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1 Introduction

The TREC Fair Ranking Track aims to provide a platform for participants to develop and evaluate novel
retrieval algorithms that can provide a fair exposure to a mixture of demographics or attributes, such as
ethnicity, that are represented by relevant documents in response to a search query. For example, particular
demographics or attributes can be represented by the documents’ topical content or authors.

The 2021 Fair Ranking Track adopted a resource allocation task. The task focused on supporting
Wikipedia editors who are looking to improve the encyclopedia’s coverage of topics under the purview
of a WikiProjectH WikiProject coordinators and/or Wikipedia editors search for Wikipedia documents that
are in need of editing to improve the quality of the article. The 2021 Fair Ranking track aimed to ensure that
documents that are about, or somehow represent, certain protected characteristics receive a fair exposure to
the Wikipedia editors, so that the documents have an fair opportunity of being improved and, therefore, be
well-represented in Wikipedia. The under-representation of particular protected characteristics in Wikipedia
can result in systematic biases that can have a negative human, social, and economic impact, particularly
for disadvantaged or protected societal groups [3] [5].

2 Task Definition

The 2021 Fair Ranking Track used an ad hoc retrieval protocol. Participants were provided with a corpus
of documents (a subset of the English language Wikipedia) and a set of queries. A query was of the form of
a short list of search terms that represent a WikiProject. Each document in the corpus was relevant to zero
to many WikiProjects and associated with zero to many fairness categories.

There were two tasks in the 2021 Fair Ranking Track. In each of the tasks, for a given query, participants
were to produce document rankings that are:

1. Relevant to a particular WikiProject.
2. Provide a fair exposure to articles that are associated to particular protected attributes.

The tasks shared a topic set, the corpus, the basic problem structure and the fairness objective. However,
they differed in their target user persona, system output (static ranking vs. sequences of rankings) and
evaluation metrics. The common problem setup was as follows:

e Queries were provided by the organizers and derived from the topics of existing or hypothetical
WikiProjects.

Ihttps://en.wikipedia.org/wiki/WikiProject
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e Documents were Wikipedia articles that may or may not be relevant to any particular WikiProject
that is represented by a query.

« Rankings were ranked lists of articles for editors to consider working on.

» Fairness of exposure was achieved with respect to the geographic location of the articles (geographic
location annotations were provided). For the evaluation topics, in addition to geographic fairness, to
the extent that biographical articles are relevant to the topic, the rankings should have also been fair
with respect to an undisclosed demographic attribute of the people that the biographies cover,
which was gender.

2.1 Task 1: WikiProject Coordinators

The first task focused on WikiProject coordinators as users of the search system; their goal is to search for
relevant articles and produce a ranked list of articles needing work that other editors can then consult when
looking for work to do.

Output: The output for this task was a single ranking per query, consisting of 1000 articles.

Evaluation was a multi-objective assessment of rankings by the following two criteria:

e Relevance to a WikiProject topic. Relevance assessments were provided for articles for the train-
ing queries derived from existing Wikipedia data; evaluation query relevance were assessed by NIST
assessors. Ranking relevance was computed with nDCG, using binary relevance and logarithmic decay.

o Fairness with respect to the exposure of different fairness categories in the articles returned in response
to a query.

Section [4.2] contains details on the evaluation metrics.

2.2 Task 2: Wikipedia Editors

The second task focused on individual Wikipedia editors looking for work associated with a project. The
conceptual model is that rather than maintaining a fixed work list as in Task 1, a WikiProject coordinator
would create a saved search, and when an editor looks for work they re-run the search. This means that
different editors may receive different rankings for the same query, and differences in these rankings may be
leveraged for providing fairness.

Output: The output of this task is 100 rankings per query, each consisting of 50 articles.

Evaluation was a multi-objective assessment of rankings by the following three criteria:

e Relevance to a WikiProject topic. Relevance assessments were provided for articles for the train-
ing queries derived from existing Wikipedia data; evaluation query relevance was assessed by NIST
assessors. Ranking relevance was computed with nDCG.

o Work needed on the article (articles needing more work preferred). We provided the output of an
article quality assessment tool for each article in the corpus; for the purposes of this track, we assumed
lower-quality articles need more work.

o Fairness with respect to the exposure of different fairness categories in the articles returned in response
to a query.



