKBs and utter-

ance combined in a linguistically fluent manner). We encourage

the LLM to generate a lengthy response, in order to get more infor-

mation that can be used to find grounding materials. Even if the

LLM states something incorrect, there is a high likelihood that its

response will correspond significantly with what the user asked it.

Once we’ve retrieved relevant passages, we then use a text-to-text

transfer Large Language Model specifically designed for summa-

rization to summarize each passage, after optimizing the sentences

of each passage to prioritize the information actually relevant to

the user utterance. Our method maintains the citability of fact-

checking-based methods and the conversational fluency enabled

by LLMs. Unlike the generate-then-retrieve methods, our approach

still involved using an LLM in creating our final response, which

allowed for more intelligent and fluent responses. This approach

has been used to solve similar problems before, and has scored

much higher on QA tests than other methods [Yu+23].

2 PROPOSED METHOD
2.1 Overall Architecture
In this paper, we propose a hybrid method, that combines informa-

tion retrieval and machine learning methods with state-of-the-art

advancements in Language Models across several different archi-

tectures. Our solution augmented passage retrieval methods such

as BM25 with LLM-enabled response generation and grounding.

We usedmultiple off-the-shelf models and algorithms, fine-tuning

and enhancing some, and creating some of our own models using

existing approaches. Llama is the main LLM that we use in this

work. We relied on Llama for all conversational aspects of our solu-

tion, and for the initial step of answering the question which we

could then use for grounding. Because No Llama response was ever

used as a final output, we used the less advanced 13B-chat model

for performance reasons.

Retrieval is used two times in our architecture. For the ranking of

the PTKBs, common approaches include using keyword similarity

[IB19], where keywords of the statement are compared against the

keywords of the question. This has many drawbacks, including

the fact that it cannot handle follow-up questions (for instance, if

the user asks "What are the best diets", and the response is a list

of 3 diets, if the user asks "What’s so great about the 3rd one?",

there will be no PTKB matches for statements regarding dietary

restrictions). Finally, for the task of retrieving the passages from

the corpus, many common solutions place too much reliance on the

quality and authenticity of the passages in the corpus. Since most

corpora today are scrapped from the internet, they contain data

from many malicious or untrustworthy sources. Some solutions

will just retrieve passages and use the top N passages in generating

their response. This can lead to incorrect or bad-quality responses.

To improve our results, we also trained a Logistic Regression

text classification model using TF-IDF Vectorization, using several

datasets representing reliable passages (Wikipedia Articles) and

unreliable vs. malicious passages (Retrieved from ClueWeb-22B via

Keywords often associated with spam and BM25).

Figure 1 illustrates the architecture of our system. It contains a

few components and works in the following steps. (1) Our system

first ranks PTKBs with sentence transformers (Sentence-BERT) and

combines them together to create a linguistically fluent prompt. (2)

We then generated a response from that prompt and the conversa-

tion history with Llama, and (3) used that response with BM25 to

find relevant passages. In order to keep our LLama’s conversation

history parallel to the history (the ’canonical responses’) found in

the test conversations, we used a ’fresh start’ approach where the

LLM’s history was set to be all the previous given conversations as

found in the test file, with only the most recent question including

our generated prompt. (4) Next, we weeded out bad quality pas-

sages with our Logistic Regression Text Quality Filter. (5) We then

optimized the top 5 passages by ranking the sentences in order of

relevance to write another prompt, again using Sentence-BERT. (6)

From there, we took the top 512 characters in order to not overload

FastChatT5’s [Zhe+23] context, and summarized each passage in

1-3 sentences. In order to prevent FastChat from drawing from its

knowledge base and introducing new information not found in our

passages, we kept it blind to the user utterance and gave it a low

temperature. We combined the passage summaries and then (7)

Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents

prompted Llama to generate a response to the user utterance based

on the summaries, took that response, and retrieved passages with

BM25.

Note that the retrieval-generate loop can be repeated 𝑋 times.

