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Abstract. We extend SPLADE, a sparse information retrieval model,

as our first stage ranker for the conversational task. This end-to-end

approach achieves a high recall (as measure on TREC CAsT 2021). To

further increase the effectiveness of our approach, we train a T5-based

re-ranker. This working note fully describes our model and the four runs

submitted to TREC CAsT 2022.

1 Introduction

Most Conversational Information Retrieval models are a two-step pipeline: Con-

textual Query Rewriting and ad-hoc Information Retrieval (IR). Most prior

works rely on a Historical Query Expansion step [11], i.e. a query expansion

mechanism that takes into account all past queries and their associated answers.

Such query expansion model is learned on the CANARD dataset [2], which is
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composed of a series of questions and their associated answers, together with a

disambiguated query, referred to as gold query in this paper. However, relying

on a reformulation step is computationally costly and might be sub-optimal as

underlined in [7,8]. Krasakis et al. [7] proposed to use ColBERT [6] in a zero-shot

manner, replacing the query by the sequence of queries, without any training of

the model. Lin et al. [8] proposed to learn a dense contextualized representation

of the query history, optimizing a learning-to-rank loss over a dataset composed

of weak labels. This makes the training process complex (labels are not reliable)

and long.

We propose a much lighter training process for the first-stage ranker, where

we focus on queries and do not make use of any passage – and thus of a learning-

to-rank training. It moreover sidesteps the problem of having to derive weak

labels from the CANARD dataset. Shortly, we require that the representation

of the query matches that of the disambiguated query (i.e. the gold query). We

then train a second-stage ranker (i.e. re-ranker). Leveraging the fact that our

first-stage ranker outputs weights over the (BERT) vocabulary, we propose a

simple mechanism that provides a conversational context to the re-ranker in the

form of keywords selected by SPLADE.

1.1 First stage

The original SPLADE model [3] scores a document using the dot product be-

tween the sparse representation of a document (d̂) and of a query (q̂):

s(q̂, d̂) = q̂ · d̂ (1)

The document embedding d̂ is obtained using the pre-trained SPLADE model,

i.e. d̂ = SPLADE([CLS] d; θSPLADE) where θSPLADE are the original SPLADE

parameters obtained from HuggingFace5. We can use standard indices built from

5 The weights can be found at https://huggingface.co/naver/
splade-cocondenser-ensembledistil

https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil
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the original SPLADE document representations to retrieve efficiently the top-k

documents.

Query representation We use a simple model where the contextual query rep-

resentation at turn n, denoted by q̂n,k, is the combination of two representa-

tions, q̂queriesn which encodes the current query in the context of all the previous

queries, and q̂answers
n,k which encodes the current query in the context of the past

k answers. Formally, the contextualized query representation q̂n,k is:

q̂n,k = q̂queriesn + q̂answers
n,k (2)

where we use two versions of SPLADE parameterized by θqueries for the full

query history and θanswers,k for the answers. These parameters are learned by

optimizing the loss defined in Eq. (8).

Following [8], we define q̂queriesn to be the query representation produced by

encoding the concatenation of the current query and all the previous ones:

q̂queriesn = SPLADE([CLS] qn [SEP] q1 [SEP] . . . [SEP] qn−1; θqueries) (3)

using a set of specific parameters θqueries.

Following prior work [1], we can consider a various number of answers k, and

in particular, we choose k = 1 (the last answer). Formally, the representation

q̂answers
n,k is computed as:

q̂answers
n,k =

1

k

n−1∑
i=n−k

SPLADE(qn [SEP] ai; θqueries,k) (4)

Training Based on the above, training aims at obtaining a good representation

q̂n for the last issued query qn, i.e. to contextualize qn using the previous queries

and answers. To do so, we can leverage the gold query q∗n, that is, a (hopefully)

contextualized and unambiguous query. We can compute the representation q̂∗n
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of this query by using the original SPLADE model, i.e.

q̂∗n = SPLADE(q∗n; θSPLADE) (5)

We propose a modified MSE loss, whose first component is the standard MSE

loss:

LossMSE(q̂n,k, q̂
∗
n) = MSE(q̂n,k, q̂

∗
n) (6)

In our experiments, we observed that models trained with the direct MSE do not

capture well words from the context, especially for words from the answers. We

thus added an asymmetric MSE, designed to encourage term expansion from past

answers, but avoid introducing noise by restricting the terms to those present in

the gold query q∗n. Formally, our asymmetric loss is:

Lossasym(q̂answers
n,k , q̂∗n) =

(
max(q̂∗n − q̂answers

n,k , 0)
)2 (7)

where the maximum is component-wise. This loss thus pushes the answer-biased

representation q̂answers
n,k to include tokens from the gold answer. Contrarily to

MSE, it does not impose (directly) an upper bound on the components of the

q̂answers
n,k representation – this is done indirectly through the final loss function

described below.

