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Abstract

Our team’s (CERTH ITI M4D) participation in TREC Deep Learning Track this year focused on the
use of the pretrained BERT model in Query Expansion. We submitted two runs in the document
retrieval subtask; both include a final reranking step. The first run incorporates a novel pooling
approach for the Contextualized Embedding Query Expansion (CEQE) methodology. The second run
introduces a novel term selection mechanism that complements the RM3 query expansion method by
filtering disadvantageous expansion terms. The term selection mechanism capitalizes on the BERT
model by fine tuning it to predict the quality of terms as expansion terms and can be used on any
query expansion technique.

1 Introduction

The TREC Deep Learning (DL) track 1 promotes document and passage retrieval on a large dataset
derived from the MS MARCO2 from real Bing queries. The dataset includes a large number of
partially labeled queries that enable supervised and semi-supervised approaches. This year, only the
passages have been manually evaluated and the documents were ranked based on the relevant passages
they contain. This change may potentially have affected the document ranking track and also the
continuity with respect to previous years’ document retrieval.

In recent years, large pretrained deep learning models have found great success in numerous nat-
ural language tasks, including information retrieval. These models are trained on huge amount of
data on various tasks and they perform remarkably well, even on new tasks with zero or one-shot
learning. Moreover, they can generate word embeddings that allow operations on their own vector
space instead of word-based statistics. One of the first notable such models is ELMo[1]. BERT[2]
is arguably the most well known with a very wide range of applications. More recently T5[3] have
found great success on numerous text-to-text tasks. New large deep language models are continuously
being developed, pushing the boundaries on the trainable parameter count, for example, GPT-3[4],
Gopher[5], Megatron-Turing NLG[6], LLM-OPT[7]. In the domain of IR, multiple and diverse ap-
proaches (e.g. ColBERT[8], TILDE v2[9], EPIC 2020[10], SPLADEv2[11], COIL[12], EBR[13]) have
already been developed capitalizing on such models.

Query Expansion (QE) is a well established technique[14, 15, 16, 17, 18] and entails the process of
adding new terms in the original query to better represent the information need. Pseudo-Relevance
Feedback (PRF) is a particular family of QE techniques that works on the assumption that the top-K
retrieved documents are likely to be relevant and expands the query based on the contents of those

1https://microsoft.github.io/msmarco/TREC-Deep-Learning.html
2https://microsoft.github.io/msmarco/
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documents. Recently, some studies [19, 20, 21, 22, 23] examined the potential of using contextualized
embeddings from large pretrained models to perform QE with great results.

While QE and PRF have proven their efficacy, not every individual expansion term is beneficial
[24]. There has been work carried out on the subject of term selection; for example, Jiang et al.
[25] evaluated bigrams based on their statistical features and their ability to discriminate between
documents. Another distinct approach is based on modified TF-IDF formulas with the use of external
resources in order to determine terms that are able to discriminate well[26, 27]. Zhang et al.[28]
used handcrafted term features in order to implement term selection in a supervised setting. Finally,
Imani et al. used a neural network classifier for predicting the usefulness of a term, based on GloVe
embeddings [29].

In this paper, we present our participation to the TREC DL 2022 competition where we submitted
two runs on the document retrieval task. The first run builds upon the Contextualized Embedding
Query Expansion (CEQE)[20] and our work[23] in the previous installment of TREC DL. Our second
run includes a novel term selection mechanism that uses contextualized embeddings and can be applied
in any QE pipeline. The rest of the document is structured as follows: Section 2 presents the original
CEQE methodology along with the novel modification and the term selection technique. Section 3
describes the two submitted runs on the TREC DL 2022 track along with their evaluation. Section 4
concludes this paper with an overview and some remarks on future work.

2 Methodology

In this section, we first present Contextualized Embedding Query Expansion (CEQE)[20], a Query
Expansion approach that uses contextualized embeddings. Then we present the two novel approaches;
the max mention pooling method that is based on CEQE, and the Term filter approach that removes
detrimental expansion terms.

2.1 Contextualized Embedding Query Expansion

CEQE is a query expansion method that is based probabilistic language model, especially the Rele-
vance Model [16]. CEQE uses contextualized word embeddings (e.g. BERT embeddings) to calculate
similarities instead of traditional metrics like term frequency (TF) and inverse document frequency
(IDF). Moreover, CEQE addresses the independence assumption made by the Relevance Model that
states that the query is independent to the expansion terms. This assumption is not valid in the case
of contextualized embeddings as they inherently take into consideration their context.

