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Abstract

Extracting informative content from different sources of data like social media and news web-
sites and summarizing it is critical for disaster response agencies during crises. This paper describes
our proposed system to extract and rank facts from online data sources for summarizing crisis-
related events in the TREC 2023 CrisisFACTS track. First, our system leverages established
methods such as REBEL or ClausIE to extract relevant facts from the input data stream. Then,
since the summary should reflect the information needed by the response agencies, our system
filters the extracted facts using an extended set of indicative terms used by those agencies. We
then employ an integrated content-graph analysis to capture the similarity of facts to each other,
facts to queries, and facts to indicative terms to score the importance of extracted facts. We eval-
uate and compare the performance of our proposed system by utilizing two extractive methods to
extract facts from the multi-stream data and score them for summarizing the crisis-related events.

Keywords— Fact Extraction, Stream Processing, Disaster Management, Disaster Response

1 Introduction

Finding the relevant information to support disaster response efforts is a crucial challenge during times of
crises [12]. Conventional information retrieval methods can be employed but sifting through vast amounts of
unstructured data from various sources, including social media streams, remains a significant challenge. Recent
works on summarization can help analyze textual content from articles of a given domain such as news, but
they do not work well with social media text, which often has noisy content [11]. Another major challenge in
information retrieval is to identify the important facts from the given stream of social media data. Matching the
posts related to a user query is important; however, the resulting facts/summaries may not be that important
in the context of disaster management. It is meaningful to identify heuristics that make a given summary/fact
statement important or not in order to cater to the needs of the disaster management experts.

This work focuses on the extraction and retrieval of facts that serve the information needs of disaster
response agencies, by processing a stream of documents from multiple online sources (e.g., Twitter, Reddit,
Facebook, and online news sources). Our proposed system based on an integrated content-graph analysis has
the ability to extract, rank, and query critical facts from a stream of crisis-related data. To accomplish this, first,
we employ two methods from recent literature [3, 4]: pretrained seq2seq networks and dependency parsing.
These methods extract facts from the input stream of text, which are then filtered using specific keywords
derived from example queries. Finally, we use a graph-based representation of the facts and predefined queries
and indicative terms to measure centrality and determine the importance of each fact in the stream.

In this paper, we will describe the details of our proposed system, the method of integrated content-graph
analysis, and the results obtained by those methods on the datasets provided by the CrisisFACTS challenge.

2 Challenge Description

The CrisisFACTS challenge aims to address the requirement, for real-time fact-finding and summarization
during disaster response situations [1]. It is an effort with TREC aiming to advance research and enhance
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disaster management capabilities by utilizing state-of-the-art machine learning and natural language processing
techniques. In this challenge participants receive datasets from sources such as Twitter, Reddit, Facebook and
online news platforms gathered through the NELA News Collection. These datasets are complemented with
queries (user profiles) that outline the information needs of stakeholders involved in disaster response extracted
from FEMA ICS 209 forms. Participants are assigned with the task of developing systems that can effectively
integrate these data sources into fact lists. These facts can then be compiled into summaries. The objective
of this challenge is to push the boundaries of real-time fact-finding and summarization. The evaluation of
participant runs involves comparing the comprehensiveness and redundancy ratio of their submitted facts
against gold-standard facts constructed by NIST (National Institute of Standards and Technology) assessors.
The assessment of comprehensiveness and redundancy ratio will be made using a fact-matching function and
evaluated through various metrics, such as ROUGE-x and BERTScore. The winning solution is selected
based on its ability to accurately predict future crisis events, consistently generate accurate and relevant fact
lists and summaries, and demonstrate its ability to adapt to new information sources and data distributions.
Additionally, the solution needs to be scalable, secure, and user-friendly. In both approaches, participant
systems’ lists of facts are truncated to a private k value based on NIST assessors’ results.

3 Proposed System using Integrated Content-Graph Analysis

In this section, we present the architecture of our proposed system for extracting and prioritizing facts from
the stream of data. Figure 1 depicts the overall architecture of our system and its different modules. In
this design, for each day of an event, the system receives the stream of data from different sources including,
Twitter, Reddit, Facebook, and news, in addition to the list of queries, and generates a list of facts and their
importance scores.
Our system extracts the facts through four modules: In the first step, the streams are analyzed by Text to
Fact module and for each stream record a fact is extracted. At the same time, the Query Extender module
enlarges the list of queries by extending the indicative terms for each query. This helps the system to filter the
extracted facts based on a broader list of indicative terms that leads to finding more relevant facts. After that,
the Filtering module analyzes the extracted facts and filters them by using the extended indicative terms.
This module outputs a filtered list of facts and their relevancy score to each indicative term. Finally, these
filtered facts are passed to the Scoring module to be ranked based on their importance for generating the
summary of the event-day report. In this module, a graph containing the extracted facts, extended indicative
terms, and queries are created and a graph analysis technique is used to calculate the importance of each fact
based on its similarity to other facts and its relevancy to queries and indicative terms. The implementation
details of the modules are presented in the following sections.