The final loss we optimize is a simple linear combination of the losses defined

above, and only relies on computing two query representations:

Loss(q̂n,k, q̂
∗
n) = LossMSE(q̂n,k, q̂

∗
n) + Lossasym(q̂answers

n,k , q̂∗n) (8)

Implementation details. For the first-stage, we initialize both encoders (one en-

coding the queries, and the other encoding the previous answer) with pre-trained

weights from SPLADE model for adhoc retrieval. We use the ADAM optimizer

with train batch size 16, learning rate 2e-5 for the first encoder and 3e-5 for the

second. We fine-tune for only 1 epoch over the CANARD dataset.
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1.2 Reranking

We perform reranking using a T5Mono [9] approach, where we enrich the raw

query qn with keywords identified by the first-stage ranker. The enriched query

q+n for conversational turn n is as follows:

q+n = qn. Context : q1 q2 . . . qn−1. Keywords : w1, w2, ..., wK (9)

where the wi are the top-K most important words that we select by leveraging

the first-stage ranker as follows. First, to reduce noise, we only consider words

that appear either in any query qi or in the associated answers ai (for i ≤ n−1).

Second, we order words by using the maximum SPLADE weight over tokens

that compose the word.6 In this work, we choose K = 10.

We denote the T5 model fine-tuned for this input as T5+. As in the original

paper [9], the relevance score of a document d for the query qn is the probability of

generating the token “true” given a prompt pt(q+n , d) = “Query: q+n . Document:

d. Relevant:”:

score(q+n , d; θ) =
pT5(true|pt(q+n , d); θ)

pT5(true|pt(q+n , d); θ) + pT5(false|pt(q+n , d); θ)
(10)

where θ are the parameters of the T5Mono model.

Differently to the first stage training, we fine-tune the ranker by aligning the

scores of the documents, and not the weight of a query (which is obviously not

possible with the T5 model). Here the “gold” score of a document is computed

using the original T5Mono with the gold query q∗n. The T5 model is initialized

with weights made public by the original authors7, denoted as θT5.

More precisely, we finetune the pre-trained T5Mono model using the MSE-

Margin loss [4]. The loss function for the re-ranker (at conversation turn n, given

6 To improve coherence, we chose to make keywords follow their order of appearance
in the context, but did not vary this experimental setting.

7 We used the Huggingface checkpoint https://huggingface.co/castorini/
monot5-base-msmarco

https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/monot5-base-msmarco
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documents d1 and d2) is calculated as follows:

LR =
[(
s(q+n , d1; θT5+)− s(q+n , d2; θT5+)

)
− (s(q∗n, d1; θT5)− s(q∗n, d2; θT5))

]2
(11)

We optimize the θT5+ parameters by keeping the original θT5 to evaluate the

score of gold queries.

We also experimented with a simple MSE Loss.

LR =
[
s(q+n , d; θT5+)− s(q∗n, d; θT5)

]2 (12)

Implementation details We initialize θT5+ as θT5, and fine-tune for 3 epochs,

with a batch size of 8 and a learning rate 1e-4. We sample pairs (d1, d2) using

the first-stage top-1000 documents: d1 is sampled among the top-3, and d2 among

the remaining 997 to push the model to focus on important differences in scores.

2 Data

To train our model, we used the TREC CAsT 2020 and TREC CAsT 2021

dataset, and the CANARD conversational dataset.

As answers from CANARD are short (short sentences extracted from Wikipedia

– contrarily to CAsT ones), we expand them to reduce the discrepancy between

training and inference. For each sentence, we find the Wikipedia passage it ap-

pears in (if it exists in ORConvQA [10]), and sample a short snippet of 3 adjacent

sentences from it.

3 Submissions

We submitted 4 runs, listed below. The first one focuses on the first stage-

ranker, to evaluate its full ranking performance, while the three next ones use

a second-stage ranker for optimal performance (starting with a MSE loss up to

an ensemble of re-rankers).
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MLIA_DAC_splade First stage ranker only: we rank passages by using our

conversational SPLADE model, i.e. after training the query representation is

given by Eq. (2) with the asymmetric loss (Eq. 8). This allows to evaluate our

main component, i.e. the first stage ranker.

splade_t5mse As MLIA_DAC_splade, but using a re-ranker (as described in

section 1.2) trained with the MSE Loss (Eq. 12).

splade_t5mm As MLIA_DAC_splade, but using a re-ranker (as described in

section 1.2) trained with the MSE-Margin loss (Eq. 11). This loss is supposed

to increase the robustness of the re-ranker [5] (but was designed for first-stage

rankers).

splade_t5mm_ens As splade_t5mm but with an ensemble of 3 T5-Reranker

for the second stage (the difference in training is due to the different sampled

triplets).

4 Results

We present our results at cut off 1000, in comparison with the organizer’s baseline

"BM25_T5_BART_automatic".

Run Recall MAP MRR nDCG nDCG@3
BM25_T5_BART_automatic 0.3244 0.1498 0.5272 0.2987 0.3619

MLIA_DAC_splade 0.6384 0.1619 0.5143 0.4327 0.3482
splade_t5mse 0.6384 0.1270 0.4101 0.3933 0.2711
splade_t5mm 0.6384 0.2018 0.5742 0.4704 0.4005

splade_t5mm_ens 0.6384 0.2193 0.5923 0.4832 0.4159
Table 1. Results

We see that the first stage ranker performed well, approaching the rerankers’

performances. The simple MSE Loss actually deteriorates performance compared

to the first stage ranker, justifying the usage of MSEMargin Loss.
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