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Summary 
ISI’s submission to TREC’s 2023 NeuCLIR track is a system called SEARCHER II (Shared 
Embedding Architecture for Effective Retrieval). It is a two-stage system in which both stages 
are neural based. The first stage produces an initial ranking over the entire collection, while the 
second re-ranks the top 1000 candidates returned by the first stage. Rankings of both stages are 
combined to produce a final ranked list. The system operates on English queries and native 
language documents with no translations of either. 
 
Stage 1 Neural Network 
The core neural network of SEARCHER II’s first stage [Barry et al.] was developed under 
IARPA’s MATERIAL program. It is trained to predict the probability of an English query term 
appearing in a possible translation of a native-language sentence. More specifically, it attempts 
to match a contextualized embedding of a foreign word with the embedding of an English query 
word. A diagram of the network is shown below.  

 
Stage 1 Training 
For NeuCLIR, the network was trained on 2M parallel Chinese/English sentence pairs from 
publicly available sources (e.g., ParaCrawl, News Commentary). Also included in the training 
are bilingual dictionary entries, again from publicly available sources (e.g., PanLex, GeoNames). 
Training was done for 10 epochs on a single 2080ti gpu.  Training took roughly 4 days. The 
encoder was XLM-RoBERTa-base [Conneau et al.]. 
 
Stage 1 Ranking Function 
Stage 1’s ranking function follows a similar approach to PSQ [Darwish and Oard] where the 
BM25 algorithm is adapted to utilize probabilistic evidence and to enable cross-lingual retrieval. 



Specifically, we replace the core statistics of BM25 (term frequencies and document frequencies) 
with expected values derived from SEARCHER’s probability estimates: 
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Here,  
• 𝔼(𝑡𝑓(𝑒, 𝐷)) is the expected number of times an English word e appears in a translation of 

foreign-language document D. 
• 𝑝(𝑒|𝑆) is SEARCHER’s estimate of the probability of e occurring in a translation of a 

foreign-language sentence S. 
• 𝔼(𝑑𝑓(𝑒) is the expected number of documents whose translation contains e. 

 
Replacing BM25’s frequency statistics with these terms yields a ranking score for cross-lingual 
queries. 
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Where D is a foreign-language document; Q is an English query; |D| is the length of D (in 
words); avg_dl is the average document length for all documents in the collection; N is the 
number of documents in the collection; and k1 and b are the usual BM25 free parameters. 
 
Stage 1 Sparse Representation 
SEARCHER’s Stage 1 neural network encodes query terms using a simple embedding matrix, 
resulting in uncontextualized embeddings where the embedding for a query term depends only 
on itself and not any other terms in the query. This characteristic enables us to precompute a 
sparse representation for native language documents. More specifically, at indexing time, the 
probability of every English word in the vocabulary is evaluated (in parallel on a GPU) for each 
native language sentence and the results placed in an inverted index, e.g. {English term: 
(document_id, probability), …, (document_id, probability)}. Pruning eliminates very low 
probability terms, resulting in indexes containing 5-10 English terms for each native language 
term. 
 
Because indexes are constructed by comparing terms in a continuous embedding space, 
alternative translations and closely related terms are included. Taking an example from Swahili 
(one of the original MATERIAL languages), ‘kulipita gari jingine’ translates to ‘passing another 
car’. In this case, both car and vehicle are placed in the index with high probability, while more 
distantly related terms, e.g., SUV or truck, are also identified but assigned lower probabilities.  
 



Unlike query terms, document terms are contextualized, providing for differentiation between 
polysemous word senses. Taking another Swahili example, the term nyanya may alternatively 
mean grandmother or tomatoes, e.g., ‘babu na nyanya’ (grandfather and grandmother) or 
‘vitunguu na nyanya’ (onions and tomatoes). Because document embeddings depend on context, 
nyanya more closely matches grandmother in the former case and tomatoes in the latter case. 
 
The sparse inverted index constructed by Stage 1 thus includes multiple translations and related 
alternatives for each document term, as well as taking account of polysemous senses. 
 
Stage 2 Neural Network 
Neural approaches for IR frequently involve one of two architectures: bi-encoders or cross-
encoders. SEARCHER II takes an intermediate approach, aiming to derive advantages of each. 

• In bi-encoders, such as ColBERT [Khattab and Zaharia], queries and documents interact only 
after each is encoded. Because queries and documents are encoded independently of each 
other, document encoding can be performed at indexing time, enabling queries to be 
processed relatively quickly.  

• In cross-encoders, queries and documents are jointly encoded and interact at every 
transformer layer. Thus, documents can be encoded only after the query is known, resulting 
in slower query processing. However, the greater number of interactions between documents 
and queries can result in better IR accuracy. 

• In SEARCHER II, each layer of the query encoder interacts with the document’s 
representation, as in cross-encoders. However, interactions are limited to only the top layer of 
the document encoder. Thus, like bi-encoders, documents can be pre-encoded at indexing 
time.  

 

 
 
Because queries are typically much shorter than documents, and because transformers have 
quadratic time complexity, the time required to process each query is significantly less than for a 
cross-encoder. For example, given a 250-word document and an 8-word query, a cross-encoder’s 
query time complexity is (250 + 8)2, whereas for SEARCHER II it is 250 * 82, or approximately 
one fourth the time. 
 
SEARCHER II was inspired by the encoder-decoder architecture used for machine translation 
and similar tasks. Our implementation is based on mT5 [Xue et al.] where documents are 



presented to mT5’s encoder and queries are presented to its decoder. The model is trained on a 
forced-choice task of predicting one of two values for the final token (either yes or no, indicating 
relevant or irrelevant). The loss function is pointwise cross entropy. Other than a custom loss 
function, we did not modify mT5. The decoder’s causal mask was left in place, limiting query 
attention only to previous, not subsequent, tokens. 

 
Stage 2 Training 
We initially attempted to simply train mT5 on MSMARCO triples [Bajaj et al.] where the 
passages were translated into Chinese by Google Translate [Bonifacio et al.] and the queries left 
in English. However, results were disappointing; learning was slow and uneven, and the model 
reached only a moderate level of accuracy. Instead, we found a three-step training strategy to be 
more effective. 
• We first pretrained the model to learn the correspondence between Chinese and English. To 

do so, we trained mT5-large to an MT objective on four million parallel Chinese/English 
sentences from publicly available sources (a superset of the data used to train the Stage 1 
model). Training required approximately four days on a single node with four RTX-8000 
GPUs. 

• Next, we trained the model to learn (monolingual) information retrieval. In this step, we 
continued training the model for a single epoch on one million MSMARCO English triples to 
a pointwise IR objective. This step required around one day using four RTX-8000 GPUs on a 
single node. 

• Finally, we fine-tuned the model to perform Chinese-English CLIR. Here, we trained on only 
84,000 translated MSMARCO triples (English queries, Chinese passages). This step required 
around two hours, again on four RTX-8000 GPUs in a single node. We found that fine tuning 
on the CLIR task for any longer degraded accuracy. 

 
Final Ranking and Results 
Both Stage 1 and Stage 2 contribute usefully to the CLIR task. Because it is not restricted to 
training on MSMARCO (or another IR collection), the Stage 1 model can incorporate broader 
lexical coverage. Meanwhile, by training on MSMARCO, the Stage 2 model learns broader 
semantic associations useful for IR. We combine rankings of the two stages using reciprocal rank 
fusion [Cormack et al.]. Results on TREC’s 2023 Chinese NeuCLIR task are shown below. 
 

Recall@100 0.749556 
Recall@1000 0.897792 
nDCG@20 0.492215 
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