In our experiments, we tested 𝑋 = 2 or 𝑋 = 1. When 𝑋 = 2, it is

to increase the likelihood that Llama would generate something

in response to the user utterance that we could find supporting

passages for. If Llama asked a follow-up question, then we wouldn’t

be able to find many passages from its generated response that were

actually relevant to the user utterance. In runs with more than 1

shot, we would feed passages into Llama and ask it to answer the

utterance from the information contained in the passage. Only on

the last cycle would we use the final FastChat summary as the final

output.

2.2 Components
2.2.1 Ranking PTKBs by Sentence-BERT. Our system first ranks

PTKBs with Sentence-BERT [RG19a] and combines them together

to create a linguistically fluent prompt. Sentence-BERT is “a mod-

ification of the pre-trained BERT network that uses siamese and

triplet network structures to derive semantically meaningful sen-

tence embeddings that can be compared using cosine-similarity"

[RG19a]. BERT (Bidirectional Encoder Representations from Trans-

formers) models are widely used for deep language modeling and

language understanding. BERT can be used in a variety of domains,

such as question answering and language inference [Dev+19]. BERT

achieves high scores on several Natural Language Processing (NLP)

benchmarks, and has the ability to deeply understand language

meaning based on context. BERT comes in pre-trained versions,

trained on English language text datasets, but can be entirely re-

trained on other datasets to improve performance on specific do-

mains [AZ22]. BERT also has the advantage of being easily fine-

tuned from specialized datasets to fit certain tasks, such as aviation

[Wan+23].

For PTKB ranking and passage optimization, we choose paraphrase-

MiniLM-L6-v2 [RG19b] that could both take in up to 512 tokens,

needed for passage optimization and because it could deeply con-

sider meanings behind the PTKBs with its 384 feature dense vector

representation.

2.2.2 Prompting LLMs for Initial Answers. We then use the prompt

created by the ranked PTKBs and the conversation history to

prompt an LLM. After extensive testing of many post-GPT 3.5

LLMs, we found two that would work best in specific scenarios:

LLaMa 13B-Chat [Tou+23] for its chat capabilities and extensive

knowledge coverage, and FastChat T5 for passage summarization

due to its ability to both take in and accurately understand a larger

context and avoid prompt repetition. LLaMa 13B-Chat is used here

for prompting for initial answers, using a question-like prompt

formed by combining all relevant PTKBs above a threshold with

the user utterance in a fluent manner.

We experimented with using quantized versions of each model,

both to allow us to use LLaMa models with more parameters, and

to reduce run times.

2.2.3 Grounding LLM Answers via BM25 Passage Retrieval. BM25

is a widely used method for retrieving text from search queries.

Although more complicated methods exist, such as Learned Sparse

and Learned Dense Retrieval Models, BM25 still sometimes ranks

above these methods in terms of retrieval accuracy [Ros+21]. BM25

builds on top of TF-IDF (Term Frequency-Inverse Document Fre-

quency), which works by finding passages where frequently un-

common terms (terms not contained in most passages) are common

[SPA72]. We used the Lucene [Lin+21] to both build indexes of the

iKAT corpus (ClueWeb 22) as well as search in the corpus using

BM25. LLM Answers were fed straight into BM25, and by picking

the top several passages, we found that our results covered the

topics mentioned by the LLM.

2.2.4 Logistic Regression (LR) for Text Quality Classification. In
order to ensure passage quality, we trained a Logistic Regression

model on TF-IDF [SPA72] vectorizations of text data. Although

more advanced methods of text classification exist, Logistic Regres-

sion (LR) methods can outperform them on specific tasks. It works

by taking labeled training passages and using them to generate vec-

torizations of each label, then modeling those vectorizations with

Logistical Regression to allow for the labeling of new text [SPA72].

Logistical Regression is the most thoroughly tested modeling ap-

proach for text classification, which under performs on specific

tasks but still scores higher than other approaches on most tasks. In

the fake-news classifier comparison [Vij+20], the researchers tested

several approaches for modeling TF-IDF vectors to predict labels,

including SVM (Support Vector Machine), Random Forest, LSTM

(Long Short Term Memory networks), ANN (Artificial Neural Net-

work), and Logistic Regression. In their tests, Logistic Regression

performed the best, by a margin of 2% higher accuracy than the

second-best approach.