The goal of this task was not to be fair to work-needed levels; rather, we consider work-needed and topical
relevance to be two components of a multi-objective notion of relevance, so that between two documents
with the same topical relevance, the one with more work needed is more relevant to the query in the context
of looking for articles to improve.

This task used ezxpected exposure to compare the exposure article subjects receive in result rankings to the
ideal (or target) exposure they would receive based on their relevance and work-needed [I]. This addresses
fundamental limits in the ability to provide fair exposure in a single ranking by examining the exposure over
multiple rankings.

For each query, participants provided 100 rankings, which we considered to be samples from the distribu-
tion realized by a stochastic ranking policy (given a query g, a distribution 7, over truncated permutations of
the documents). Note that this is how we interpret the queries, but it did not mean that a stochastic policy
is how the system should have been implemented — other implementation designs were certainly possible.
The objective was to provide equitable exposure to documents of comparable relevance and work-needed,
aggregated by protected attribute. Section [I.3] has details on the evaluation metrics.

3 Data

This section provides details of the format of the test collection, topics and ground truth. Further details
about data generation and limitations can be found in Section [5.2]

3.1 Obtaining the Data

The corpus and query data set is distributed via Globus, and can be obtained in two ways. First, it can
be obtained via Globus, from our repository at https://boi.st/TREC2021Globus. From this site, you can
log in using your institution’s Globus account or your own Google account, and synchronize it to your local
Globus install or download it with Globus Connect Personalﬂ This method has robust support for restarting
downloads and dealing with intermittent connections. Second, it can be downloaded directly via HTTP from:
https://data.boisestate.edu/library/Ekstrand-2021/TRECFairRanking2021/.

The runs and evaluation qrels will be made available in the ordinary TREC archives.

3.2 Corpus

The corpus consisted of articles from English Wikipedia. We removed all redirect articles, but left the
wikitext (markup Wikipedia uses to describe formatting) intact. This was provided as a JSON file, with
one record per line, and compressed with gzip (trec_corpus.json.gz). Each record contains the following
fields:

id The unique numeric Wikipedia article identifier.
title The article title.
url The article URL, to comply with Wikipedia licensing attribution requirements.

text The full article text.

The contents of this corpus were prepared in accordance with, and licensed under, the CC BY-SA 3.0
licenseEI The raw Wikipedia dump files used to produce this corpus are available in the source directory;
this is primarily for archival purposes, because Wikipedia does not publish dumps indefinitely.

2https://wuw.globus.org/globus-connect-personal
3https://creativecommons.org/licenses/by-sa/3.0/
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3.3 Topics

Each of the track’s training topics is based on a single Wikiproject. The topic is also GZIP-compressed
JSON lines (file trec_topics. json.gz), with each record containing:

id A query identifier (int)

title The Wikiproject title (string)

keywords A collection of search keywords forming the query text (list of str)
scope A textual description of the project scope, from its project page (string)

homepage The URL for the Wikiproject. This is provided for attribution and not expected to be used by
your system as it will not be present in the evaluation data (string)

rel_docs A list of the page IDs of relevant pages (list of int)

The keywords are the primary query text. The scope is there to provide some additional context and
potentially support techniques for refining system queries.

In addition to topical relevance, for Task 2: Wikipedia Editors (Section , participants were also ex-
pected to return relevant documents that need more editing work done more highly than relevant documents
that need less work done.

3.4 Annotations

NIST assessors annotated the retrieved documents with binary relevance score for given topics. We provided
additional options like unassessable and skip if the document-topic pair is difficult to assess or the assessor
is not familiar with the topic. The annotations are incomplete, for reasons including;:

o Task 2 requires sequence of rankings which results a large number of dataset, thus it was not possible
to annotate all the retrieved documents.

e Some documents were not complete and did not have enough information to match with the topic.

We obtained assessments through tiered pooling, with the goal of having assessments for a coherent
subset of rankings that are as complete as possible. We have assessments for the following tiers:

o The first 20 items of all rankings for Task 1 (all queries).

o The first 5 items of the first 25 rankings from every submission to Task 2 (about 75% of the queries).

