
LLM-based Retrieval and Generation Pipelines for TREC
Interactive Knowledge Assistance Track (iKAT) 2023

Zahra Abbasiantaeb
University of Amsterdam

Amsterdam, The Netherlands

Chuan Meng
University of Amsterdam

Amsterdam, The Netherlands
c.meng@uva.nl

David Rau
University of Amsterdam

Amsterdam, The Netherlands

Antonis Krasakis
University of Amsterdam

Amsterdam, The Netherlands

Hossein A. Rahmani
University College London
London, United Kingdom

Mohammad Aliannejadi
University of Amsterdam

Amsterdam, The Netherlands

ABSTRACT
The interactive Knowledge Assistant Track (iKAT) aims to develop
personalized conversational assistants. In this task, the persona of
the user is provided to the system before the conversation. iKAT
consists of three main tasks including, Personal Textual Knowledge
Base (PTKB) statement ranking, passage ranking, and response
generation. We proposed two different pipelines to approach the
task, namely, retrieve-then-generate and generate-then-retrieve. We
submitted three runs based on the retrieve-then-generate pipeline
using the Llama model and one run based on the generate-then-
retrieve pipeline. The automatic run based on generate-then-retrieve
pipeline outperformed the other automatic runs in the passage
ranking task. This run achieved comparable results to the manual
run based on the retrieve-then-generate pipeline. For the PTKB state-
ment ranking task, we proposed two approaches including ranking
PTKB statements using (MiniLM12) model and using the GPT-4
model as a zero-shot learner for classifying the PTKB statements as
relevant or non-relevant. The ranking approach using (MiniLM12)
model achieved better performance than the classification model
approach.

1 INTRODUCTION
The TREC interactive Knowledge Assistant Track (iKAT) focuses on
the task of personalized retrieval and answer generation, through
conversational interfaces. The central objective of the iKAT com-
petition is to design and develop interactive knowledge assistants
capable of engaging users in dynamic and personalized dialogues,
offering them comprehensive and contextually relevant informa-
tion. Consider a user enquiring a conversational assistant for a
complex information need, such as helping him/her decide on a
Masters’ degree. To tackle such complex information needs, assis-
tants need to have access to personal information and preferences,
conversational capabilities for elicitating and conveying informa-
tion from/to the user as well as retrieval capabilities that would
allow them to access and integrate relevant information from vari-
ous sources.

This task expands upon the previous Conversational Assistant
Tracks (CAsT) [3] in a number of ways. While both tracks require

TREC’22, November 2022, Virtual
© 2024 Copyright held by the author(s).

contextual information to answer the user’s information need suc-
cessfully, CAsT mostly requires context that originated from the
conversation. iKAT adds a user personalization component to it,
linking conversations to specific personas that embody certain char-
acteristics or preferences (e.g., vegan; dietary preferences). Hence,
the same user question should be answered differently depending
on the personal information of the user. This is achieved by pro-
viding a Personal Textual Knowledge Base (PTKB), which defines
various characteristics or preferences of a certain user (in Natu-
ral Language text). Based on that, the conversational agent has
to retrieve personalized relevant information and answer the user
question. In practice, that leads to different conversation trajectories
that originate from the same question and evolve differently.

In addition to that, iKAT also allows for mixed-initiative interac-
tions, such as the agent asking for a clarification question to the
user.

Since a personalized assistant requires multiple reasoning, re-
trieval and language capabilities, the entire task of personalised
retrieval and answer generation is broken down tomultiple subtasks
to allow for easier evaluation and understanding of the systems.
Those are: (i) PTKB Provenance, (ii) Passage Provenance and (iii)
Response Generation (explained further in Section 2)

Each topic includes several conversations of different users with
different personas. The training topics consist of 11 conversations
ranging over 8 topics, while the test topics contain 25 conversa-
tions over 13 topics. For the passage retrieval task, we rely on a
document collection consisting of a subset of ClueWeb22-B, which
was provided by the competition organizers.