Figure 1: System Design

3.1 Text to Fact

In this section, we will discuss about the approach used to convert the input text from social media into facts.
We used two methods to convert the input sentences to fact format. The input for this module will be a text
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Query Indicative Terms Extended Indicative Terms
What regions have announced a
state of emergency

state of emergency announced state emergency

Where are emergency services
deployed

service teams emergency
services

emergency services deployed

What hazardous chemicals or
materials are involved

fuel hazard waste infec-
tious chemical

hazardous chemicals materials

Table 1: Query extender using KeyBERT.

document and the output will be a set of free-text facts.
Method A: The first method we utilized to convert the input text to facts is called REBEL 1 [3]. This

method uses an autoregressive seq2seq model to generate triplets as a sequence of text. The REBEL method
is based on Encoder-Decoder Transformer (BART) and performs end-to-end relation extraction for more than
200 different relation types.

Method B: In our second method we utilized an implementation [4] of ClausIE (Clause-Based Open Infor-
mation Extraction) [5]. ClausIE extracts clauses from an input sentence by relying on dependency parsing and
a small collection of domain-independent lexica.

3.2 Query Extender

The Query Extender module of the proposed system is based on keyword extraction using the KeyBERT
method [8]. Keyword extraction is a crucial task in document analysis in terms of information retrieval.
Indicative terms can be considered a set of keywords or phrases that provide valuable insight about the event.
The extension of indicative terms provides a broader area with more relevant information. There are several
methods to extract keywords or phrases from documents but KeyBERT shows better results compared to
traditional methods [9]. Table 1 shows a few examples of queries, indicative terms, and extended indicative
terms using keyBERT. These examples demonstrate how the query extender method targets more relevant
facts based on the extension.

3.3 Filtering

The stream of data can be noisy, so all facts that are extracted by Text to Fact module would not be relevant
to the event. Therefore, once the facts have been extracted, they are filtered by Filtering module to generate
the list of facts which are informative for generating the summary of the event. Since the filtered facts should
represent the information needs of disaster response agencies, we exploit the indicative terms from the user
profiles list extended by Query Extender module.
To achieve this goal, in the first step, the Filtering module creates an indexer to index the streams of data for
an event-day based on the extracted facts. Then, the module leverages the indexer to retrieve the facts which
are relevant to the extended indicative terms. It should be considered that each fact can be relevant to more
than one indicative term. Therefore, we query the indexer with every indicative term and the indexer returns
a list of facts and their relevancy scores to that indicative term. For each indicative term, we select the top K
more relevant facts and concatenate them to generate the list of filtered facts for the event-day.

3.4 Scoring

The list of facts filtered by Filtering module is relevant to the event, but we still need to rank them based on
their importance for summarizing the event-day. Although the Filtering module provides the relevancy scores
of each fact to the indicative terms, these scores are not the only indicators of the fact’s importance. Thus,
in our system, the Scoring module is responsible for calculating the importance of each fact based on a graph
analysis method by taking diverse importance factors into account. This module calculates the importance
score of the facts in two steps as described next: Create Graph and Calculate Centrality Measure.

3.4.1 Graph Construction

The first step in analyzing the importance of the facts is specifying the factors that can represent the importance
of the fact. Here, we use the following three factors:

1https://huggingface.co/Babelscape/rebel-large
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• The similarity of facts to each other: In our system, facts are extracted independently from doc-
uments from different sources of data such as news, Twitter, Facebook, or Reddit. During crises, when
an important event happens, it is most likely to be discussed on different platforms. Additionally, it is
probable that some topics such as requesting for help or reporting rescue efforts are expressed several
times. Therefore, if a fact is more similar to other facts (by considering that the facts have been filtered
to be relevant to the event), it can indicate that this fact is likely conveying an important fact that has
been discussed several times.