To create training data for LR, we labeled an article ‘reliable’

(1000 Wikipedia entries from the WikiText-103 [Ste], ‘unreliable’

(good faith passages selected from a list of keywords using BM25

and pyserini [Lin+21] from unreliable sources such as Reddit, Quora,

or other opinionated or informal sources), and ‘junk’ (malicious

passages that were written like advertisements, related to spammy

topics, used keyword stuffing, or otherwise matched with keywords

frequently associated with bad sources). We threw out any passage

labeled by our model as either ‘unreliable’ or ‘junk’, keeping only

Wikipedia-like passages. Wikipedia-like sources are rather reliable

and very useful for QA purposes [Che+17]. With a constrained

corpus, with a much smaller subset of passages than that of the full

collection, we found this worked well for selecting passages that

were literally from Wikipedia, or generally written in an encyclo-

pedic style. However, with the full corpus, we found that the top

5 BM25 passages would almost always be from reputable sources,

testifying to the proven quality of Clueweb-22B [Ove+22].

2.2.5 Prompting Again with T5 for Answer Summarization. Large
Language Models have enhanced capabilities for summarizing large

passages of text, and thus are commonly used for Question Answer-

ing (QA) and other tasks related to information retrieval. Although

models like ChatGPT can be the most frequently used model for

summarization, newer Text-To-Text models have a much broader

set of capabilities, and have ranked highly on summarization tests.

Text-To-Text Transfer (T5) based models work by applying what

they’ve learned from tasks to solve related tasks [Raf+20]. T5 mod-

els have several advantages in terms of summarization. T5 Models

Quinn Patwardhan and Grace Hui Yang

have the ability to avoid prompt repetition, since they have a much

deeper understanding of textual meaning, and don’t rely as heavily

on mere text completion. Since they largely aren’t used for generat-

ing text, and aren’t fine-tuned specifically to generate text, they are

muchmore likely to simply reword or shorten given text rather than

just generating something new (therefore unreliable) loosely based

on the inputted text. Also, T5 models can be adapted to understand

much larger contexts than models such as ChatGPT. [Xio+22].

After we had weeded out bad quality passages with our Logistic

Regression Text Quality Filter, we then optimized the top 5 passages

by ranking the sentences in order of relevance to write another

prompt, again using Sentence-BERT. Sentence-Ranking has been

used before [ZW20] to increase the quality and relevance of text

extraction. From there, we took the top 512 characters in order

to not overload FastChatT5’s [Zhe+23] context, and summarized

each passage in 1-3 sentences. In order to prevent FastChat from

drawing from its knowledge base and introducing new information

not found in our passages, we kept it blind to the user utterance

and gave it a low temperature.

We testedmany post-GPT 3.5 LLMs, we found FastChat T5works

best for passage summarization due to its ability to both take in

and accurately understand a larger context and avoid prompt repe-

tition. [Raf+20] FastChat T5 is also a Text-to-Text Transfer Trans-

former type model, which is highly customizable and applicable

to many applications, including summarization. We opted to keep

FastChat running at full detail, as we would use its summaries

for our final product and (in two-shot runs) for our second round

of passage selection. FastChat would be given a prompt telling it

to summarize the given passage in 1-2 sentences. We found that

only very rarely will it go meta and mention the fact that it was

summarizing a passage (15/322 times), ideal for our use case.

Looping ensures that the LLM is in alignment with the passages

found by BM25. For instance, if the LLM lists five good cars for

new parents, BM25 may find passages that mention other cars, in

addition to one or two of the cars found by the LLM. LLM-BM25

Congruence helps work to fact-check the LLM and decrease the

likelihood of hallucination.

3 EXPERIMENTS
3.1 Submitted Runs
We submitted three runs for TREC 2023 evaluation. Our first run

consisted of a two-shot approach in which we completed two cycles

of the steps described in Section 2.1.

Our second run used only one shot, and therefore just generated

one combined passage summary.