We envision a pipeline approach, utilizing Large Language Mod-
els (LLM) and Information Retrieval (IR) systems to tackle the in-
dividual sub-tasks and provide grounded responses to the users’
information needs (Section 3).

This paper is structured as follows: First, in §2we give an overview
of the iKAT tasks. In §3, we present our proposed approaches re-
trieve then generate and generate then retrieve in sub-sections. Next,
in §4 detail our experimental setup. In §5 we present our results
and discuss them. Finally, in §6 we conclude this work.

2 TASKS
This year iKAT provided current user’s information needs, conversa-
tion history, and Personal Text Knowledge Base (PTKB) as the input

TREC’22, November 2022, Virtual Abbasiantaeb. et al

at each conversation turn to the participants and offered three
different tasks according to these inputs, including:

(1) PTKB Statement Ranking: is a relevance score prediction
task to determine the relevant statements from PTKB in each
turn. The output of this task is a sorted list of the statements
from PTKB with the relevance scores.

(2) Passage Ranking: aims to retrieve and rank the relevant pas-
sages from the given collection (i.e., user utterance, context, and
PTKB) in response to a user statement.

(3) Response Generation: offers a set of text responses at each
turn that can either be direct passages from the collection or gen-
erated summaries based on one or more passages. All responses
must include at least one passage, referred to as “provenance”,
from the source collection.

3 METHODOLOGY
As previously outlined in Section 2, iKAT comprises three succes-
sive sub-tasks, with each sub-task functioning as a component in a
pipeline. The components generate the input for the subsequent
component. Consequently, the final answer is generated by aggre-
gating the information from different components of the pipeline.
For instance, PTKBs contain general background information about
the user which may or may not be helpful to enrich the user utter-
ance for passage (re-)ranking. To this end, first selecting relevant
PTKBs can in the next step inform which passages are specifically
relevant to the user and should be taken into account when gener-
ating the final response.

To solve the task, we have proposed two different pipelines
namely Retrieve-then-Generate (RtG) and Generate-then-Retrieve
(GtR); see Figure 1. Both pipelines employ generative LLMs to
generate intermediate results where possible. In the first pipeline
(retrieve-then-generate), we experiment with the trainable LLM
(Llama 7B Chat), whereas for (generate-then-retrieve) we solely rely
on the static GTP-4 API. We will explain each of these pipelines in
the following.

3.1 Retrieve then Generate (RtG)
In our proposed retrieve-then-generate pipeline, we first aggregate
relevant information through query rewriting, PTKB ranking, pas-
sage (re-)ranking, and finally use this information to generate a
response. In more detail, first, the LLM is prompted to rewrite the
user utterance given the current user utterance, the previous re-
sponse of the system, and all previous user utterances. As a result,
the rewritten query is representative of user information needs.

Next, the rewritten user utterance is used to obtain the most
relevant PTKB statements. Selecting only relevant PTKB statements
can be useful, as some PTKB statements can be unrelated to the
user utterance. As a next step, the enriched user utterance and the
selected PTKB statements are used to retrieve relevant passages in
a multi-stage ranking. Finally, the rewritten query, relevant PTKB
statements, and retrieved passages are used to generate the response
to the user utterance.

We use Llama-7b-chat for all generation sub-tasks in this pipeline.

(1) Query Rewriting (Llama-7b-chat):
We prompt the LLM to generate a self-contained rewritten

Table 1: Retrieve then Generate pipeline LLM Instruction
prompts for Query Rewriting and Response Generation with
Llama 7B chat.

Query Rewriting:

Instruction:
Rewrite the User Question to be self-contained, resolving references
to the Conversational Context of all previous user questions and
responses into account. Keep edits minimal.

Conversational Context:
{previous user utterance: 𝑢1 }
{previous user utterance: . . . }
{previous user utterance: 𝑢𝑡−1}
{response: last system response (𝑟𝑡−1)}

User Question:
{current user utterance (𝑢𝑡)}

Rewritten User Question:

Response Generation:

Instruction:
Generate a Response to the Question. The answer should be in-
formed by the User Background Information and be based on the
Knowledge Base. Resolve references in the response.