• Relevancy of facts to indicate terms: As we discussed in the previous section, the Filtering module
outputs a list of relevant facts as well as their relevancy scores to the indicative terms. Since the indicative
terms are extracted and extended from the information needs of disaster response agencies, if a fact has
a higher relevancy score to an indicative term, that fact is likely a more important fact to be reported.
Additionally, if a fact is relevant to more than one indicative term, this can also reveal the importance
of that fact. Therefore, the relevancy score reported by the Filtering module in addition to the number
of times a fact retrieved by the Filtering module (due to being relevant to several indicative terms) can
be the factors that imply the importance of the fact.

• The similarity of facts to user profile queries: Although indicative terms have been extracted from
user profile queries, they may not convey the whole context of the query. So, to find out how much a
fact is aligned with the queries, we calculate the similarity of the fact with the queries and take it into
account in the graph analysis method. This means that if a fact is more similar to the queries, it is likely
more informative.

Based on these three factors, the Scoring module creates a graph containing the facts, the indicative terms,
and the queries. In this graph, we have three types of nodes: fact node, term node, and query node. Moreover,
we have three types of edges that represent our mentioned importance factors: fact-fact edges which show the
similarity of facts to each other, fact-term edges which indicate the relevancy of each fact to indicative terms,
and fact-query edges which specify the similarity of facts to the queries. Figure 2 depicts the schematic of the
graph used in our scoring method.

Figure 2: The graph for scoring the facts

To calculate the weights of fact-fact edges in the graph, we use a text similarity method by using Sentence-
BERT model [13]. We calculate the embeddings of each pair of facts using Sentence-BERT model and then
compute the cosine of their embeddings as their similarity measure. We use this similarity measure as the
weight of the fact-fact edge between two fact nodes, so these weights are in the range of [0,1]. However, we just
add the edges for fact nodes whose similarities are more than the threshold Simmin. We use the same method
for calculating the weights of fact-query edges by calculating the cosine value of the embeddings for each pair
of (fact, query). In order to calculate the weight of fact-term edges, we use the relevancy score reported by
Filtering module. However, since we need all weights of the graph to be normalized, we leverage the min-max
normalization method to normalize the fact-term edges. For each indicative term, if the Filtering module
returns a list of results as R = {(f1, s1), (f2, s2), ..., (fn, sn)}, where fi is a fact and si is the relevancy score of
that fact to the indicative term, we normalize the relevancy score si as:

s′ =
si − smin

smax − smin
(1)

in that, smin and smax are the minimum and maximum relevancy scores reported respectively. In this way, the
normalized relevancy scores will be in the range of [0,1], and we use this value as the weight of each fact-term
edge in the graph.
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3.4.2 Centrality Measurement

After constructing the graph, we analyze the graph to find the most important facts. To achieve this goal, we
use Closeness Centrality [6] measure which is the average shortest-path distance to a node from all reachable
nodes in the graph. When this measure for a fact is higher, it means that the fact is more relevant and similar
to other facts, indicative terms, and queries, and so it implies that the fact is likely more important. We
calculate the Closeness Centrality measure for the fact node u, as:

Cu =
n− 1∑n−1

v=1 d(u, v)
(2)

where n is the number of nodes have path to node u in the graph, and d(u, v) is the shortest-path distance
between node u and v in the graph. Additionally, when the algorithm figures out the shortest path between
two nodes u and v, the distance between two adjacent nodes i and j in the graph is considered as 1− wi,j , in
that wi,j is the weight we assigned to the edge between two nodes in the graph generation step. It means that
if two nodes are more relevant or similar, their distance is shorter. Finally, to calculate the importance score
for each fact, we normalize the centrality measure Cu by using min-max normalization method as:

Importance(u) =
Cu − Cmin

Cmax − Cmin
(3)

where Cmin and Cmax are the minimum and maximum of centrality measures in the fact set. Therefore, the
calculated importance for each fact is in the range of [0,1].

4 Experiments and Results

4.1 Experimental Setup

We executed our experiments on the dataset provided in CrisisFACTS track of TREC 2023 [1]. To implement
our system we have used the following configurations:

• Text to Fact: We run our experiments in two fact generation settings: Method A and Method B
discussed in section 3.1.

• Query Extender: We leveraged KeyBERT model [8] to extend the indicative terms.

• Filtering: We used pyTerrier [10] library to index the generated facts. Additionally, we configured the
indexer to utilize DFReeKLIM weighting model [2] to score the retrieved facts.

