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ABSTRACT
This paper describes our submission to the document ranking and
passage ranking tasks of the TREC 2021 Deep Learning Track. In
our participation, we conducted the dense retrieval and the sparse
retrieval as well as the hybrid of dense and sparse retrieval on
both passage ranking and document ranking tasks. For the dense
retrieval experiments, we employed the multiple representation
ColBERT dense retrieval with and without the pseudo-relevance
feedback mechanism implemented. For the sparse retrieval exper-
iments, we experimented with the sparse retrieval model, namely
DPH, with and without the query expansion applied, then followed
with different types of neural rerankers. For the passage ranking
task, we submitted three group runswith the dense retrieval applied:
uogTrPC, uogTrPCP and uogTrPot6, and two baseline runs on the
inverted index: uogTrPD and uogTrPPD. For the document ranking
task, we submitted three group runs with dense retrieval applied:
uogTrDCPpmp, uogTrDot5pmp and uogTrDDQ5, and five sparse re-
trieval baseline runs. For both tasks, after correction, the hybrid of
sparse and dense retrieval runs, namely uogTrPot5-c run for pas-
sage ranking task and uogTrDot5pmp-c run for document ranking
task, are most effective.

1 INTRODUCTION
The University of Glasgow Terrier team participated in the TREC
2021 Deep Learning track, in order to improve the effectiveness
and flexibility of our new PyTerrier [6, 7] information retrieval
(IR) toolkit for an adhoc ranking task on a large corpus of Web
documents. PyTerrier leverages Python to allow the easy expres-
sion of complex retrieval pipelines. In particular, we focused on the
following aspects: (a) Expressing complex ranking pipelines using
PyTerrier operators and (b) Testing ColBERT [3] dense retrieval
and the ColBERT-PRF [11] approach on the large MSMARCO v2
corpora. In our participation, we addressed both the passage rank-
ing task and the document ranking task of the Deep Learning Track,
but without using the provided initial rankings of both tasks.

We conducted the dense retrieval and the sparse retrieval as well
as the hybrid of dense and sparse retrieval on both passage ranking
and document ranking tasks. For the dense retrieval, we employed
the multiple representation ColBERT dense retrieval with and with-
out the pseudo-relevance feedback mechanism implemented. For
the sparse retrieval, we used the DPH weighting model, with and
without Bo1 query expansion applied, and followed with different
types of neural rerankers.

The structure of the remainder of this paper is structured as
follows: Section 2 introduces the notions of retrieval pipelines in
PyTerrier. Section 3 describes our contribution of TREC DL 2021
data to the ir-datasets package and pre-built MS MARCO v2
indices to the public data.terrier.org repository. Section 4 describes

the models and the framework we used as well as the experimental
setup in this work. The baseline runs and the submitted runs are
detailed in Section 5 and Section 6, where Section 5.4 and Section 6.4
highlight our results for each task, respectively. Concluding remarks
follow in Section 7.

2 PYTERRIER RETRIEVAL PIPELINES
All of our experiments and submitted runs for the TREC 2021 Deep
Learning track are built upon PyTerrier, the expressive Python
bindings for Terrier [6]. In particular, PyTerrier defines all retrieval
components (rankers or rerankers) to take the form of transformer
objects, which transform one dataframe to another. To create flex-
ible pipelines composed of multiple transformers, PyTerrier over-
loads standard Python operators for transformer objects as follows:

• >> (then): Pass the output of one transformer into another.
• | (result set union): Combine the results of two transformers
by selecting query-document pairs that appear in either set.

• % (Rank cutoff): The % operator is called rank cutoff, and
limits the number of results returned for each query.

All ranking features described in the rest of this paper were ex-
pressed as pipelines of transformers using these operators. We refer
the reader to [6] for more information about the PyTerrier platform
and the flexibility of the operators.

