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ABSTRACT
In this notebook, we present our pipeline approach for the prod-
uct search track. We utilize both product textual data and images
to enhance retrieval diversity. Our experiments also demonstrate
the good generalization capability of a few off-the-shelf retrieval
models. Additionally, we adopt retrieval fusion and consider it an
efficient method to integrate text and images for product search.
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1 INTRODUCTION
The first year of the product search track benchmarks the prod-
uct search problem for IR research. The organizers introduce the
(textual) product ranking and multi-modal product ranking tasks.
For these tasks, we experiment with various well-developed re-
trieval methods using either sparse or dense representations. We
also explore different ways to utilize product images in product
search. Furthermore, we combine these diverse methods via re-
trieval fusion and adapt it to the common two-stage pipeline (i.e.,
retrieval-then-rerank) as a cascaded approach.

In our empirical evaluation, we believe the off-the-shelf first-
stage retrieval can perform decently in a zero-shot manner. Our
experiments also show that sparse retrieval (SR) may outperform
dense retrieval (DR) somehow, aligning with observations in recent
out-of-domain IR research [10]. We also see retrieval fusion as a
simple yet effective way to integrate diverse retrieval methods,
effectively increasing recall. Finally, we perform the second-stage
re-ranking to obtain the results for our submitted runs.
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2 OUR CASCADED APPROACH
2.1 A Two-Stage Pipeline with Retrieval Fusion
In this track, we adapted the common multi-stage pipeline to a
product search scenario. The pipeline mainly comprises a retrieval
stage and a re-ranking stage. we denoted them as 𝑆RT and 𝑆RR, and
formulate the pipeline as:

P̄𝑖 ← 𝑆RT (𝑞, 𝑝 ∈ P|𝑚𝑖 ); (1)

R ← 𝑆RR (𝑞, 𝑝 ∈ P̄), where P̄ ← 𝑓 (P̄1, P̄2, . . . |𝑤). (2)

Here, 𝑞 represents a user query, and P represents the full collec-
tion of products. While P̄𝑖 is a small subset of product candidates
retrieved using different methods𝑚𝑖 . Moreover, before re-ranking,
we fuse multiple product candidate sets P̄𝑖 into the fused one P̄ by
a fusion 𝑓 with hyperparameters𝑤 . Finally, we perform re-ranking
with the fused set and obtain the product ranklist 𝑅.

2.2 The First-Stage Retrieval Methods
In the following sections, we will report several retrieval methods
adopted in the stage 𝑆RT: improved sparse retrieval (Section 2.2.1),
learned sparse retrieval (Section 2.2.2), text dense retrieval (Sec-
tion 2.2.3), and image dense retrieval (Section 2.2.4).

2.2.1 Improved Sparse Retrieval. We use the BM25 [9] and the
inverted indices (Pyserini toolkit1 [6]) as the vanilla sparse retrieval.
We retrieve top-1000 relevant products based on the estimated
relevance scores of a query 𝑞 and the product title (as the passage)
in the collection P. To further improve the vanilla sparse retrieval,
we follow the doc2query approach [7] to enrich the collection with
predicted queries. Here, we fine-tune a text generator2 on released
training query-product pairs (train.qrels.). Consequently, we
concatenate each product title with 10 predicted queries from the
generator. Then, we can retrieve using the indices re-built with the
expanded collection.

2.2.2 Learned Sparse Retrieval. Recent expansion-based learned
sparse retrieval, SPLADE [3], have shown the strong capability of
out-of-domain generalization [1, 2]. Thus, in addition to explicitly
expansion (Section 2.2.1), we use the newly proposed SPLADE++
model [2] and its checkpoint3 to retrieve top-1000 relevant products
with the zero-shot setting. It is worth noting that we use product
full content as the passage 𝑝 .

2.2.3 Text Dense Retrieval. Dense retrieval is based on bi-encoders
architecture, offering an efficient maximum inner-product search

1https://github.com/castorini/pyserini/tree/master
2https://huggingface.co/DylanJHJ/t5-base-product2query
3https://huggingface.co/naver/splade-cocondenser-ensembledistil
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Table 1: Evaluation results of sparse retrieval baselines with
different product content (as passage).

Baseline conditions Recall@1K nDCG@1K

(t) title only (𝑘1 = 0.5, 𝑏 = 0.3) 0.6066 0.3858
(s) simplified (𝑘1 = 0.9, 𝑏 = 0.4) 0.5940 0.3506
(f) full (𝑘1 = 4.68, 𝑏 = 0.87) 0.6286 0.3753

over embeddings. We use Contriever [4] and its checkpoint 4 fine-
tuned on MSMARCO (henceforth, Contriever-MS), to encode query
and passage title in a zero-shot manner.

2.2.4 Image Dense Retrieval. We also study the zero-shot image
retrieval performance with pre-trained CLIP text and image en-
coders5 [8]. They are fine-tuned on text-image contrastive objec-
tives, analogous to dense text retrieval in Section 2.2.3. After build-
ing the dense indices of CLIP image embeddings, we can apply
the same vector search to retrieve the top 1000 relevant products
(images).

To conclude our retrieval stage, we obtain multiple sets of top-𝑘
relevant products retrieved by the aforementioned retrieval meth-
ods. In particular, except for the improved sparse retrieval (Sec-
tion 2.2.1), we use the other methods without in-domain fine-tuning.
Here, we leave the in-domain fine-tuning (i.e., with relevant query-
product pairs) as our future works towards better domain-adaptive
retrieval.