• Scoring: In this module, to generate the embedding of each fact we used sentence transformer model
bert-base-nli-mean-tokens [13]. Then we calculate the cosine similarity of embeddings to figure out the
facts’ similarity. Moreover, we utilized Networkx library [7] for generating the graph and calculating the
closeness centrality of fact nodes. Also, we set Simmin = 0.5 to prune the fact-fact and fact-query edges
with similarities less than this value.

4.2 Evaluation Metrics

To evaluate the list of facts two types of evaluation metrics are used:

• Metric Set 1- ROUGE-based Summarization Against Daily Summaries: In this metric, the
“summary” of the day’s events are generated by combining the top-K important generated facts from
each event-day pair. Then, using ROUGE-x and BERTScore, this summary is compared to existing
summaries such as NIST-based assessments and Wikipedia summary.

• Metric Set 2- Individual Fact-Matching Between Runs and Manual Fact Lists: The second
metric of evaluation is the individual fact matching of the generated facts during the runs with a manually
curated fact list. Using a pooled collection of facts from all the participant runs, NIST assessors create a
set of facts for each event-day pair. Assessors then match participant runs’ output to each of these facts
to evaluate comprehensiveness and redundancy ratio, which serve as alternates for recall and precision,
respectively. In other words, for a given event day pair, there are the set of “gold standard” facts S
obtained by the assessors, the set of facts F generated by the system, and the matching function M(F, S)
to measure the overlap between these two set of facts.

The formula for calculating comprehensiveness (recall based) is:

C(F, S) =
M(F, S)

|S| (4)
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The formula for calculating redundancy (precision based) is:

R(F, S) =
M(F, S)

|F | (5)

For each event, the average redundancy and the average comprehensiveness is calculated for all the days
of the event.

Method nist wiki
Recall Precision F1 Score Recall Precision F1 Score

A 0.594 0.600 0.597 0.471 0.422 0.445
B 0.615 0.613 0.613 0.506 0.458 0.480

Table 2: The mean performance of methods A and B using BERTScore metric.

Method nist wiki
Recall Precision F1 Score Recall Precision F1 Score

A 0.173 0.299 0.211 0.169 0.024 0.039
B 0.379 0.293 0.319 0.253 0.016 0.028

Table 3: The mean performance of methods A and B using ROUGE metric.

Method Redundancy Comprehensiveness
A 0.305 0.058
B 0.507 0.136

Table 4: Average manual score for all runs of methods A and B.

4.3 Results

In this section, we will present and discuss the performance of the two methods (Method A and Method B)
described earlier.

We have computed the mean BERTScore values (precision, recall, and F1 score) for all event days and
displayed them in Table 2. As highlighted in the table, our method B outperforms method A by 2.68% and
7.87% for NIST-based evaluations and Wikipedia summaries, respectively, in terms of F1-score. Additionally,
we have presented the ROUGE scores for methods A and B in Table 3, which also exhibits a similar trend
in scores for NIST-based assessments (with a 51.18% increase in F1 score of method B compared to method
A). However, our system’s ROUGE-based performance against the Wikipedia summaries is comparatively low
overall. Table 4 demonstrates the performance of our systems in terms of redundancy and comprehensiveness,
as detailed in Section 4.2. We can observe a better performance of method B compared to method A in
redundancy and comprehensiveness metrics as well.

Based on our analysis, it can be inferred that the results obtained using method B are comparatively better
than those obtained using method A. This might be due to the fact that the scoring module handles the facts
generated by method B better than those generated by method A.

5 Conclusion

In this work, we proposed a system for extracting and scoring critical information to generate informative
summaries for the disaster response agencies during crises. Our system analyzes multiple streams of data from
different sources of online data to extract crisis-related facts. To achieve this goal, our system expands the list
of indicative terms provided by the disaster response agencies and leverages it to filter the facts extracted by
existing fact extraction methods. Although we have used two extractive methods for generating the facts, our
system does not rely on these fact extraction methods only, so it can be used to work with any extractive and
abstractive fact generation methods. Additionally, since the summary of the crisis-related events is generated
by truncating top-K most important facts, ranking the extracted facts is one of the critical parts of summary
generation task. In our system, we introduce an integrated content-graph analysis that analyses a graph
containing the relevancy of facts to each other, facts to queries, and facts to indicative terms to score facts.
This enables our system to prioritize the most important facts. Furthermore, our experiments demonstrate a
good performance of the proposed system in analyzing the dataset of the TREC 2023 CrisisFACTS track [1].
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