
CIP at TREC Deep Learning Track 2023

Xiaoyang Chen1,2, Ben He1,2, Le Sun2, and Yingfei Sun1

1 University of Chinese Academy of Sciences, Beijing, China
2 Chinese Information Processing Laboratory, Institute of Software, Chinese

Academy of Sciences, Beijing, China
chenxiaoyang19@mails.ucas.ac.cn, {benhe, yfsun}@ucas.ac.cn

sunle@iscas.ac.cn

Abstract. This study presents the strategies and experimental results
employed by the CIP team in the Passage Ranking task of the 2023
TREC Deep Learning Track. In the full-ranking task, we incorporated
sparse retrieval methods such as Unicoil [4] and DocT5Query [6], cross-
attention mechanism (MonoT5 [8]), and the recent advancements in large
language models (LLM) to achieve improved sorting effectiveness. Ad-
ditionally, we utilized a multi-round iterative optimization strategy for
deep ranking of selected candidate documents. The experimental data
suggests that by harnessing the power of existing resources, our approach
has yielded favorable results in this task, without necessitating any ad-
ditional training.

1 Introduction

In the field of information retrieval, passage ranking is a crucial task that helps
extract relevant information from a large number of text segments. This paper
provides a comprehensive overview of the CIP team’s strategies and experimental
outcomes in the TREC DL 2023 Passage Ranking task.

Currently, the sparse retrieval method [4, 6], which recalculates term weights
via pre-trained language models, has gained widespread use due to its combina-
tion of context-informed effects and the efficiency of inverted indexing. Mean-
while, although the ranker based on the cross-attention mechanism [3, 7, 8] is
less efficient than sparse retrieval, it captures the relevance between queries and
texts more meticulously. Hence, it is commonly used to rank a certain number
of top-ranked documents after initial retrieval.

Recently, the emergence of ChatGPT [10] and GPT4 [9] has offered new
possibilities for optimizing ranking effects. Existing methods [5, 12] demonstrate
that zero-shot learning, which inputs a query and a certain number of texts
ranked by BM25 into a large language model, and outputs text numbers in
descending order of relevance to the query, can effectively improve the ranking
effect of BM25. Experiments show that the results ranked by ChatGPT are
still inferior to the commonly used ranker tuned for specific tasks based on the
cross-attention mechanism, while GPT4 can directly achieve SOTA results.

For most IR researchers, the high price of GPT4 hinders relevant research.
Conversely, the price of ChatGPT falls within an acceptable range for many.

2 F. Author et al.

Therefore, in this Passage Ranking task, the primary objectives of the CIP team
are to investigate the following questions: Firstly, could superior initial ranking
outcomes enhance the performance of ChatGPT beyond the results currently
reported in the field of study? Secondly, through iterative processes, is it possible
for ChatGPT to further refine its ranking performance, building upon its own
initial results?

In line with the full-ranking task setup, our strategy mainly involves three
key parts:

– In the retrieval stage, we utilized Unicoil [4] and DocT5query [6], both based
on sparse indexing, to recall 1000 passages for each query.

– In the ranking stage, we employed MonoT5-3B [8] to score the documents
recalled by Unicoil and DocT5query, attaining the top 100 passages.

– In the re-ranking stage, we utilized large language models to perform zero-
shot group ranking on the top passages. We integrated the Pseudo Relevance
Feedback (PRF) mechanism into the prompts while conducting multiple
rounds of iteration under various group sizes and coverage settings to further
optimize the ranking effect. To verify the best effect that this method could
achieve, we used GPT4 results as a reference for comparison.

2 Methodology

In this section, we introduce the detailed methodology employed by the CIP
team to accomplish the Passage Ranking task. Our approach involves uniform
processing at the retrieval and ranking stages. Initially, we make use of Unicoil [4]
and DocT5Query [6] for query retrieval across the entire dataset. Following this,
the top 1000 documents recalled by each method are rescored using the MonoT5-
3B model [8]. Furthermore, during the reranking stage, we adopt the methods
proposed by [5] and [12], to group and sort the top-ranked documents. We also
incorporate the Pseudo Relevance Feedback (PRF), fusion, and multi-round it-
eration concepts under different parameters to achieve our final results.

2.1 Retrieval Stage

At this stage, we utilize two modified sparse retrieval methods to recall the top
1000 texts for the queries across the entire dataset. The first method,Unicoil [4],
is a sparse retrieval model that employs a pre-trained language model to assign
weights to the text and query tokens. Unicoil works on a dual-encoder structure
and uses exact vocabulary matching to compute the similarity between the query
and the passage, as opposed to matching in the latent semantic space. Hence,
the vector representation generated by Unicoil is fundamentally based on the
vocabulary space.