3 DATA
To improve the ease of working with the TRECDL 2021 datasets, we
added them to the ir-datasets package [4] (the base dataset IDs
are msmarco-passage-v2 and msmarco-document-v2). The soft-
ware downloads and verifies the dataset’s source files (e.g., corpus,
query, top100, etc.) as they are needed and provides them in com-
mon interoperable formats. We also released sparse Terrier indices
for both corpora on data.terrier.org, allowing the datasets to be
easily used in experiments on the PyTerrier [6] platform.

We tested two approaches for fast lookups by doc ID. The first
uses the conventional lookup structure used in ir-datasets, which
is a compressed file of document contents and a sorted list of doc IDs
with pointers to the location of the document in the compressed
file. The second makes use of the source file offset information
present in the doc IDs themselves (they indicate the file number
and byte offset in the uncompressed source file). We conducted sim-
ple benchmarks for lookups based on the TREC DL 2021 reranking
documents, loaded from a HDD. For the document corpus, we found
that the lookup structure was preferable to source lookups in terms
of cold reads (0.75s/query vs. 0.96s/query), cached reads (4ms/query
vs. 10ms/query), and storage requirements (62GB vs. 113GB). The
speed benefits are largely due to the compression, since less data
needs to be read from disk. For the passage corpus, we found the
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opposite; the source lookups were preferable to the lookup struc-
ture in terms of cold reads (0.6s/query vs. 3.47s/query) and cached
reads (1ms/query vs. 4ms/query), with negligible storage overhead
(56GB vs. 55GB). Based on these observations, ir-datasets uses
the lookup structure for the document corpus and source lookups
by ID for the passage corpus.

4 METHODS
In this section, we introduce the background knowledge of the
multiple representation ColBERT and the ColBERT-PRF dense re-
trieval models in Section 4.1 and Section 4.2, respectively. This
is followed by the introduction of the sparse and dense retrieval
hybrid paradigm in Section 4.3, and experimental setup details in
Section 4.4.

4.1 ColBERT End-to-End Dense Retrieval
There are two families of dense retrieval models [8]: the single
representation dense retrieval model (for instance, the ANCE [12]
model), and the multiple representation dense retrieval model (for
instance, the ColBERT [3] model). In our participation, we focused
on testing the ColBERT dense retrieval performance on large MS-
MARCO v2 datasets, as we have found that techniques such as
query pruning [10] and PRF [11] can be implemented upon its
multiple embedded representations.

In the ColBERT model, a query 𝑞 is encoded into a set of |𝑞 |
query embeddings {𝜙𝑞1 , . . . , 𝜙𝑞 |𝑞 | } and a document is encoded into
a set of |𝑑 | document embeddings {𝜙𝑑1 , . . . , 𝜙𝑑 |𝑑 | }. For the end-to-
end ColBERT dense retrieval model, the document embeddings are
pre-computed and can be encoded into a FAISS [2] index, which
allows the efficient approximate nearest neighbour search using the
query embeddings over the document embeddings. Typically, there
are two stages consisting of a ColBERT end-to-end model. In the
first stage, a set of 𝑘 ′ document embeddings relevant to the query
embeddings is identified using the approximate nearest neighbour
search, then the returned document embeddings are mapped to
a list of 𝑘 candidate documents. The default setting of 𝑘 ′ = 1000
results in 𝑘 ∼ 7000 documents being retrieved.

Next, in the second exact scoring stage, the contextualised simi-
larity score 𝑠 (𝑞, 𝑑) between a query 𝑞 and a document 𝑑 is obtained
by summing themaximum similarity score between the query token
embeddings and the document token embeddings [3], as follows:

𝑠 (𝑞, 𝑑) =
|𝑞 |∑
𝑖=1

max
𝑗=1,..., |𝑑 |

𝜙𝑇𝑞𝑖𝜙𝑑 𝑗
(1)

However, the the computational complexity in the exact scoring
stage is proportional to 𝑘 , the number of candidate documents pro-
duced by the first approximate nearest neighbour (ANN) retrieval
stage, which can be large. Thus, we adopt the approximate nearest
neighbour selection mechanism [5] in the first ANN retrieval stage,
which makes use of the scores in the ANN search stage and further
produces a smaller candidate ranking of documents to be passed
to the exact scoring stage. In particular, we employed the MaxSim
method to instantiate a ranking of the candidate documents, which
scores and ranks the returned candidate documents by taking for
each query embedding the maximum approximate similarity score
appearing for any of the document embeddings in the document.