Our third run was the same as the second run, in that it was a

one-shot approach, with the slight difference that we did not use

the LR to select text quality, therefore relying soley on the passages

ranked by BM25. We initially tried to use an LLM to certify passage

relevance, both by inputting the full passage as well as the passage

summary into the LLM, asking about its relevance to the user

utterance. We opted to not use this step in our final solution, as all

models we tried had a very high error rate for identifying whether

a passage was relevant or not.

Figure 2: Example Turn of Two-Shot Method.
User Utterance: What is a good diet?
Our Resolved User Utterance: I’m vegetarian and
lactose intolerant, and would like to lose weight.
What is a good diet?
LLaMa Response 1: The best diets for a
lactose-intolerant vegetarian who would like to lose
weight is the ...
Combined Passage Summaries 1: There are many
different grains, beans and legumes, grains,
vegetables, and plant oils that can be included in a
vegetarian diet...
LLaMa Response 2: One such diet that involves beans
and legumes, grains, vegetables, and plant oils is the
Mediterranean Diet...
Final Answer/Combined Passage Summaries 2: The
Mediterranean diet is a plant-based eating plan that
includes lots of fruits, vegetables, beans, lentils,
nuts, and whole grains...

Table 1: Scores for All Topics for our runs and the Averaged
Medians for All Runs.

success_1 ndcg_cut_5 ndcg_cut_10
Our Run 1 0.4229 0.2626 0.2707

Our Run 2 0.5170 0.3059 0.3154

Our Run 3 0.5341 0.3233 0.3216

Median Aver-

ages

0.2074 0.123 0.1266

3.2 TREC Evaluation
Across the three tests for which median scores were made available,

Success 1, nDCG at 5, and nDCG at 10, each of our runs’ average

scores for all topics beat the averages of the medians of each score

across all topics included by a notable margin (Figure 1). Our best

run, by a small margin across all three tests, was the third run,

which was the same as the second-ranked run (the one-shot ap-

proach), with the only difference being that it did not use the LR

passage quality classifier. Success_1 is measured as either a 0 or

a 1, and is likely a measure of whether or not the response met

the requirements of a ‘correct’ response. NDCG, or (Normalized

Discounted Cumulative Gain) is a measure of ranking quality in-

dependent of the particular query, and the cut_5 or cut_10 scores

represent how many of the top documents were relevant [Wan+13].

Our one-shot methods (Runs 2 & 3) beat our two-shot method (Run

1), and this could be because one bad quality step could throw off the

remaining steps throughout the cycle, resulting in a worse answer.

For instance, if Llama failed to answer the question adequately, no

good supporting passages would be found, leaving Llama with a

nonsense input that would result in a bad, ungroundable output. It

could also hint at Llama being inept in generating responses based

on given information. Since the only difference between Run 2 and

Run 3 is that Run 2 uses the passage quality classifier and Run 3

does not, and since Run 3 scored higher than Run 2, our passage

quality classifier did not help in generating better responses. This

Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents

could be because the rather primitive, bag-of-words-based methods

we used to judge passages were incapable of adapting to the type of

passages found in ClueWeb-22B. Additionally, it could be because

this passage quality layer was not needed, and that BM25 was able

to adequately find good-quality passages on its own.

3.3 Limitations of Existing Solutions
Throughout the research and development of our solution, we dis-

covered several caveats to popular models, methods, and algorithms.

For instance, if any LLaMa model is given more than 2048 tokens

it will not be able to coherently respond and will often output gib-

berish (Table 3). With FastChat, we found that quantization had a

large impact on the quality of outputs (Table4), and that ordering

sentences based on relevance to user utterance greatly improved

passage summaries (Table 2). Quantization has been found to notice-

ably impact results [Zhu+23], but was necessary for preformance

reasons. Passages often contain a lot of information that isn’t rele-

vant to the user utterance. For instance, we found an article about

the best 10 natural diets, and the user was asking about one specific

diet that was included in that list, Without sentence ranking the

response would not adequately address the user utterance. Sentence

ranking allowed us to keep FastChat blind to the user utterance

in that it wouldn’t try to generate a response based on passage

summaries to it like we did with Llama in the first round of our

two-shot approach. Using Large Language Model outputs carry a

number of risks, such as hallucination, where they generate false

statements, and in our use case, would not be fully grounded in our

passage collection. We also found that ChatGPT and other such

chat-based LLMs were not able to adequately grasp whether or not

a given passage was relevant.