Probabilistic language modeling approaches quantify the relevance of terms to a query in terms of
the probability that the word be generated based on a language model. In the case of PRF the language
model is calculated via the set of pseudo-relevant documents and the whole corpus. Equations 1 and
2 show that the probability of a word to be relevant based on the feedback relevance model (θR) is
proportional to summation of some simpler probabilities that can be estimated through statistical
metrics.

p(w|θR) ∝
∑
D∈R

p(w,Q,D) (1)

∑
D∈R

p(w,Q,D) =
∑
D∈R

p(w|Q,D)p(D) =
∑
D∈R

p(w|D)p(Q|D)p(D) (2)

In order to make the simplifications of equation 2, the original RM formulation assumed that
query Q and term w are independent. In CEQE they note that this assumption is not valid in
case of contextualized vector representations, as each word is dependent to its context. The CEQE
parametrization is presented in eq 3:∑

D∈R

p(w,Q,D) =
∑
D∈R

p(w|Q,D)p(Q|D)p(D) (3)

Moreover, in CEQE they propose three methods to calculate p(w|Q,D) according to the updated
formulation. First, in eq 4 they define p(w|Q,D) as the normalized distances between the mentions of



a word in a document (m⃗D
w ) and the centroid of the query (Q⃗). A word mention within a document is

the embedding of the word given its context within the document. MD
w is the complete set of mentions

of a word in a document D. The centroid of a query is defined as the mean of the individual token
embeddings, i.e. Q⃗ ≜ 1

|Q|
∑

qi∈Q q⃗, where qi is a query token and q⃗ its embedding. The function δ is

a similarity function, e.g. cosine similarity.
The BERT tokenizer sometimes splits words into multiple tokens (especially complex and long

words), for example, ”surfboarding” is split into three tokens ”[’surf’, ’##board’, ’##ing’]”. Such
tokens are called wordpieces [30]. As CEQE works on word-level embeddings, it aggregates the indi-
vidual wordpieces to compose the corresponding word embedding. In particular, it uses the centroid
of the token embeddings as the aggregation method, w⃗ ≜

∑
pi∈w p⃗i, where pi are the wordpieces of

word w.

p(w|Q,D) ≜

∑
mD

w∈MD
w
δ(Q⃗, m⃗D

w )∑
mD∈MD

∗
δ(Q⃗, m⃗D)

(4)

The other two proposed methods of the new formulation are based on individual query term
representations, instead of the centroid. Equation 5 shows the alternative form of the p(w|q,D).
This equation differs to eq 4 in that the mentions of a word are compared with all individual query
terms. Thus, in order to have an overall similarity between the query and the word, a pooling step is
performed. In particular, eq 6 (called ”MaxPool”) shows the first pooling technique, which defines that
similarity to the most similar query term is selected. Eq 7 shows the alternative pooling technique that
multiplies the similarities between a word and all the individual query terms. Finally, eq 8 normalizes
the results of eq 6 and 7 in order for the final p(w|Q,D) to be a relevance distribution of terms derived
from contextual representations in top retrieved documents. Z ′ is a normalization factor that is the
sum over the terms in document D.

p(w|q,D) ≜

∑
mD

w∈MD
w
δ(q⃗, m⃗D

w )∑
mD∈MD

∗
δ(q⃗, m⃗D)

(5)

fmax(w,Q,D) = maxq∈Qp(w|q,D) (6)

fprod(w,Q,D) =
∏
q∈Q

p(w|q,D) (7)

p(w|Q,D) ≜
fmax/prod(w,Q,D)

Z ′ (8)

2.2 CEQE max mention

As described in the previous section, CEQE comes with three different pooling techniques (described
in equations 4, 6, 5, 8, 7) that express the probability p(w|Q,D). Intuitively, this probability can be
thought of as a kind of similarity between the words from a document and the query. Essentially,
words that have high probability are selected as expansion terms. Out of the three pooling techniques,
the MaxPool (eq. 6) has been reported by the authors to perform better. Moreover, in the work of
Khattab and Zaharia [8] (where they presented ColBERT) a MaxSim similarity metric was used that
is in essence very similar to MaxPool. In both cases, the respective operation essentially measures the
maximum similarity between a word and all individual terms of a query/document (query in CEQE,
document in ColBERT).