Experiments in [5] shows that a candidate set of 300 documents
is sufficient to ensure high NDCG@10 effectiveness on v1 of MS
MARCO.

More formally, following our notation introduced in Section 2,
given some query formulation 𝑞, let 𝑅𝑒𝑡 (I, 𝑘) (𝑞) → 𝑅 denote
a retrieval process that takes as input the query 𝑞, and returns a
ranking of𝑘 documents𝑅, obtained from indexI. The experimental
pipeline for ColBERT end-to-end search can be described as follow:

𝑅𝑒𝑡𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, 𝑘) = 𝑅𝑒𝑡𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, 𝑘) » 𝑀𝑎𝑥𝑆𝑖𝑚(I, 𝑘)
(2)

where 𝑅𝑒𝑡𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, 𝑘) denotes the approximate near-
est neighbour selection using MaxSim method and𝑀𝑎𝑥𝑆𝑖𝑚(I, 𝑘)
denotes the exact maximum similarity reranking stage.

4.2 Dense PRF
In addition, in our participation, we also employed the ColBERT-
PRF [11] model. ColBERT-PRF model is built upon the ColBERT
model and implemented with PRF mechanism. More specifically,
the stages of ColBERT-PRF [11] can be summarised as follows:

(a) After obtaining the top ranked documents and their corre-
sponding document embeddings from the first stage with ANN
retrieval, ColBERT-PRF employs KMeans clustering to obtain the
representive (centroid) emebddings.

(b) Among the representative embeddings, to identify the most
discriminative embeddings, ColBERT-PRF resort to FAISS to obtain
the nearest tokens as the most likely tokens for a given represen-
tative embedding. By doing so, the Inverse Document Frequency
(IDF) of the most likely token is calculated as the weight of the
given centroid embedding. This, the representative embeddings
with high discriminative power would be selected as the expansion
embeddings to be appended to the original query representation.

(c) Finally, to control the emphasis of the expansion embeddings
in the final exact scoring stage, a hyperparameter 𝛽 is used. Thus
the weight of an expansion embedding is influenced by both the
IDF and 𝛽 .

Following our notation from earlier, let 𝑃𝑅𝐹𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, \ ) de-
note an instantiation of ColBERT-PRF with parameter \ that per-
forms query embedding expansion on the retrieved documents
from an earlier stage. Therefore, the full ColBERT-PRF process ap-
plied to a document ranking from ColBERT dense retrieval can be
formulated as:

𝑅𝑒𝑡𝐶𝑜𝑙𝐵𝐸𝑅𝑇−𝑃𝑅𝐹 (I, 𝑘) = 𝑅𝑒𝑡𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, 𝑘)
» 𝑃𝑅𝐹𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, \ )
» 𝑀𝑎𝑥𝑆𝑖𝑚𝐶𝑜𝑙𝐵𝐸𝑅𝑇 (I, 𝑘) (3)

4.3 Hybrid of Sparse and Dense Retrieval
Apart from the dense retrieval models, we also implemented the
hybrid of sparse and dense retrieval model, whose architecture
is shown as Figure 1. In the hybrid of sparse and dense retrieval
pipeline, we made combination of sparse retrieval, namely the
sparse retrieval using DPH with Bo1 [1] query expansion on the
inverted index and ColBERT-PRF dense retrieval on the ColBERT
FAISS [2] index, then the obtained documents are further reranked
using the monoT5 model on the sparse inverted index.