3.4 Discussion
Since TREC iKAT submissions are required to be ranked in order

of quality, we used several methods to evaluate a myriad of runs

to both select and rank our top three. We took several randomly

selected conversations/topics and evaluated each for several fac-

tors: Passage Quality, Passage Relevance, Summary Relevance, and

Conversationally. We ranked our two-shot solution above our one-

shot solution due to its ability to self-correct for a previous shot’s

misstep. For instance, if LLaMa asked a follow-up question to the

user utterance not asked in the canonical responses, then there

would be no relevant information to select passages for. The second

shot would give Llama another chance to correct itself, with the

added information from the less-than-relevant passages pushing

Llama to provide more information. Additionally, we decided to

submit a run without using the LR based passage quality classifier

as, due to the very basic nature of the TF-IDF term weighting, its

accuracy may have been limited when dealing with passages in the

gray area between relevant and junk/untrustable. As shown below,

our self-evaluated order of runs turned out to be the exact opposite

of how TREC rated each of them. This could be because we ordered

our runs in terms of complexity, in other words, always assuming

runs with more steps/layers would be better than simpler runs.

In order to determine how much impact our Generate-Retrieve-

Generate approach had on our scores, we conducted an almost iden-

tical run, with the only difference being the order of our retrieval

Table 2: FastChat-T5 Summary of ‘Large’ Wikipedia Snippets
(around 550 Tokens/2600 Characters)) asking about a small
detail in the passage.

Question [notes,
not given to LLM]

No Optimization With Optimiza-
tion

Which planets

have weather?

The inner Solar

System consists of

the terrestrial plan-

ets and the asteroid

belt, which are

composed mainly

of silicates and

metals.

Three of the four

inner planets

(Venus, Earth, and

Mars) have atmo-

spheres substantial

enough to generate

weather.

What was the origi-

nal planned cost for

the Macintosh clas-

sic?

The Macintosh

Classic was pro-

duced by Apple

in response to the

success of previous

Macintosh comput-

ers

The original Mac-

intosh plans called

for a system around

$1,000

What caused the

Boeing 737 Max 8

to crash?

The Boeing 737

MAX was certified

by the FAA in

2016 and has been

involved in two

crashes

The crashes of

the Lion Air and

Ethiopian Airlines

were attributed

to faulty aircraft

design and other

factors, including

maintenance and

flight crew actions.

Table 3: LLama2 13B-Chat Generating Gibberish

A: Tracebackership Tracebackhips
Tracebackteenagersees:2̆009eyampholderstandinggoingways

Table 4: Eight-Bit Quantization FastChat-T5 Summaries vs.
Full Quality Summaries of ‘Large’ Wikipedia Snippets

Question Type Quantized Full Quality
Generating Pas-

sage Summary

John J. DeGioia

is the president

of Georgetown

University, which

was founded in

2001 [incorrect]

John J. DeGioia

is the president

of Georgetown

University, which

he has led since

2001... [correct]

and generation. We would take our self-resolved user utterance

and find passages with BM25, then generate summaries from those

passages. As shown in Table 5, our Generate-Retrieve-Generate

Approach greatly outpaced a test run that used a Retrieve-Then-

Generate method. Our best run scored 280% higher than this run in

the Success 1 test, 300% higher in nDCG at 5, and 433% in nDCG at

cut 10. The average median scores for all submitted runs were also

higher than the scores of this test run, with the median having a 40%

Quinn Patwardhan and Grace Hui Yang

Table 5: Results of a Test Retrieve-Then-Generate Run

success_1 ndcg_cut_5 ndcg_cut_10
Retrieve-Then-

Generate Run

0.1477 0.0882 0.0618

Our Run 3 (our

best run)

0.5341 0.3233 0.3216

Median Aver-

ages

0.2074 0.123 0.1266

higher Success 1 score, a 50% higher score for nDCG at cut 5, and

a 100% higher score for nDCG at cut 10. Median scores outpacing

scores for this test could suggest that those using Retrieve-Then-

Generate-Run-Scores could have been using more advanced or

superior components for parts of their design than we were.