In this work, we experimented with pushing the MaxPool operation one step further. Instead of
using the maximum similarity between a mention of the word in a document (mD

w ) and then summing
over all the mentions (eq. 5) of the particular word, we propose using only the maximum similarity
instead of summing.

p(w|q,D) ≜ maxmD
w∈MD

w
δ(q⃗, m⃗D

w ) (9)



Figure 1: Example of the max mention pooling approach

For example, let us assume the query ”fish aquarium” and the document that contains the phrases
”fish tank” and ”military tank” (figure 1). In order to determine p(w|Q,D) for the word ”tank”.
MaxPool would sum δ1 + δ2 and because the second occurrence of ”tank” is in a completely different
context the resulting probability would be lower. In the novel max mention method it would look
optimistically only at the best occurrence of the term ”tank” (δ1). Overall, this approach gives more
importance to individual mentions of a particular word in a document.

2.3 Term Filtering

Term filtering is a novel standalone term selection technique that uses BERT. Term filtering comple-
ments any QE technique by judging the expansion terms and removing the terms that are unlikely to
be helpful, thus improving the overall effectiveness. The novel term filtering technique was developed
as a regression task that predicts the usefulness of a candidate expansion term. The training data
were generated from the TREC DL test sets of 2019 and 2020. The regression model was developed
as a fine-tuned version of BERT.

Algorithm 1 shows how the term filtering is applied on any QE expansion method. In detail, for a
query(queryi) the QE method generates a list of expansion terms (exp terms). Then, each expansion
term is evaluated by the term filter function (F (termj)) and it is kept, only if the predicted usefulness
is above a threshold. Finally, when every expansion term is validated, the final expanded query is
combined with the useful expansion terms. The original term weights are respected and they are
rescaled according to the QE algorithm parameters.

Algorithm 1 Term Filtering procedure

1: for queryi ∈ Q do
2: exp terms = QE(queryi)
3: for termj ∈ exp terms do
4: if F (termj) > threshold then
5: final exp terms←− termj

6: end if
7: end for
8: queryi = queryi + final exp terms
9: end for

In order to train the Term filtering model, we used the TREC DL test sets of 2019 and 2020. We



examined the improvement of individual expansion terms when added to a query. This approach was
also used in previous supervised query expansion techniques [26, 29] to infer the usefulness (or gain)
of a single expansion term. We calculated the gain in terms of the change in the metric bpref[31]
which resembles Mean Average Precision (map) but does not assume that unjudged documents are
irrelevant. In fact, it makes no assumptions about unjudged documents, but computes the score based
on the rank of known relevant/irrelevant documents.

We used RM3[32] to generate 50 expansion terms for each of the 88 queries (combined the
test set queries of 2019 & 2020). This resulted in 4,400 training examples in the form of triplets
(query, exp term, gain). The term filtering model was built upon the ”bert-base-uncased”3 fine-tuned
for regression. The training data were fed to the BERT model as two sequences separated with the
< SEP > token, i.e: (Query,< SEP >, exp term) with the appropriate tokenization. The model
was trained for 3 epochs with maximum length of 128 tokens and batch size 8.

3 Evaluation

In this section, we discuss the two runs we submitted to the TREC-DL 2022 to the document retrieval
task. In both runs, the results were generated by pipelines that include a final reranking step. The
first run uses the novel Max mention pooling technique discussed in Section 2.2 and the second run
uses the novel term filtering method discussed in Section 2.3. The pipelines were developed in the
pyterrier platform4 and executed on a machine with GTX 2080Ti 11GB, 128GB RAM, and an HDD
for all stages of our experiments. The query expansion methods (CEQE and RM3) were tuned on
TREC DL 2019 and 2020 test set via grid search. Table 1 shows the parameters that were tuned
and the range they were examined. The parameters fb docs and fb terms represent the number of
feedback documents and the number of feedback terms and they follow the naming convention of the
pyterrier platform. The last parameter lambda (λ) defines the term weight coefficient of the expansion
terms.