Figure 1: Hybrid of sparse and dense retrieval.

Listing 1: Mapping and MaxPassage Document Runs from
Passage Runs.
1 # r ead ing sou r c e passage run us ing P yT e r r i e r
2 s ou r c ed f = pt . i o . r e a d _ r e s u l t s ( i n p u t f i l e )
3 s o u r c e t = pt . t r an s f o rme r . Sou r ceT rans fo rmer ( s ou r c ed f )
4 # c a l c u l a t i n g qu e r i e s
5 qu e r i e s = s ou r c ed f [ [ ' q id ' ] ] . d r o p _dup l i c a t e s ( )
6 da t a s e t = pt . g e t _ d a t a s e t ( " i r d s : msmarco−passage −v2 " )
7 de f make_passaged_docnos ( d f ) :
8 # a c t u a l msmarco doc docnos i n " doc id "
9 df = df . drop ( columns = { ' doc id ' } , e r r o r s = ' i g no r e ' )
10 df = df . rename ( columns = { ' docno ' : ' passageno ' } )
11 df [ " docno " ] = df [ " msmarco_document_id " ] + "%p " + df [ " rank↘

" ] .map ( s t r )
12 r e t u r n df
13 de f docmaxp ( input ) :
14 r e t u r n ( input >>
15 pt . t e x t . g e t _ t e x t ( da ta s e t , " msmarco_document_id " , ↘

by_query=True , v e r bo s e =True ) >>
16 pt . apply . by_query ( make_passaged_docnos ) >>
17 pt . t e x t . max_passage ( )
18 ) % 100
19 # app l y i ng Trans fo rmer
20 r e s = docmaxp ( s ou r c e t ) ( q u e r i e s )
21 # w r i t i n g the r e s u l t s
22 pt . i o . w r i t e _ r e s u l t s ( res , " / path / to / save / r e s . gz " )

Following our notation from earlier, let 𝐼𝑑𝑒𝑛𝑠𝑒 and 𝐼𝑠𝑝𝑎𝑟𝑠𝑒 denote
the dense index and Terrier sparse index of a given corpora. In
creating a hybrid of sparse and dense retrieval systems, we made
the union of the returned documents from dense retrieval model,
namely ColBERT-PRF, and the returned documents from sparse
retrieval model, for instance DPH with or without query expansion.
Then the fused documents go through a neural reranker, for in-
stance the monoT5 [9] reranker, and return a final list of reranked
documents for further analysis:

𝑅𝑒𝑡𝐶𝑜𝑙𝐵𝐸𝑅𝑇−𝑃𝑅𝐹 (I𝑑𝑒𝑛𝑠𝑒 , 𝑘) | 𝐷𝑃𝐻𝑤/𝑄𝐸 (I𝑠𝑝𝑎𝑟𝑠𝑒 , 𝑘)
» 𝑀𝑜𝑛𝑜𝑇 5(I𝑠𝑝𝑎𝑟𝑠𝑒 , 𝑘) (4)

where𝑅𝑒𝑡𝐶𝑜𝑙𝐵𝐸𝑅𝑇−𝑃𝑅𝐹 (I𝑑𝑒𝑛𝑠𝑒 , 𝑘) can be obtained using Equation (3).

4.4 Experimental Setup Details
All our experiments were conducted on the PyTerrier [6] IR experi-
mentation platform. PyTerrier is available from https://github.com/
terrier-org/pyterrier.

To support dense retrieval: we built the ColBERT dense in-
dices for the msmarco-passage-v2 following the settings of the
original ColBERT [3] paper. However, as msmarco-passage-v2 is
markedly larger than the original msmarco-passage corpus, we
faced particular technique challenges. Indeed, the ColBERT index
for msmarco-passage-v2 is 2.7 TB in size. Thus, to avoid loading

the entire index into memory, we convert the conventional Py-
Torch format index into a Numpy format index that can bememory-
mapped, thus facilitating experimentation without needing a ma-
chine with 3 TB of RAM. On the other hand, as passage embeddings
must be fetched from disk, efficiency was not high, and we were
not able to conduct as many experiments as we would have liked.