User Background Information:
{PTKB statementtop−1}
{PTKB statementtop−2}
{PTKB statementtop−3}

Knowledge Base:
{Passagetop−1}
{Passagetop−2}
{Passagetop−3}

Question:
{rewritten user utterance (𝑢′𝑡)}

Response:

query 𝑢′𝑡given the current user utterance 𝑢𝑡 , the system re-
sponse 𝑟𝑡−1at the previous turn, and all previous user utter-
ances {𝑢1, . . . , 𝑢𝑡−1}. The prompt used in this step is shown in
Table 1.

(2) PTKB Statement Ranking (MiniLM12):
In this step, we rank all PTKB statements using the rewritten
user utterance 𝑢′𝑡as a query. We sort the PTKB statements ac-
cording to a relevance score given by the neural ranking model.
We empirically choose a cut-off threshold of 3, meaning we
regard the top 3 PTKB statements as relevant and only select
those for the next steps. The relevant PTKB statements for turn
𝑡 are denoted as 𝑆𝑡 which includes a subset of PTKB statements.

LLM-based Retrieval and Generation Pipelines for TREC iKAT 2023 TREC’22, November 2022, Virtual

Query
Rewriting

PTKB
Provenance
 Selection

Passage
ranking & re-

ranking

Answer
Generation

Initial
Answer

Generation

Query
Generation

PTKB
Provenance
 Selection

Generate-then-Retrieve

Retrieve-then-Generate

Answer
Generation

Passage
ranking & re-

ranking

Figure 1: Overview of our two proposed pipelines including the Retrieve-then-Generate (RtG) and Generate-then-Retrieve
(GtR).

(3) Passage Retrieval (BM25):
We use the rewritten user utterance 𝑢′𝑡as a query (𝑞𝑖) to rank
all passages (𝐷). Additionally, we expand the query with the
selected PTKB statements from the previous step. The out-
put of retrieval for each of the queries (𝑞𝑖) is represented as
{𝑝 (𝑖)1 , ..., 𝑝

(𝑖)
𝑛 }. Top 100 passages for each query (𝑛 = 100) are

selected and passed to the re-ranker.
(4) Passage Re-Ranking (MiniLM12):

We re-rank the top 100 passages from BM25 using a state-of-
the-art passage ranker to obtain a higher quality ranking. For
this, we again expand the rewritten user utterance 𝑢′𝑡with the
selected PTKB statements as a query. We sort the passages ac-
cording to a relevance score given by the neural ranking model
and similarly to the PTKB selection chose a cut-off threshold
level of 3. The sorted list of relevant passages for turn 𝑡 are
represented as 𝑃𝑡 .

(5) Response Generation (Llama-7b-chat):
We prompt the LLM to generate the final response 𝑟𝑡given the
generated rewritten query 𝑢′𝑡 , top-3 selected PTKB statements,
and the top-3 selected passages from the previous steps. The
prompt used in this step is shown in Table 1.

We report a Manual and Automatic run, where the Automatic
run uses outputs of previous steps in the pipeline as previously de-
scribed. The Manual run considers the ground truth where possible

e.g., for (2) PTKB selection the resolved utterance is used instead
of the rewritten user utterance 𝑢′𝑡 .

Note that for the steps (1) Query Rewriting and (2) Response
Generation, we consider using the LLM zero-shot, and fine-tuned.
As training data, we use the available ground truth resolved utter-
ances, selected PTKB statements, and selected relevant passages
from the train dataset.