The other method, DocT5Query [6], predicts queries potentially related
to the text by training the T5 model. The generated queries are added to the

CIP at TREC Deep Learning Track 2023 3

original text as supplementary information. DocT5Query builds a sparse index
on the expanded dataset and retrieves the query using the BM25 algorithm.
Although Unicoil also leverages the query prediction feature of DocT5Query to
expand the document, we believe the different weight calculation methods make
the retrieval results from both methods complementary.

Note that at this stage, we use the implementation and index structure of
pyserini 3 to obtain the top 1000 candidate results from both methods.

2.2 Ranking Stage

Following the retrieval stage, we obtain the top 1000 passages via the two afore-
mentioned methods. We then proceed to deduplicate the text ids that were re-
called by both methods. The subsequent step involves employing MonoT5-3B [8],
which is based on the cross-attention mechanism, to re-score the query-text pairs
for relevance.

MonoT5 is designed on a sequence-to-sequence task. Its input is formatted
as follows:

Query : [Q] Document : [D] Relevant : (1)

The model generates outputs by applying the softmax function to the logits
of ’true’ and ’false’ tokens. This allows the model to calculate the probability
Pr(relevant = 1|q, d), which is the probability assigned to the ’true’ token, and
is interpreted as the relevance score of each query-document pair.

MonoT5-3B has been widely utilized as a baseline model in previous research
due to its commendable performance. This step provides a refined ranking result
that measures the relationship between queries and texts with higher precision.

Note that the checkpoint file 4 we used for MonoT5-3B was trained on the
MSMARCO v1 version, and we directly applied it to the ranking task on MS-
MARCO v2 version without any further adaptation.

2.3 Reranking Stage

In the reranking stage, we employ the zero-shot learning method based on large
language models to rank the top 50 passages obtained from MonoT5-3B in the
previous stage. At this stage, we primarily draw reference from the Instructional
Permutation Generation methods mentioned in [5] and [12]. Simultaneously, we
conduct multiple rounds of iteration and fusion under different window sizes and
step sizes, further optimizing the ranking effect.

Further, we also introduce the Pseudo Relevance Feedback (PRF) concept,
providing more information for the model to execute the ranking task. The large
language model we use is ChatGPT [10], which is within our acceptable price
range and also provides relatively good ranking results. To verify the best effect
that this method can achieve, we use GPT4 [9] results for comparison. The

3 https://github.com/castorini/pyserini
4 https://huggingface.co/castorini/monot5-3b-msmarco-10k

4 F. Author et al.

Instructional Permutation Generation method is an innovative approach
that leverages the robust text understanding and reasoning capabilities of large
language models such as ChatGPT and GPT4. This method aims to generate a
permutation of passages based on their relevance to a given query. Each passage
is assigned a unique identifier and no intermediate relevance scores are produced.
These passages are arranged in descending order of relevance to the query using
their identifiers, thus producing a ranking list such as [2] > [3] > [1] > etc.

In our implementation, we construct the following instruction input into the
model to obtain the ranking list:

Rank the w passages based on their relevance to the search query.

The passages will be listed in descending order using identifiers,

and the most relevant passages should be listed first. The output

format should be [] > [] > etc, just output the identifiers of the

candidates, not the text.

Query:

How does the process of digestion and metabolism of carbohydrates

start

Candidates:

[1] ...

[2] ...

...

[w] ...

Response:

Due to the limited number of input tokens allowed by these models, the
Instructional Permutation Generation method can only rank a finite number
of n passages. To solve this problem, sliding window strategies have been used
in [5, 11, 12] to enable the model to rank any number of passages. Here, two
hyperparameters, namely window size (w) and step size (s), are defined. If the
goal is to rank the top M texts, the model arranges passages from the (M-w)-th
to the M-th position and slides the window using s as the step size. Assuming
the reranker can always correctly rank the passages within the window, then
after using the sliding window process K times, the top K×(w-s) passages in the
final ranking are equivalent to directly ranking all the passages.

Pseudo Relevance Feedback (PRF) is a classic method used in Informa-
tion Retrieval (IR) to enhance the performance of retrieval systems. The basic
assumption of PRF is that documents retrieved at the top of the initial retrieval
are likely to be relevant and can provide more context or information to refine
the query and improve retrieval results. In our reranking stage, we introduce the
PRF concept to provide more information for the model to execute the ranking
task. We modify the instruction to include the top-p passages as pseudo-relevant
feedback information:

Rank the w passages based on their relevance to the search query.