For ColBERT-PRF model, we employed the ColBERT model
checkpoint and followed the default setting of the implementa-
tion of the ColBERT-PRF model [11]. The implementation details
are available from PyTerrier ColBERT plugin https://github.com/
terrierteam/pyterrier_colbert. For the passage ranking dense re-
trieval runs, we directly operated on the msmarco-passage-v2
dense index.

For the document ranking task, we did not create a ColBERT
index, due to the large size of the msmarco-document-v2 corpus.
Instead, for the document ranking runs with dense retrieval, we
obtained the document runs by mapping the msmarco-passage-v2
passages to the corresponding documents in the document corpus,
then applyingMaxPassage. Listing 1 provides salient PyTerrier code
for performing the mapping and applying MaxPassage.

For the experimental setup of sparse retrieval: we built the Terrier
inverted index for msmarco-passage-v2 and msmarco-document-v2
corpora, respectively. For the document ranking task, we applied
passaging (applying a sliding window of length 150 tokens and
stride 75); documents are ranked by applying max passage.

5 RUNS FOR TREC DL 2021 PASSAGE
RANKING TRACK

We submitted 3 runs to the passage ranking task. We were also
invited by the deep learning track organisers to submit two baseline
runs. After submission, we found the implementation of ColBERT-
PRF for the submitted runs had a bug, which might caused the
performances of the submitted runs to be reduced. Thus, for both
passage ranking task and document ranking task, we present ad-
ditional corrected runs and will analyse the model performances
according to the corrected runs.

5.1 Baseline Runs
The baselines that we submitted to the 2021 Deep Learning passage
ranking track are constituted of two traditional sparse retrieval
runs with and without query expansion, as follows:

• uogTrPD: Applying DPH on our passage sparse index.
• uogTrPPD: Applying DPH and Bo1 query expansion on our
passage sparse index.

5.2 Submitted Group Runs
For the 2021 Deep Learning passage ranking track, we submitted
the following 3 runs:

• uogTrPC: Conducts ColBERT dense retrieval; the first stage
retrieval uses our 𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 to identify a candidate set of
100 passages.

• uogTrPCP: Conducts ColBERT-PRF dense retrieval; the first
stage retrieval uses our 𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 to identify a candidate
set of 100 passages.

https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
https://github.com/terrierteam/pyterrier_colbert
https://github.com/terrierteam/pyterrier_colbert


• uogTrPot6: Conducts a hybrid of the sparse retrieval run,
namely uogTrPPD, and the dense retrieval run, namely uogTrPCP,
then reranks using the monoT5 model.

5.3 Additional Runs
In addition, we describe three additional corrected dense retrieval
runs and two additional sparse retrieval runs.

• uogTrPC-c: Conducts ColBERT dense retrieval; the first
stage retrieval uses our 𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 to identify a candidate
set of 100 passages.

• uogTrPCP-c: Conducts ColBERT-PRF dense retrieval; the
first stage retrieval uses our 𝐴𝑁𝑁𝑀𝑎𝑥𝑆𝑖𝑚 to identify a can-
didate set of 100 passages.

• uogTrPot6-c: Conducts the hybrid of the sparse retrieval
run, namely uogTrPPD, and the dense retrieval run, namely
uogTrPCP, then reranks using the monoT5 model.

• upgTrPPDC: Applies DPH with Bo1 query expansion, then
reranks using ColBERT reranker on the passage sparse index.

• upgTrPPDt5: Applies DPH with Bo1 query expansion, then
reranks using monoT5 reranker on the passage sparse index.