3.2 Generate then Retrieve (GtR)
In this approach, the LLM is asked to generate an initial answer to
the user utterance given the context of the conversation denoted
as 𝑐𝑡 = {(𝑢𝑡−1, 𝑟𝑡−1), ..., (𝑢1, 𝑟1)} and the PTKB of the user. The
LLM will generate the answer by doing reasoning over the context
and PTKB of the user but the generated answer is not grounded
to the documents within the collection. In the next step, the LLM
is prompted to generate a set of 5 queries to achieve this answer.
These generated queries are then passed to the first-stage retrieval
model and re-ranker to retrieve and sort the relevant passages from
collection. Each of the queries is passed to the first-stage retrieval
and re-ranker resulting in a sorted list of 1000 passages for each
query. The output of the re-ranker for each of the queries is inter-
leaved to form a list of top 1000 relevant documents. To generate
the final answer to the user utterance, top 2 passages for each query
are passed to the LLM and the LLM is prompted to generate the
answer based on the given passages, considering the context of
the conversation and the PTKB of the user. To identify the PTKB

TREC’22, November 2022, Virtual Abbasiantaeb. et al

Table 2: Experimental results on the official evaluation set. Bold indicates the best results and italic shows the best results
between Automatic runs.

Run Pipeline Submission nDCG@3 nDCG@5 nDCG P@20 Recall@20 mAP

Llama zero-shot RtG Automatic 0.1494 0.1437 0.0815 0.1165 0.0507 0.0387
Llama fine-tuned RtG Automatic 0.0826 0.0816 0.0457 0.0684 0.0301 0.0202
GPT-4 GtR Automatic 0.4382 0.4396 0.3479 0.3444 0.1821 0.1759
Llama fine-tuned RtsG Manual 0.4122 0.4264 0.3245 0.3530 0.2063 0.1911

provenance statements, the LLM is prompted to select the relevant
statements given the context of the conversation, current user ut-
terance, and the PTKB. This task is solved as a binary classification
problem. The statements identified as relevant are assigned the
same score of relevance and non-relevant statements are assigned
a zero score.

(1) Initial Answer Generation (GPT-4):
The LLM is prompted to generate an initial answer (𝑎′𝑡) to the
user utterance (𝑢𝑡). The prompt includes instructions for gener-
ating the answer, the context of the conversation (𝑐𝑡) and the
PTKB of the user (PTKB).

(2) Query Generation (GPT-4):
After generating the initial answer (𝑎′𝑡) by LLM in the previous
step, the LLM is prompted in the same conversation to generate
the required queries for retrieving the 𝑎′𝑡 from 𝐷 . In the prompt
the model is asked to generate a maximum of 5 queries. The
output of this step is a set of queries called {𝑞0, ..., 𝑞𝑚} where
𝑚 < 5.

(3) PTKB statement ranking (GPT-4):
This task is approached as a binary classification problem. The
LLM is given the instruction for selecting the relevant state-
ments from PTKB to the current user utterance. The prompt
includes the instruction, context of the conversation (𝑐𝑡), PTKB
of the user (PTKB), and current user utterance (𝑢𝑡). The output
of LLM is a list of relevant statements from PTKB shown as
{𝑠𝑖 }.

(4) Passage Retrieval (BM25):
Each of the generated queries (𝑞𝑖) are passed to the BM25 ranker
model. The output of retrieval for each of the queries (𝑞𝑖) is
represented as {𝑝 (𝑖)1 , ..., 𝑝

(𝑖)
𝑛 }. The top 200 passages for each

query (𝑛 = 200) are selected and passed to the re-ranker.
(5) Passage Re-ranking (MiniLM12):

The first 200 passages retrieved for each query (𝑞𝑖) are re-ranked
using the pre-trained MiniLM12 model. The passage prove-
nance is formed by interleaving the list of passages for each
query and eliminating the duplicates from the list. Given 𝑚

queries and 𝑚 sorted list of passages like {𝑝 (𝑖)1 , ..., 𝑝
(𝑖)
𝑛 } for

each query, the final passage provenance list is formed as 𝑃𝑡 =
{𝑝 (1)1 , ..., 𝑝

(𝑚)
1 , 𝑝

(𝑖)
2 , ..., 𝑝

(𝑚)
2 , ..., 𝑝

(1)
𝑛 , ..., 𝑝

(𝑚)
𝑛 }. The duplicate pas-

sages are removed from the passage provenance.
(6) Response Generation (GPT-4):

The LLM is prompted to generate the answer to the user utter-
ance from the top 10 passages. The prompt includes the instruc-
tion for generating the answer, the top 10 retrieved passages,
persona of the user (PTKB), the context of the conversation (𝑐𝑡),

and the user utterance (𝑢𝑡). The LLM generates the answer 𝑎𝑡
to the user utterance (𝑢𝑡).