4 CONCLUSION
In conclusion, our solution to TREC-iKAT relied on human-generated

content for factual responses to avoid LLM hallucination and bias,

whilst still being highly conversational via a hard reliance on LLaMa

2 13B-Chat, a post-GPT 3.5 open-sourced LLM. We used a diverse

collection of several different Language Models, including BERT-

based sentence transformers for text classification and understand-

ing, and a Text-to-Text Transfer-based model for passage summa-

rization. We used a Generate-Retrieve-Generate approach, which

allowed us to combine the best aspects of traditional retrieval meth-

ods with those of generation-based methods. During the develop-

ment of our solution, we encountered several quirks and drawbacks

associated with common models and approaches, like Llama’s in-

ability to summarize and how much sentence optimization helps

improve FastChat summarization approaches. We also realized the

importance of using several different LLM architectures for multi-

faceted tasks. General purpose models, like ChatGPT, tended to

under preform purpose-built models for hyper-specific tasks like

sentence-similarity ranking and full-truth summerization. Addi-

tionally, we saw that traditional methods like BM25 can still out

preform much more advanced and modern methods.

Although our passage filtering and summary generationmethods

were rather complex, our reliance on standard and rather basic

algorithms such as BM25 for our passage retrieval and logistic for

our text classifier, left many areas for improvement. The scope of our

solution was limited by several factors, such as our hardware and

time. With better hardware, we could have used full-quality models

of LLaMa and FastChat-T5 without having unreasonable runtimes

and could have generated more runs and evaluated more potential

improvements within the time constraints of the competition.

ACKNOWLEDGEMENT
This research was supported by the Dehejia Fellows Internship

Program. Any opinions, findings, conclusions, or recommendations

expressed in this paper are of the authors and do not necessarily

reflect those of the sponsor.

REFERENCES
[SPA72] K. SPARCK JONES. “A STATISTICAL INTERPRETATION OF TERM

SPECIFICITY AND ITS APPLICATION IN RETRIEVAL”. In: Journal of
Documentation 28.1 (1972), pp. 11–21.

[XJC08] Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. “Retrieval Models for

Question andAnswer Archives”. In: Proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and development in information
retrieval. 2008.

[Wan+13] YiningWang et al.ATheoretical Analysis of NDCG Type RankingMeasures.
2013. arXiv: 1304.6480 [cs.LG].

[Che+17] Danqi Chen et al. Reading Wikipedia to Answer Open-Domain Questions.
2017. arXiv: 1704.00051 [cs.CL].

[Dev+19] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[IB19] Radu Tudor Ionescu and Andrei M. Butnaru. Vector of Locally-Aggregated
Word Embeddings (VLAWE): A Novel Document-level Representation. 2019.
arXiv: 1902.08850 [cs.CL].

[RG19a] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. 2019. arXiv: 1908.10084 [cs.CL].

[RG19b] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embed-

dings using Siamese BERT-Networks”. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Nov. 2019. url: http://arxiv.org/abs/1908.

10084.

[Raf+20] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. 2020. arXiv: 1910.10683 [cs.LG].

[Seo+20] Yeon Seonwoo et al. Context-Aware Answer Extraction in Question An-
swering. 2020. arXiv: 2011.02687 [cs.CL].

[Vij+20] Sairamvinay Vijayaraghavan et al. Fake News Detection with Different
Models. 2020. arXiv: 2003.04978 [cs.CL].

[ZW20] Hao Zhang and Jie Wang. An Unsupervised Semantic Sentence Ranking
Scheme for Text Documents. 2020. arXiv: 2005.02158 [cs.IR].