Details are included with the annotations and metric code.

3.5 Metadata and Fairness Categories

For training data, participants were provided with a geographical fairness ground truth. For the evaluation
data, submitted systems were evaluated on how fair their rankings are to the geographical fairness category
and an undisclosed personal demographic attribute (gender).

We also provided a simple Wikimedia quality score (a float between 0 and 1 where 0 is no content on
the page and 1 is high quality) for optimizing for work-needed in Task 2. Work-needed was operationalized
as the reverse—i.e. 1 minus this quality score. The discretized quality scores were used as work-needed for
final system evaluation.

This data was provided together in a metadata file (trec_metadata. json.gz), in which each line is the
metadata for one article represented as a JSON record with the following keys:



page_id Unique page identifier (int)

quality_score Continuous measure of article quality with 0 representing low quality and 1 representing high
quality (float in range [0,1])

quality_score_disc Discrete quality score in which the quality score is mapped to six ordinal categories
from low to high: Stub, Start, C, B, GA, FA (string)

geographic_locations Continents that are associated with the article topic. Zero or many of: Africa,
Antarctica, Asia, Europe, Latin America and the Caribbean, Northern America, Oceania (list of string)

gender For articles with a gender, the gender of the article’s subject, obtained from WikiData.

3.6 Output

For Task 1, participants outputted results in rank order in a tab-separated file with two columns:

id The query ID for the topic

page_id ID for the recommended article

For Task 2, this file had 3 columns, to account for repeated rankings per query:
id Query ID

rep_number Repeat Number (1-100)

page_id ID for the recommended article

4 Evaluation Metrics

Each task was evaluated with its own metric designed for that task setting. The goal of these metrics was
to measure the extent to which a system (1) exposed relevant documents, and (2) exposed those documents
in a way that is fair to article topic groups, defined by location (continent) and (when relevant) the gender
of the article’s subject.

This faces a problem in that Wikipedia itself has well-documented biases: if we target the current group
distribution within Wikipedia, we will reward systems that simply reproduce Wikipedia’s existing biases
instead of promoting social equity. However, if we simply target equal exposure for groups, we would ignore
potential real disparities in topical relevance. Due to the biases in Wikipedia’s coverage, and the inability
to retrieve documents that don’t exist to fill in coverage gaps, there is not good empirical data on what the
distribution for any particular topic should be if systemic biases did not exist in either Wikipedia or society
(the “world as it could and should be” [2]). Therefore, in this track we adopted a compromise: we averaged
the empirical distribution of groups among relevant documents with the world population (for location) or
equality (for gender) to derive the target group distribution.

Code to implement the metrics is found at https://github.com/fair-trec/trec2021-fair-public!

4.1 Preliminaries

The tasks were to retrieve documents d from a corpus D that are relevant to a query ¢. r, € [0, 1]‘D| is a
vector of relevance judgements for query g. We denote a ranked list by L; L; is the document at position ¢
(starting from 1), and L;l is the rank of document d. For Task 1, each system returned a single ranked list;
for Task 2, it returned a sequence of rankings L.
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We represented the group alignment of a document d with an alignment vector a; € [0, 1]‘g|. aqg is
document d’s alignment with group g. A € [0, 1]‘D|X|g‘ is the alignment matrix for all documents. ayorig
denotes the distribution of the world[

We considered fairness with respect to two group sets, Ggeo and Ggender- We operationalized this inter-
sectional objective by letting G = Ggeo X Ggender, the Cartesian product of the two group sets. Further,
alignment under either group set may be unknown; we represented this case by treating “unknown” as its
own group (g) in each set. In the product set, a document’s alignment may be unknown for either or both
groups.

In all metrics, we use log discounting to compute attention weights:

1
Vi log, max (i, 2)

Task 2 also considered the work each document needs, represented by wqy € {1,2,3,4}.