4 EXPERIMENTAL SETUP
In this section, we detail the implementation details of the employed
models.
(1) BM25 Retriever: As a first-stage retriever, we employ BM25

(default parameters) using Pyserini [2].
(2) NeuralRe-Ranker:As a neural re-rankerwe use theMiniLM121

as a zero-shot ranker with max. input length 512.
(3) Llama LLM: For our proposed retrieve-then-generate pipeline,

we consider LLaMA [4] (Llama-2-7b-chat) as our LLM; specifi-
cally, we use Llama-2-7b-chat.2 We consider LLaMA in a zero-
shot or fine-tuned setting. For fine-tuning LLaMA, we use
QLora [1] instead of updating the entire model. As for hyper-
parameters of fine-tuning, we use a learning rate of 1e-4, set
LoRA r as 64, set LoRA alpha as 16, set LoRA dropout as 0.1, set
the batch size as 128, inject adapter layers to all linear layers,
and train these adapter layers for 100 steps. For faster training
and inference, we always use 4-bit quantization, half-precision.
For generation, we set a maximum generation length of 128.

(4) GPT-4 LLM: The GPT-4 API3 is used for the generate-then-
retrieve pipeline.

5 RESULTS AND DISCUSSION
5.1 Overall performance
In this section, we discuss the official evaluation results of our four
submitted runs. Table 2 shows the performances of our runs on
different evaluation metrics. Bold indicates the best results of all
runs and italic represents the best results between the Automatic
submissions. As we can see from Table 2, as we expected, the llama-
fine-tuned (Manual) run achieves the best performance among
all models and by a large margin compared to llama-zero-shot
and llama-fine-tuned (Automatic). Nevertheless, it is evident
that GPT-4 significantly outperforms the Automatic runs, approach-
ing performance levels similar to llama-fine-tuned (Manual).
This indicates the ability of GPT-4 for unseen tasks where it was
highly effective in identifying the appropriate PTKB statements and
generating efficient queries. Interestingly, comparing llama-zero-
shot and llama-fine-tuned on Automatic submissions shows that
llama-zero-shot outperforms llama-fine-tuned on all evalua-
tion metrics. In preliminary experiments with Llama, we found
ending the prompt instruction with a specific instruction such as

1https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://chat.openai.com/

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://chat.openai.com/

LLM-based Retrieval and Generation Pipelines for TREC iKAT 2023 TREC’22, November 2022, Virtual

Table 3: Generate then Retrieve pipeline LLM Instruction
prompts for (1) Initial Answer Generation, (2) Query Genera-
tion, and (3) Response Generation using GPT-4.

(1) Initial Answer Generation and (2) Query Generation.

Instruction:
I will give you a conversation between a user and a system. Also,
I will give you some background information about the user. You
should answer the last utterance of the user. Please remember that
your answer to the last question of the user shouldn’t be more than
200 words.

Background information about the user:
PTKB statements

Conversation:
(𝑢1, 𝑟1), ..., (𝑢𝑡−1, 𝑟𝑡−1), (𝑢𝑡)

Response: ...

Can you generate the unique queries that can be used for
retrieving your previous answer to the user? (Please write each
query in one line and don’t generate more than 5 queries)

Queries: ...

(3) Response Generation:

Document 1: ...
....
Document 10: ...

Instruction:
I will give you a conversation between a user and a system. Also,
I will give you some background information about the user. You
should answer the last utterance of the user by providing a sum-
mary of the relevant parts of the given documents. Please remember
that your answer shouldn’t be more than 200 words.