Parameter Name Range/Values
fb docs 5, 10, ... 25
fb terms 5, 10, ... 40
lambda 0.1, 0.2, ... 0.9

Table 1: The parameters that were tuned via grid search

The first submitted run (ID: ceqe custom rerank) was the result of a pipeline with query ex-
pansion with CEQE (using BERT-base-uncased) and a final reranking step with ColBERT5. CEQE
was used with the Max mention (cf. Section 2.2) pooling technique and additionally our earlier IDF
modification[23] that incorporates the IDF into the term weights. The parameters that were found to
perform best are fb docs = 25, fb terms = 30 and lambda = 0.8. The complete pipeline follows the
steps:

1. BM25 for initial retrieval;

2. Query expansion with CEQE with Max mention pooling technique;

3. BM25 on expanded queries; and

4. Document reranking with ColBERT.

The second submitted run (ID: rm3 term filter rerank) was composed of a RM3 query expansion
approach along with the Term filtering method (cf. Section 2.3) and a reranking step with ColBERT.
The parameters for RM3 defined by grid search are fb docs = 5, fb terms = 40 and lambda = 0.5.
The run pipeline includes the steps:

3https://huggingface.co/bert-base-uncased
4https://pyterrier.readthedocs.io/en/latest/
5https://github.com/terrierteam/pyterrier_colbert
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1. BM25 for initial retrieval;

2. RM3 for query expansion;

3. Term filtering for improving the RM3 expansion terms;

4. BM25 on expanded queries; and

5. Document reranking with ColBERT.

Table 2 shows the comparison between our two runs with respect to Precision with cutoff at
10 (p@10 ), Normalized Discounted Cumulative Gain with cutoff at 10 (ndcg@10 ), Mean Average
Precision (map), and Reciprocal Rank (recip rank). The ceqe custom rerank performed slightly
better than the rm3 term filter rerank in p@10, ndcg@10, and map, but only with small differences
of 0.0013, 0.0200 and 0.0410, respectively. In recip rank, the run rm3 term filter rerank performed
better than ceqe custom rerank by 0.219. The differences are not sufficient to offer conclusive
comparisons, but it appears that the two runs performed at a similar level. The difference in recip rank
is slightly greater but given that both runs had the same final reranking step, this difference is likely
incidental.

p@10 ndcg@10 map recip rank
CEQE Custom Rerank 0.4842 0.3811 0.1090 0.7382
RM3 Filter Rerank 0.4829 0.3611 0.1049 0.7601

Table 2: The performance of our two submitted runs on Precision at 10 (p@10), Normalized Discounted
Cumulative Gain at 10 (ndcs@10), Mean Average Precision (map), Reciprocal Rank (recip rank).

Figure 2 illustrates the performance of the submitted runs measured by Precision with cutoff at 10
(p@10 ) and Normalized Discounted Cumulative Gain with cutoff at 10 (ndcg@10 ). Only the p@10 and
ndcg@10 were provided by the organizers for the other teams’ submitted runs. The runs in the figure
were sorted by Precision in descending order. Our two submitted runs are ceqe custom rerank &
rm3 term filter rerank and are on the bottom half of the rankings.

Figures 3, 4, 5 and 6 show the scores achieved by our two runs per query in the test set. The symbols
α and β show the performance of our runs, ceqe custom rerank and rm3 term filter rerank
respectively. The performance was measured in Mean Average Precision (fig. 3), NDCG with cutoff
at 10 (fig. 4), precision with cutoff at 10 (fig. 5), and Reciprocal Rank (fig. 6). We did not identify
any clear trend between our two runs for any of the metrics.

4 Conclusions

In this notebook paper, we presented our participation to the TREC DL 2022 track. We submitted
two runs to the document retrieval task with different approaches that both exploit BERT. The
first run was a query expansion pipeline on contextualized embeddings based on CEQE with a novel
pooling mechanism. The second run was a RM3 query expansion pipeline with a novel term selection
mechanism built upon the BERT model. The BERT model was fine-tuned to predict the quality
of expansion terms. Both submitted runs include a final reranking step with ColBERT. On the
official TREC evaluation, our runs performed bellow the mean compared to the other submitted runs.
Future improvements on the term selection mechanism could include additional data and more reliable
evaluation of the usefulness for the train data.
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Figure 2: All the submitted runs on document retrieval subtrack (our runs are ceqe custom rerank
and rm3 term filter rerank)



Figure 3: Mean Average Precision per query



Figure 4: NDCG at 10 score per query



Figure 5: Precision at 10 per query



Figure 6: Reciprocal Rank per query
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