4.2 Task 1: WikiProject Coordinators (Single Rankings)

For the single-ranking Task 1, we adopted attention-weighted rank fairness (AWRF), first described by
Sapiezynski et al. [6] and named by Raj et al. [4]. AWRF computes a vector dy, of the cumulated exposure a
list gives to each group, and a target vector dj; we then compared these with the Jenson-Shannon divergence:

= Z viar, cumulated attention
i
d/
d; = ,7L normalize to a distribution
147 [1

1
d; = § (ATrq + aworld)

AWRF(L) = 1 — djs(dy, d}) (1)

For Task 1, we ignored documents that are fully unknown for the purposes of computing dz, and dj; they
do not contribute exposure to any group.

The resulting metric is in the range [0, 1], with 1 representing a maximally-fair ranking (the distance
from the target distribution is minimized). We combined it with an ordinary nDCG metric for utility:

NDCG(L) = lezaqqd (2)
M, (L) = AWRF(L) x NDCG(L) 3)

To score well on the final metric M7, a run must be both accurate and fair.

4.3 Task 2: Wikipedia Editors (Multiple Rankings)

For Task 2, we used Expected Exposure [I] to compare the exposure each group receives in the sequence
of rankings to the exposure it would receive in a sequence of rankings drawn from an ideal policy with the
following properties:

¢ Relevant documents come before irrelevant documents

¢ Relevant documents are sorted in nonincreasing order of work needed

40Obtained from https://en.wikipedia.org/wiki/List_of_continents_and_continental_subregions_by_population
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o Within each work-needed bin of relevant documents, group exposure is fairly distributed according to
the average of the distribution of relevant documents and the distribution of global population (the
same average target as before).

We have encountered some confusion about whether this task is requiring fairness towards work-needed;
as we have designed the metric, work-needed is considered to be a part of (graded) relevance: a document is
more relevant if it is relevant to the topic and needs significant work. In the Expected Exposure framework,
this combined relevance is used to derive the target policies.

To apply expected exposure, we first define the exposure ¢; a document d receives in sequence L:

1
@= T > wy (4)
LeL '

This forms an exposure vector € € RIP!. Tt is aggregated into a group exposure vector -, including
“unknown” as a group:

~=A"e (5)

Our implementation rearranges the mean and aggregate operations, but the result is mathematically
equivalent.

We then compare these system exposures with the target exposures €* for each query. This starts
with the per-document ideal exposure; if m,, is the number of relevant documents with work-needed level
w € {1,2,3,4}, then according to Diaz et al. [1] the ideal exposure for document d is computed as:

M>wy,

" 1
€1 = miwd Z V; (6)

i:m>wd+1

We use this to compute the non-averaged target distribution v*:

5 = ATe (7)

Since we include “unknown” as a group, we have a challenge with computing the target distribution by
averaging the empirical distribution of relevant documents and the global population — global population
does not provide any information on the proportion of relevant articles for which the fairness attributes are
relevant. Our solution, therefore, is to average the distribution of known-group documents with the world
population, and re-normalize so the final distribution is a probability distribution, but derive the proportion
of known- to unknown-group documents entirely from the empirical distribution of relevant documents.
Extended to handle partially-unknown documents, this procedure proceeds as follows:

o Average the distribution of fully-known documents (both gender and location are known) with the
global intersectional population (global population by location and equality by gender).

e Average the distribution of documents with unknown location but known gender with the equality
gender distribution.

o Average the distribution of documents with unknown gender but known location with the world pop-
ulation.

The result is the target group exposure v*. We use this to measure the expected exposure loss:

Ma(Ly) = |y =" ll2 (8)
=7 =2y +Y Y

EE-D(Ly) =~" -7 (9)

EE-R(Ly) =v -7 (10)



nDCG AWRF  Score 95% CI

UoGTrDExpDisT1 0.2071  0.8299 0.1761 (0.145, 0.212)
UoGTrDRelDiT1 0.2001  0.8072 0.1639 (0.138, 0.193)
UoGTrDivPropT1 0.2157  0.7112 0.1532 (0.128, 0.184)
UoGTrDExpDisLT1 0.1776 0.8197 0.1459 (0.122, 0.173)
RUN1 0.2169 0.6627 0.1425 (0.119, 0.172)
UoGTrRelT1 0.2120  0.6559 0.1373 (0.113, 0.165)
RMITRet 0.2075  0.6413 0.1317 (0.110, 0.159)
1step_pair 0.0838  0.6940 0.0648 (0.046, 0.090)
2step_pair 0.0824 0.6943 0.0638 (0.045, 0.089)
1step_pair_list 0.0820  0.6908 0.0623 (0.045, 0.085)
2step_pair_list 0.0786  0.6912 0.0607 (0.044, 0.083)
RMITRetRerank 1  0.0035 0.6180 0.0026 (0.001, 0.009)
RMITRetRerank 2  0.0035 0.6158 0.0026 (0.001, 0.009)

Table 1: Task 1 runs. Higher score is better (for all metrics).