Background information about the user:
PTKB statements

Conversation:
(𝑢1, 𝑟1), ..., (𝑢𝑡−1, 𝑟𝑡−1), (𝑢𝑡)

Response: ...

“Rewritten User Question:" to be important. We found that ending
the instruction prompt with “Answer:" would misguide the model
to directly answering the user utterance ignoring the provided con-
text. Further, we observed that using more descriptive terms such as
“Background Information", and "User Question" yields better results.
Table 4 also shows the performance on PTKB selection. For PTKB
selection we used two different models, Sentence Transformer

Table 4: Experimental results on the PTKB selection. Bold
indicates the best results.
Run nDCG@5 P@5 Recall@5 mAP

Sentence Transformer 0.7645 0.3592 0.8320 0.7448
GPT-4 0.6524 0.2522 0.6608 0.5799

1 2 3 4 5 6 7 8 9 10
Turn

0.1

0.2

0.3

0.4

nD
CG

llama-zero-shot
llama-fine-tuned
llama-fine-tuned-manual
GPT-4

(a) Results per turn

0 1 2 3 4 5 6 7 8 9 10 11 12
Topic

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

nD
CG

llama-zero-shot
llama-fine-tuned
llama-fine-tuned-manual
GPT-4

(b) Results per Topic.
Figure 2: Results per conversations and topics

and GPT-4, as one can see, Sentence Transformer achieved better
performance in selecting more relevant PTKB than GPT-4.

5.2 Performance per conversation and topic
Figure 2 shows the performance of our runs averaged per conversa-
tions and topics in terms of nDCG. Both plots show that GPT-4 and
llama-fine-tuned (Manual) achieve significant performance on
all conversations and topics. llama-fine-tuned (Manual) uses
the manually annotated data of the resolved utterances and PTKB
provenance statements, therefore, it was expected to show a high
and robust performance. Interestingly, GPT-4 has shown a very
comparable performance for each conversation and topic with the
llama-fine-tuned (Manual) even though it is an automatic run
without any manually annotated data. However, we observe a grad-
ual decrease in performance towards later conversations and topics
(e.g., conversation 19 in Figure 2a and topic 10 in Figure 2b) which
need further investigation).

TREC’22, November 2022, Virtual Abbasiantaeb. et al

6 CONCLUSION
In this paper, we describe our submissions in TREC iKAT 2023. We
proposed two different pipeline methodologies to tackle the iKAT
tasks, namely, Retrieve-then-Generate and Generate-then-Retrieve.
Using Llama as zero-shot learner performed better than fine-tuning
the Llama for the task. The GPT-4 model was used in the GtR
pipeline. Using GPT-4 in and the GtR pipeline outperformed the
other manual runs, achieving a comparable result to the Automatic
run. In addition, using neural rankingmodel for the PTKB statement
ranking task performed better than using GPT-4 for classifying the
PTKB statements as relevant or non-relevant.

REFERENCES
[1] Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: Efficient finetuning

of quantized llms. arXiv preprint arXiv:2305.14314 (2023)
[2] Lin, J., Ma, X., Lin, S.C., Yang, J.H., Pradeep, R., Nogueira, R.: Pyserini: A Python

toolkit for reproducible information retrieval research with sparse and dense
representations. In: Proceedings of the 44th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2021).
pp. 2356–2362 (2021)

[3] Owoicho, P., Dalton, J., Aliannejadi, M., Azzopardi, L., Trippas, J.R., Vakulenko,
S.: Trec cast 2022: going beyond user ask and system retrieve with initiative and
response generation. In: Text REtrieval Conference Conference (2022)

[4] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., et al.: Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288 (2023)

	1 Introduction
	2 Tasks
	3 Methodology
	3.1 Retrieve then Generate (RtG)
	3.2 Generate then Retrieve (GtR)

	4 Experimental setup
	5 Results and Discussion
	5.1 Overall performance
	5.2 Performance per conversation and topic

	6 Conclusion
	References