[Lin+21] Jimmy Lin et al. “Pyserini: A Python Toolkit for Reproducible Infor-

mation Retrieval Research with Sparse and Dense Representations”. In:

Proceedings of the 44th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2021). 2021,
pp. 2356–2362.

[Ros+21] Guilherme Moraes Rosa et al. Yes, BM25 is a Strong Baseline for Legal
Case Retrieval. 2021. arXiv: 2105.05686 [cs.IR].

[AZ22] Muideen Ajagbe and Liping Zhao. “Retraining a BERTModel for Transfer

Learning in Requirements Engineering: A Preliminary Study”. In: 2022
IEEE 30th International Requirements Engineering Conference (RE). 2022,
pp. 309–315. doi: 10.1109/RE54965.2022.00046.

[Ove+22] Arnold Overwijk et al. ClueWeb22: 10 Billion Web Documents with Visual
and Semantic Information. 2022. arXiv: 2211.15848 [cs.IR].

[Xio+22] Wenhan Xiong et al. Adapting Pretrained Text-to-Text Models for Long
Text Sequences. 2022. arXiv: 2209.10052 [cs.CL].

[Fer23] Emilio Ferrara. Should ChatGPT be Biased? Challenges and Risks of Bias
in Large Language Models. 2023. arXiv: 2304.03738 [cs.CY].

[Gao+23] Luyu Gao et al. RARR: Researching and Revising What Language Models
Say, Using Language Models. 2023. arXiv: 2210.08726 [cs.CL].

[HAC23] Siqing Huo, Negar Arabzadeh, and Charles L. A. Clarke. Retrieving Sup-
porting Evidence for LLMs Generated Answers. 2023. arXiv: 2306.13781
[cs.IR].

[Ma+23] Guangyuan Ma et al. Pre-training with Large Language Model-based
Document Expansion for Dense Passage Retrieval. 2023. arXiv: 2308.08285
[cs.IR].

[Tou+23] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat
Models. 2023. arXiv: 2307.09288 [cs.CL].

[Wan+23] Liya Wang et al. Adapting Sentence Transformers for the Aviation Domain.
2023. arXiv: 2305.09556 [cs.CL].

[Yu+23] Wenhao Yu et al. Generate rather than Retrieve: Large Language Models
are Strong Context Generators. 2023. arXiv: 2209.10063 [cs.CL].

[Zha+23] Yue Zhang et al. Siren’s Song in the AI Ocean: A Survey on Hallucination
in Large Language Models. 2023. arXiv: 2309.01219 [cs.CL].

[Zhe+23] Lianmin Zheng et al. Judging LLM-as-a-judge with MT-Bench and Chatbot
Arena. 2023. arXiv: 2306.05685 [cs.CL].

[Zhu+23] Xunyu Zhu et al. A Survey on Model Compression for Large Language
Models. 2023. arXiv: 2308.07633 [cs.CL].

[ZKS23] Guido Zuccon, Bevan Koopman, and Razia Shaik. ChatGPT Hallucinates
when Attributing Answers. 2023. arXiv: 2309.09401 [cs.AI].

[Ste] 2016 Stephen Merity et al. “Wikitext-103”. In: (). url: https://arxiv.org/

abs/1609.07843.

https://arxiv.org/abs/1304.6480
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1902.08850
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2011.02687
https://arxiv.org/abs/2003.04978
https://arxiv.org/abs/2005.02158
https://arxiv.org/abs/2105.05686
https://doi.org/10.1109/RE54965.2022.00046
https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2209.10052
https://arxiv.org/abs/2304.03738
https://arxiv.org/abs/2210.08726
https://arxiv.org/abs/2306.13781
https://arxiv.org/abs/2306.13781
https://arxiv.org/abs/2308.08285
https://arxiv.org/abs/2308.08285
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.09556
https://arxiv.org/abs/2209.10063
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/2309.09401
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

	1 Introduction
	2 Proposed Method
	2.1 Overall Architecture
	2.2 Components

	3 Experiments
	3.1 Submitted Runs
	3.2 TREC Evaluation
	3.3 Limitations of Existing Solutions
	3.4 Discussion

	4 Conclusion