Lower My is better. It decomposes into two submetrics, the expected exposure disparity (EE-D)
that measures overall inequality in exposure independent of relevance, for which lower is better; and the
expected exposure relevance (EE-L) that measures exposure/relevance alignment, for which higher is
better [1J.

5 Results

This year four different teams submitted a total of 24 runs. All four teams participated in Task 1: Single
Rankings (13 runs total), while only three of the four groups participated in Task 2: Multiple Rankings (11
runs total).

5.1

Task 1: WikiProject Coordinators (Single Rankings)

Approaches for Task 1 included:

RoBERTa model to compute embeddings for text fields.

A filtering approach to select top ranked documents from either competing rankers or the union of
rankers.

BM25 ranking from pyserini and re-ranked using MMR implicit diversification (without explicit fairness
groups). Lambda varied between runs.

BM25 initial ranking with iterative reranking using fairness calculations to select documents to add to
the ranking.

Relevance ranking using Terrier plus a fairness component that aims to be fair to both the geographic
location attribute and an inferred demographic attribute through tailored diversification plus data
fusion.

Optimisation to consider a protected group’s distribution in the background collection and the total
predicted relevance of the group in the candidate results set.

Allocating positions in the generated ranking to a protected group proportionally with respect to the
total relevance score of the group within the candidate results set.
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Figure 1: Task 1 submissions by individual component metrics (NDCG and AWRF). Higher values are better
for both metrics.

e Relevance-only approaches.

Table [T] shows the submitted systems ranked by the official Task 1 metric M; and its component parts
nDCG and AWREF. Figure [I] plots the runs with the component metrics on the z and y axes. Notably, each
of the approaches from a participating team are clustered in terms of the component metrics and the official
M, metric.

5.2 Task 2: Wikipedia Editors (Multiple Rankings)
Approaches for Task 2 included:

e A randomized method with BERT and a two-staged Plackett-Luce sampling where relevance scores
are combined with work needed.

e An iterative approach that uses RoOBERTa and computes a score for each of the top-K documents
in the current state, based on the expected exposure of each group so far and the original estimated
relevance score, integrating an article’s quality score.

e« BM25 plus re-ranking iteratively selecting documents by combining relevance, fairness and quality
scores.

e Relevance ranking using Terrier plus a fairness component that aims to be fair to both the geographic
location attribute and an inferred demographic attribute through tailored diversification plus data
fusion to prioritise highly relevant documents while matching the distributions of the protected groups
in the generated ranking to their distributions in the background population.

e Minimising the predicted divergence, or skew, in the distributions of the protected groups over all of
the rankings within a sequence, compared to the background population.

e Minimising the disparity between a group’s expected and actual exposures and learning the importance
of the group relevance and background distributions.



EE-R EE-D EE-L  EE-L 95% CI

RUN_task2 9.5508 4.1557 14.9007 (12.303, 19.946)
pl_control_0.6 8.8091 3.2733 15,5017 (12.552, 20.477)
UoGTrRelT2 11.8281 9.4609 15.6514 (13.057, 20.148)
pl_control 0.8 8.6654 3.2550 15.7708 (12.746, 21.251)
pl_control_0.92 8.4802 3.1486 16.0348 (12.820, 21.158)
PL_IRLab_07 5.2790 1.5327 20.8213 (16.283, 28.089)
PL_IRLab_05 4.9331 1.4029 21.3832 (16.579, 28.293)
UoGTrDivPropT2 4.9372 7.1005 27.0726 (21.098, 35.870)
UoGTrDRelDiT2 3.4770 5.5891 28.4816 (22.366, 37.739)
UoGTrDExpDisT2 3.7459 6.1356 28.4903 (22.571, 37.548)
UoGTrLambT2 2.2447 3.4644 28.8216 (22.799, 37.718)

Table 2: Task 2 runs. Lower EE-L is better.

e Relevance-only ranking.