CIP at TREC Deep Learning Track 2023 5

The passages will be listed in descending order using identifiers,

and the most relevant passages should be listed first. The output

format should be [] > [] > etc, just output the identifiers of the

candidates not the text.

Query:

How does the process of digestion and metabolism of carbohydrates

start

Candidates:

[1] ...

[2] ...

...

[w] ...

Pseudo-Relevant Feedback:

[prf 1] ...

[prf 2] ...

...

[prf p] ...

Response:

Although the Instructional Permutation Generation method provides a way to
rank a certain number of texts under specific parameters, we believe that the
length of different input texts and different step sizes will also affect the ranking
effect. Intuitively, the smaller the window size, the higher the accuracy of the
ranking, and the pairwise-based research of [11] indirectly confirms this point.
Therefore, we propose to rerank the top-ranked passages in multiple rounds
and fuse the results of multiple rounds.

In our submitted results, we iterated with ChatGPT for 4 rounds: in the first
round, M=50, w=20, s=10, p=3, K=1 (cip run 6); in the second round, M=40,
w=20, s=10, p=0, K=1 (cip run 4); in the third round, M=30, w=10, s=5, p=0,
K=2 (cip run 7); in the fourth round, M=30, w=6, s=3, p=0, K=4 (cip run 5).
We used the queries from DL21 [1] and DL22 [2] as our validation set, calculating
the optimal weights for integrating the four outcomes to obtain the best results
(cip run 3). The optimal weights for the two query sets were averaged, and then
applied to the sum of the four results from this year, in accordance with the
calculated weights, to yield our submission.

To verify whether GPT-4 can further improve performance on top of the
multi-turn iteration of ChatGPT, we conducted an experiment with the follow-
ing settings: M=20, w=20, s=10, p=0, K=1 (cip run 1). We employed GPT-4
to re-rank the fused results obtained earlier and submitted it as one of the ex-
perimental outcomes. As GPT-4 does not directly generate relevance scores, we
also reprocessed the scores from MonoT5, filtering out duplicates, to obtain the
final relevance scores (cip run 2).

6 F. Author et al.

3 Results

Initial
DL21 DL22 DL23

NDCG@10 RR NDCG@10 RR NDCG@10 RR

[a] UniCOIL [4] - 0.6160 0.7311 0.4609 0.5831 - -
[b] DocT5Query [6] - 0.4816 0.6848 0.3599 0.4221 - -
[c] MonoT5-3B [8] [a], [b] 0.7041 0.8092 0.6183 0.7581 - -
[d] Ours (ChatGPT) [c] 0.7595 0.8761 0.6861 0.8294 0.6185 0.7724
[e] Ours (GPT4) [d] 0.7716 0.8921 0.7072 0.8646 0.6558 0.8320

Table 1: Results on DL21, DL22, and DL23.

DL21 DL22 DL23

NDCG@10 MAP NDCG@10 MAP NDCG@10 MAP

MonoT5-3B [8] 0.7041 0.3470 0.6183 0.2250 - -
M=50, w=20, ChatGPT 0.7274 0.3652 0.6807 0.2412 0.6078 0.2677
M=40, w=20, ChatGPT 0.7445 0.3882 0.6786 0.2429 0.6137 0.2721
M=30, w=10, ChatGPT 0.7588 0.3950 0.6796 0.2419 0.6075 0.2676
M=30, w=6, ChatGPT 0.7667 0.4008 0.6650 0.2391 0.6074 0.2656

F4 0.7595 0.3974 0.6861 0.2455 0.6185 0.2714
M=20, w=20, GPT4 0.7716 0.4044 0.7072 0.2508 0.6558 0.2862
(score reassigned) 0.7722 0.4043 0.7083 0.2512 0.6558 0.2862

Table 2: Results of different iterations. Apart from F4, which represents the fused
result of the previous four iterations, all other iterations use the result of the
preceding row as the initial ranking.

The results at each stage of this study are presented in Table 1, where ”Ours
(ChatGPT)” represents the weighted results. Despite MonoT5-3B not being
trained on the current dataset, it still shows improved performance based on
UniCOIL and DocT5Query. By using ChatGPT to re-rank the results obtained
from MonoT5, significant improvements were achieved on DL21 and DL22, with
a considerable increase of more than 5 points in NDCG@10. This suggests that
ChatGPT is capable of further optimizing the results when the initial ranking
is strong. However, since the MonoT5-3B model used for experiments was not
trained in a supervised manner, there is still room for improvement in the ini-
tial ranking performance, and the impact of ChatGPT’s optimization on better
initial rankings requires further investigation. GPT4 was still able to further im-
prove results after multiple iterations of ChatGPT, which is particularly evident

CIP at TREC Deep Learning Track 2023 7

in the DL23 test data, with an increase of over 6% in NDCG@10, demonstrating
GPT4’s superior ranking ability.