5.4 Results & Analysis
Table 1 lists the obtained effectiveness results for all our passage
ranking task runs, including our baseline runs, submitted group
runs and additional runs as well as the TREC per-topic best and me-
dian scores across all participating systems, in terms of MAP@100,
P@10, NDCG@10 and MRR.

Firstly, we analyse the performance of the baseline runs. Compar-
ing uogTrPD with uogTrPPD, it is clear that sparse query expansion
benefited all metrics. Then, we turn our attention to our corrected
additional group runs. Among these corrected additional runs, both
dense retrieval runs, namely uogTrPC-c run, which performs the
ColBERT end-to-end dense retrieval and uogTrPCP-c, which per-
forms the ColBERT-PRF dense retrieval exhibit higher performance
than both the sparse baseline runs as well as the TRECMedian on all
metrics. However, we notice that the reformulated query represen-
tation using the additional pseudo-relevance feedback information
doesn’t bring benefits on the passage v2 corpora. A possible reason
behind this is that the default setting of the original ColBERT-PRF
is tuned on msmarco-passage-v1 and the TREC 2019 query set,
which may not be suitable for the TREC 2021 query set which
contains many longer queries than the TREC 2019 query set.

In addition, the uogTrPot5-c run, which conducts the hybrid of
the sparse retrieval using DPH with Bo1 query expansion and the
dense retrieval using ColBERT-PRF, then reranks using the monoT5
model, achieves the highest performance among all the the group
runs. This indicates that the dense retrieval and the sparse retrieval
have a complementary effect which can produce the documents
with higher quality. Finally, we further compared the sparse re-
trieval reranked using ColBERT and monoT5 rerankers, namely
the uogTrPPDC run and uogTrPPDt5 runs. We find that for
passage ranking task, the uogTrPPDt5 outperforms the
uogTrPPDC on all metrics.

Analysing the overall trends for our participation in passage
ranking task, while it is clear that dense retrieval is overall better
than the sparse retrieval on the passage retrieval task, the hybrid of
sparse and dense retrieval with the neural reranker applied achieves
the best performance. In addition, for passage ranking task, monoT5

Table 1: Results on TREC Deep Learning track 2021 Passage
Ranking track. The best performing run for each measure
is emphasised.

MAP@100 NDCG@10 P@10 MRR

TREC Best (per-topic) 0.4490 0.8369 0.7865 0.9733
TREC Median (per-topic) 0.1941 0.5997 0.5057 0.7680

baseline runs

uogTrPD 0.1438 0.4619 0.3698 0.3307
uogTrPPD 0.1724 0.4747 0.4000 0.5711

submitted runs

uogTrPC 0.0860 0.4611 0.3755 0.6119
uogTrPCP 0.0451 0.1389 0.1038 0.2381
uogTrPot5 0.2499 0.6517 0.5736 0.8160

additional runs

uogTrPC-c 0.2416 0.6264 0.5814 0.7764
uogTrPCP-c 0.2315 0.5958 0.5605 0.7825
uogTrPot5-c 0.3323 0.6904 0.6395 0.8781
uogTrPPDt5 0.3117 0.6620 0.5887 0.8274
uogTrPPDC 0.2538 0.6076 0.5302 0.7009

is more capable to bring higher quality document to top ranks than
ColBERT.

6 RUNS FOR TREC DL 2021 DOCUMENT
RANKING TRACK

We submitted 3 runs to the document ranking task. We were also
invited by the track organisers to submit baselines runs, which
conducted on the sparse index. We chose to submit 5 baseline runs,
which also acted as baselines for our group’s main submission runs.
In addition, we describe 5 additional corrected runs.