Table [2 shows the submitted systems ranked by the official Task 2 metric EE-L and its component parts
EE-D and EE-R. Figure [2] plots the runs with the component metrics on the = and y axes. Overall, the
submitted systems generally performed better for one of the component metrics than they did for the other.
There are, however, a cluster of four points in Figure [2| that make headway in the trade-off between EE-D
and EE-L.

6 Limitations

The data and metrics in this task address a few specific types of unfairness, and do so partially. This is
fundamentally true of any fairness intervention, and does not in any way diminish the value of the effort —
it is impossible for any data set, task definition, or metric to fully capture fairness in a universal way, and
all data and analyses have limitations.

Some of the limitations of the data and task include:

e Fairness criteria

— Geography: For each Wikipedia article, we ascertained which, if any, continents are relevant to
the contentﬂ This was determined by directly looking up several community-maintained (Wiki-
data) structured data statements about the article. These properties were checked for the presence
of countries, which were then mapped to continents via the United Nation’s geoschemeﬂ While
this data must meet Wikidata’s verifiability guidelines[] it does suffer from varying levels of incom-
pleteness. For example, only 73% of people on Wikidata have a country of citizenship propertyﬂ
Furthermore, structured data is itself limited—e.g., country of citizenship does not appropriately
capture people who are considered stateless though these people may have many strong ties to
a country. It is not easy to evaluate whether this data is missing at random or biased against
certain regions of the world. Care should be taken when interpreting the absence of associated
continents in the data. Further details can be found in the code repositoryﬂ

5Code: https://github.com/geohci/wiki-region-groundtruth/blob/main/wiki-region-data.ipynb
Shttps://en.wikipedia.org/wiki/United_Nations_geoscheme
"https://www.wikidata.org/wiki/Wikidata:Verifiability
8https://humaniki.wmcloud.org/gender-by-country
9https://github.com/geohci/wiki-region-groundtruth
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Figure 2: Task 2 submissions by expected exposure subcomponents. Lower EE-D is better; higher EE-R is

better.

— Gender: For each Wikipedia article, we also ascertained whether it is a biography, and, if

so, which gender identity can be associated with the person it is aboutE This data is also
directly determined via Wikidata based on the instance-of property indicating the article is about
a human (P31:Q5 in Wikidata terms) and then collecting the value associated with the sex-or-
gender property (P21). Coverage here is much higher at 99.98% of biographies on Wikipedia
having associated gender data on Wikidata.

Assigning gender identities to people is not a process without errors, biases, and ethical concerns.
Since we are using it to calculate aggregate statistics, we judged it to be less problematic than it
would be if we were making decisions about individuals. The process for assigning gender is subject
to some community-defined technical limitationﬁ and the Wikidata policy on living peoplﬂ
While a separate project, English Wikipedia’s policies on gender identityE likely inform how many
editors handle gender; in particular, this policy explicitly favors the most recent reliably-sourced
self-identification for gender, so misgendering a biography subject is a violation of Wikipedia
policy; there may be erroneous data, but such data seems to be a violation of policy instead of
a policy decision. Wikidata:WikiProject LGBT has documented some clear limitations of gender
data on Wikidata and a list of further discussions and considerations [

In our analysis (see Appendix A), we handle nonbinary gender identities by using 4 gender cate-
gories: unknown, male, female, and third.

We advise great care when working with the gender data, particularly outside the immediate
context of the TREC task (either its original instance or using the data to evaluate comparable
systems).