Table 2 shows the results of iterative implementation of the Instructional
Permutation Generation method with different hyperparameters. On DL21 data,
as the iteration process continues, the ranking effect gradually improves, but this
trend is not reflected on DL22 and DL23. The fuse method can maintain stable
good results in ranking, resisting performance fluctuations in different rounds.

4 Conclusion

This paper introduces the three-stage method employed by the CIP team in the
TREC Deep Learning Track 2023 Passage Ranking task. In the first stage, we use
UniCOIL and DocT5Query to perform retrieval queries across the entire corpus.
In the second stage, we use MonoT-3B to re-score the documents retrieved in the
previous step. In the third stage, we make use of ChatGPT and GPT4 to re-rank
the top documents under various settings. Experimental results indicate that
under conditions of strong initial ranking, ChatGPT is able to further enhance
ranking performance. However, for results that have already been ranked by
ChatGPT, additional iterations may have limited impact.

References

1. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Lin, J.: Overview of the TREC
2021 deep learning track. In: Soboroff, I., Ellis, A. (eds.) Proceedings of the Thirti-
eth Text REtrieval Conference, TREC 2021, online, November 15-19, 2021. NIST
Special Publication, vol. 500-335. National Institute of Standards and Technology
(NIST) (2021), https://trec.nist.gov/pubs/trec30/papers/Overview-DL.pdf

2. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Lin, J., Voorhees, E.M.,
Soboroff, I.: Overview of the TREC 2022 deep learning track. In: Soboroff,
I., Ellis, A. (eds.) Proceedings of the Thirty-First Text REtrieval Confer-
ence, TREC 2022, online, November 15-19, 2022. NIST Special Publication,
vol. 500-338. National Institute of Standards and Technology (NIST) (2022),
https://trec.nist.gov/pubs/trec31/papers/Overview deep.pdf

3. Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: Parade: Passage representation
aggregation for document reranking. arXiv preprint arXiv:2008.09093 (2020)

4. Ma, X., Pradeep, R., Nogueira, R., Lin, J.: Document expansion baselines and
learned sparse lexical representations for ms marco v1 and v2. In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. p. 3187–3197. SIGIR ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3477495.3531749,
https://doi.org/10.1145/3477495.3531749

5. Ma, X., Zhang, X., Pradeep, R., Lin, J.: Zero-shot list-
wise document reranking with a large language model. CoRR
abs/2305.02156 (2023). https://doi.org/10.48550/arXiv.2305.02156,
https://doi.org/10.48550/arXiv.2305.02156

6. Nogueira, R., Lin, J., Epistemic, A.: From doc2query to doctttttquery. Online
preprint 6, 2 (2019)

8 F. Author et al.

7. Nogueira, R.F., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085
(2019), http://arxiv.org/abs/1901.04085

8. Nogueira, R.F., Jiang, Z., Pradeep, R., Lin, J.: Document ranking with a pretrained
sequence-to-sequence model. In: Cohn, T., He, Y., Liu, Y. (eds.) Findings of the
Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020. Findings of ACL, vol. EMNLP 2020, pp. 708–718. Association
for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-
emnlp.63, https://doi.org/10.18653/v1/2020.findings-emnlp.63

9. OpenAI: GPT-4 technical report. CoRR abs/2303.08774
(2023). https://doi.org/10.48550/arXiv.2303.08774,
https://doi.org/10.48550/arXiv.2303.08774

10. OpenAI: Introducing chatgpt (2023), https://openai.com/blog/chatgpt
11. Qin, Z., Jagerman, R., Hui, K., Zhuang, H., Wu, J., Shen, J., Liu, T.,

Liu, J., Metzler, D., Wang, X., Bendersky, M.: Large language mod-
els are effective text rankers with pairwise ranking prompting. CoRR
abs/2306.17563 (2023). https://doi.org/10.48550/arXiv.2306.17563,
https://doi.org/10.48550/arXiv.2306.17563

12. Sun, W., Yan, L., Ma, X., Ren, P., Yin, D., Ren, Z.: Is chatgpt
good at search? investigating large language models as re-ranking agent.
CoRR abs/2304.09542 (2023). https://doi.org/10.48550/arXiv.2304.09542,
https://doi.org/10.48550/arXiv.2304.09542