6.1 Baseline Runs
Our submitted baseline runs to the document ranking task of the
TREC 2021 Deep Learning track for document ranking task con-
ducted on the sparse index, and constituted three runs on the doc-
ument sparse index and two runs mapping from passage runs. In
particular, our 5 baseline runs are as follows:

• uogTrBaseDD: Applies DPH on the document sparse index.
• uogTrBaseDDQ: Applies DPH and Bo1 query expansion on
the document sparse index. However, the submitted run was
a duplicated submission of uogTrDD, so we report corrected
results under uogTrBaseDDQ-c.

• uogTrBaseDDpmp: Applies DPH on our passage sparse in-
dex, followed by mapping to documents, and application of
MaxPassage.

• uogTrBaseDDQpmp: Applies DPH and Bo1 query expansion
on the passage sparse index followed by mapping to docu-
ments, and application of MaxPassage.

• uogTrDDQC: Applies DPH with Bo1 query expansion, then
reranks using ColBERT reranker on the document sparse
index.

6.2 Submitted Group Runs
We submitted the following 3 runs:



• uogTrDCPpmp: Conducts the mapping to documents and
application of MaxPassage from the passage run uogTrPC.

• uogTrDot5pmp: Conducts the mapping to documents and
application of MaxPassage from the passage run uogTrDot5.

• uogTrDDQt5: Applies DPH with Bo1 query expansion on
the document sparse index, then reranked using monoT5
neural reranker.

6.3 Additional Runs
In addition, we describe 4 additional runs, including 3 correction
runs and 1 additional run, as follows:

• uogTrBaseDDQ-c: Applies DPH and Bo1 query expansion
on the document sparse index.

• uogTrDCpmp: Conducts the mapping to documents and ap-
plication of MaxPassage from the passage run uogTrPC-c.

• uogTrDCP-c Conducts the mapping to documents and appli-
cation of MaxPassage from the passage run uogTrPCP-c.

• uogTrDot5pmp-c: Conducts hybrid of the sparse retrieval,
namely uogTrBaseDDQ-c, and the dense retrieval run, namely
uogTrDCP-c, then reranks using MonoT5 model.

6.4 Results & Analysis
Table 2 lists the obtained effectiveness results for all our document
ranking task runs, including our baseline, submitted group runs
and additional runs, as well as the TREC per-topic best and median
scores across all participating systems, in terms ofMAP@100, P@10,
NDCG@10 and MRR.

When comparing the performance of the five baselines, firstly, we
notice that the runswith query expansion, namely uogTrBaseDDQ-c
and uogTrBaseDDQpmp, could improve over the runs without query
expansion, namely uogTrBaseDD and uogTrBaseDDpmp on all met-
rics, respectively. However, the performances of both runs with
query expansion, namely uogTrBaseDDQ-c and uogTrBaseDDQpmp,
are still lower than the TREC Median metrics. Moreover, when
comparing between the two different strategies for obtaining the
document runs, i.e. directly retrieve on the document inverted
index or conducts mapping to documents and application of Max-
Passage, the former strategy results higher performance than the
latter strategy. Our explanation for this is that not all passages of
the documents are retained in the passage corpus when generat-
ing the MSMARCO v2 corpora. Indeed, if the relevant passages
are omitted from the passage corpus, a document run only relying
on the runs retrieved from the passage corpus would experience
degraded recall. Finally, we find that re-ranking using the ColBERT
neural reranker on top of the DPHwith Bo1 query expansion model,
retrieval effectiveness could be further improved. Indeed, as we can
see that uogTrBaseDDQC achieves the highest performance among
the baseline runs and exhibit higher performance than the TREC
Median performance.

Next, we analyse the dense retrieval runs and hybrid of the
sparse retrieval and the retrieval runs. As we explained in the pre-
vious section, with the error corrected, here we focus on analysing
the additional corrected runs. On analysing Table 2, we find that
the ColBERT-PRF dense retrieval run, namely the uogTrDCPpmp-c
run, exhibits higher MAP@100 score than the ColBERT-E2E model,
namely the uogTrDCpmp, but slightly lower than other metrics,

Table 2: Results on TREC Deep Learning track 2021 Docu-
ment Ranking track. The best performing run for eachmea-
sure is emphasised.