2.3 The Second-Stage Re-ranking with Retrieval
Fusion

In this section, as formulated in Eq. (2), we adopt the retrieval fusion
in advance of computational intensive passage re-ranking. First,
we fuse multiple first-stage retrieval results into a fused ranklist
P̄ with the top 1000 product candidates. Specifically, we adopt the
off-the-shelf weighted sum fusion implemented in ranx library6.
We also search the hyperparameter 𝑊 in terms of nDCG@100
with human-judged labels (Dev Qrels); other fusion details can be
found in the experiments in Section 3.1.2. As for the re-ranking,
we adopt the cross-encoder architecture and its checkpoint7 fine-
tuned by Sentence-Transformer. We input the query and product
title to calculate the relevance score and finally obtain the re-ranked
ranklist of products.

3 EXPERIMENTS
3.1 Settings
3.1.1 Evaluation Data. Instead of using the released development
data (Dev Qrels), we construct a filtered version of it by discarding
the empty and code-like query (e.g., “B07SDGB8XG”), resulting in
8941 queries and 169731 judgments.

3.1.2 BaselineMethods. Our reproduced baselines are vanilla sparse
retrieval with BM25 search. We have tried different types of product

4https://huggingface.co/facebook/contriever-msmarco
5CLIP-large Laion: https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K
6https://github.com/AmenRa/ranx/tree/master/ranx
7https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2

Table 2: The evaluation results of different first-stage re-
trieval methods.

Cond. Retrieval Recall

@10 @100 @1K

SR Baseline BM25 0.1613 0.3818 0.6066

Imp.-SR T5-base expansion† 0.1712 0.4127 0.6481
Imp.-SR BLIP2-opt caption 0.1679 0.3998 0.6301

LSR SPLADE++ 0.1720 0.4153 0.6526
LSR SPLADE++ (full) 0.1819 0.4392 0.6834

Text-DR Contriever-MS (0.1562) 0.4057 0.6572

Img-DR CLIP-large (0.1148) (0.3275) (0.5547)

textual content: (t) title only, (s) simplified (i.e., title+description),
and (f) full content. As shown in Table 1, we see “title only” can
perform better or on par with the other two longer conditions.

3.2 Evaluation Results
We first investigate different first-stage retrieval methods in terms
of recall. Then, we examine the effectiveness of fusing different
first-stage retrieval for final delivered results. However, due to time
constraints, we did not conduct the re-ranking on development
data, only on the submitted results (i.e., testing set).

3.2.1 Recall of the First-stage Retrieval Methods. Table 2 shows the
experimental first-stage retrieval methods in our pipeline. In addi-
tion to the vanilla sparse retrieval (SR), other methods mentioned
in Section 2.2 are also reported, including improved sparse retrieval
(Imp.-SR), learned sparse retrieval (LSR), text dense retrieval (Text-
DR), and image dense retrieval (Img-DR).

First, in this table, we observe that LSR (SPLADE++) outperforms
all the others; it even improved the baseline by 12% recall@1Kwhile
using “full” contents as passage, unlike vanilla BM25 search (See
Section 3.1.2 and the Table 1 for details). Second, we found that
BM25 search with document expansion (i.e., Imp.-SR) is effective on
product search as well. Moreover, we use BLIP2 [5], as a zero-shot
LLM-enhanced caption generator8 to expand the product title with
captions, offering a little improvement as well. Following these
results, we see the expansion as one of the starting points to con-
sider product images in product search. Last, we observe that dense
retrieval (DR) methods may not be as robust as SR methods (e.g.,
Imp.-SR, LSR). In the last two rows, we found Img-DR performs
inferior to the baseline a lot (0.5547 vs. 0.6066); Text-DR also per-
forms under our expectation with unstable improvement. Although
we hypothesize that the judgments may have some biases towards
DR methods.9

3.2.2 Effectiveness of Retrieval Fusion. To narrow down our con-
sideration, we select both LSR and Text-DR as baseline settings
as they are the best ones among sparse and dense categories, re-
ported in the upper part of Table 3. In the lower part of Table 3, the
first row (i.e., None) is the fusion of LSR and Text-DR. This result
8https://huggingface.co/Salesforce/blip2-opt-2.7b
9The original relevance labels are from sparse retrieval.
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Table 3: The full-ranking evaluation results with retrieval
fusion. The superscripts indicate the run names of our sub-
missions.

nDCG Recall

@10 @100 @1K @1K

P̄1 SPLADE++ 0.2921 0.3642 0.4367 0.6834
P̄2 Contriever-MS 0.2500 0.3243 0.3992 0.6572

Retrieval Fusion: P̄ ← 𝑓 (P̄1, P̄2, P̄3)

P̄3

None 0.3057 0.3817 0.4530 0.7004
Baseline BM25ER.A 0.3124 0.3888 0.4602 0.7094
T5-base-expansionER.B 0.3183 0.3958 0.4654 0.7104
BLIP2-opt-captionMR.A 0.3165 0.3933 0.4640 0.7111
CLIP-largeMR.B 0.3240 0.4122 0.4835 0.7443

proves fusing retrieval results can work effectively, with higher
recall and increased nDCG (compared to the upper part). With the
simple weighted sum, we found that all of the retrieval methods
we experimented with were beneficial. However, to our surprise,
the image dense retrieval via CLIP-large can boost the performance
to a different level. We believe different retrieval methods provide
diverse views, which help to aggregate into more effective results.

4 CONCLUSION
Our experiments indicate the decent generalization capabilities
of the aforementioned retrieval methods. Additionally, we have
concluded that sparse retrieval performs more robustly than dense
methods. We hypothesize that the product search is distant from
ad-hoc passage retrieval scenarios, which have longer and more
contextualized query. Furthermore, our findings reveal that learned
sparse retrieval, such as SPLADE, holds strong potential in product
search scenarios, especially with shorter queries and noisy collec-
tions of data. In terms of multi-modal ranking, we explored retrieval
fusion and validated its effectiveness as a baseline using product
texts and images.
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