MAP@100 NDCG@10 P@10 MRR

TREC Best (per-topic) 0.4384 0.8547 0.9719 0.9868
TREC Median (per-topic) 0.2519 0.6596 0.8298 0.2227

baseline runs

uogTrBaseDD 0.2487 0.5704 0.7561 0.8297
uogTrBaseDDQ 0.2487 0.5704 0.7561 0.8297
uogTrBaseDDpmp 0.1769 0.5070 0.6772 0.8563
uogTrBaseDDQpmp 0.2029 0.5105 0.6895 0.9649
uogTrBaseDDQC 0.2869 0.6966 0.8456 0.9649

submitted runs

uogTrDCPpmp 0.0459 0.0115 0.2421 0.3829
uogTrDot5pmp 0.2077 0.6411 0.7842 0.9386
uogTrDDQt5 0.2487 0.7201 0.8596 0.9737

additional runs

uogTrBaseDDQ-c 0.2894 0.5937 0.7719 0.8599
uogTrDCpmp 0.1869 0.6134 0.7442 0.9128

uogTrDCPpmp-c 0.1938 0.5930 0.7326 0.8969
uogTrDot5pmp-c 0.3353 0.7394 0.8581 0.9767

which is consistent with what we have observed in the passage
ranking task. Secondly, we present an additional run uogTrDDQt5-c
which applies monoT5 reranker on top of the DPH with Bo1 query
expansion model. Compared with uogTrBaseDDQC, which conducts
DPH with Bo1 query expansion followed by the ColBERT reranker,
we find that the uogTrDDQt5 run exhibits marginally higher per-
formance than the uogTrBaseDDQC run in terms of NDCG@10,
MRR and P@10 while slightly lower in terms of MAP@100. Finally,
similar to the passage ranking task, we also notice that the hy-
brid of the sparse retrieval and the dense retrieval run, namely the
uogTrDot5pmp-c run, achieves the highest performance among all
our group runs.

Overall, for the document ranking task, we observe that the dense
retrieval based on mapping of passage runs did not outperform the
sparse retrieval runs. This can be caused by the information loss for
obtaining the document runs by conducting Mapping and applica-
tion of MaxPassage from passage runs. In addition, we notice that
the hybrid of the sparse retrieval and the dense retrieval, followed by
a neural reranker run, namely the uogTrDot5pmp-c run, achieves
the best performance. The best run in document ranking task is the
When comparing our best hybrid run, namely uogTrDot5pmp-c,
with the uogTrDDQt5-c run (using the DPH model with query ex-
pansion then further reranked using the monoT5 neural reranker
model), we can find that uplift of the effectiveness comes from
high-quality documents produced by the dense retrieval.

7 CONCLUSIONS
Overall, our participation in the TREC 2021 Deep Learning track
was a useful activity to refine methods of integration of deep learn-
ing techniques as retrieval pipelines in PyTerrier. We found that:
(a) For both the passage ranking task and the document ranking
task, in terms of the retrieval effectiveness, the hybrid of dense
and sparse retrieval followed with the neural reranker run is the



most effective run among all our group runs as well as the base-
line runs; (b) The dense retrieval models for passage ranking task
are more effective than all the sparse retrieval models, while for
document ranking task, dense retrieval doesn’t outperform than
the sparse retrieval - this can be caused by the information loss for
obtaining the document runs by mapping passages to documents
and application of MaxPassage; (c) For sparse retrieval, the monoT5
reranker is more effective than ColBERT reranker when applied on
top of DPH with query expansion model. For the future work, we
would like to retrain ColBERT model on MSMARCO v2 corpora,
though there are some doubts in the community about the quality
of the automatically-generated labels in v2. In addition, it would
be interesting to test the performance of the single representation
dense retrieval on MSMARCO v2 corpora.
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