10Code:

https://github.com/geohci/miscellaneous-wikimedia/blob/master/wikidata-properties-spark/wikidata_

gender_information.ipynb

thttps
12https
13https
14https

://www.wikidata.org/wiki/Property_talk:P21#Documentation
://www.wikidata.org/wiki/Wikidata:Living_people
://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Gender_identity
://www.wikidata.org/wiki/Wikidata:WikiProject_LGBT/gender
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¢ Relevance Criteria

— WikiProject Relevance: For the training queries, relevance was obtained from page lists for
existing WikiProjects. While WikiProjects have broad coverage of English Wikipedia and we
selected for WikiProjects that had tagged new articles in the recent months in the training data
as a proxy for activity, it is certain that almost all WikiProjects are incomplete in tagging relevant
content (itself a strong motivation for this task). While it is not easy to measure just how
incomplete they are, it should not be assumed that content that has not been tagged as relevant
to a WikiProject in the training data is indeed irrelevantE Evaluation query relevance was
assessed by NIST assessors, but the large sets of relevant documents and limited budget for
working through the pool mean these lists are also incomplete.

— Work-needed: Our proxy for work-needed is a coarse proxy. It is based on just a few simple
features (page length, sections, images, and references) and does not reflect the nuances of the
work needed to craft a top-quality Wikipedia articleE A fully-fledged system for supporting
Wikiprojects would also include a more nuanced approach to understanding the work needed for
each article and how to appropriately allocate this work.

¢ Task Definition

— Existing Article Bias: The task is limited to topics for which English Wikipedia already has
articles. These tasks are not able to counteract biases in the processes by which articles come to
exist (or are deleted [7])—recommending articles that should exist but don’t is an interesting area
for future study.

— Fairness constructs: we focus on gender and geography in this challenge as two metrics for which
there is high data coverage and clearer expectations about what ”fairer” or more representative
coverage might look like. That does not mean these are the most important constructs, but
others—e.g., religion, sexuality, culture, race—generally are either more challenging to model or
map to fairness goals [5].
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A Alignments

This appendix provides further details on how the page alignments and target distributions are computed.
It is a Jupyter notebook analyzes page alignments and prepares metrics for final use. It needs to be run to
create the serialized alignment data files the metrics require; it is available in the code that goes with the
appendix.

Its final output is pickled metric objects: an instance of the Task 1 and Task 2 metric classes, serialized
to a compressed file with binpickle.

A.1 Setup

We begin by loading necessary libraries:

from pathlib import Path

import pandas as pd

import xarray as Xr

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

import gzip

import pickle

import binpickle

from natural.size import binarysize

We're going to use ZStandard compression to save our metrics, so let’s create a codec object:
codec = binpickle.codecs.Blosc('zstd')
Set up progress bar and logging support:

from tqdm.auto import tqdm
tqdm.pandas (leave=False)

import sys, logging
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
log = logging.getLogger('alignment')

Import metric code:

%load_ext autoreload
%autoreload 1

%aimport metrics
from trecdata import scan_runs
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A.2 Loading Data
We first load the page metadata:

pages = pd.read_json('data/trec metadata eval.json.gz', lines=True)
pages = pages.drop_duplicates('page_id')
pages.info()

<class ’pandas.core.frame.DataFrame’>
Int64Index: 6023415 entries, O to 6023435
Data columns (total 5 columns):

#  Column Dtype
0 page_id int64
1 quality_score float64
2 quality_score_disc object
3  geographic_locations object
4  gender object

dtypes: float64(1), int64(1), object(3)
memory usage: 275.7+ MB

Now we will load the evaluation topics:

eval topics = pd.read_json('data/eval-topics-with-qrels.json.gz', lines=True)
eval_topics.info()

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 49 entries, 0 to 48
Data columns (total 5 columns):

# Column Non-Null Count Dtype
0 id 49 non-null int64
1 title 49 non-null object
2 rel_docs 49 non-null object
3  assessed_docs 49 non-null object
4 max_tier 49 non-null int64

dtypes: int64(2), object(3)
memory usage: 2.0+ KB

train_topics = pd.read_json('data/trec_topics.json.gz', lines=True)
train_topics.info()

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 57 entries, O to 56
Data columns (total 6 columns):
# Column Non-Null Count Dtype

0 id 57 non-null int64
1 title 57 non-null object
2  keywords 57 non-null object
3 scope 57 non-null object
4  homepage 57 non-null object
5 rel_docs 57 non-null object

dtypes: int64(1), object(5)
memory usage: 2.8+ KB
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Train and eval topics use a disjoint set of IDs:

train_topics(['id'].describe()

count

mean

std
min
257,
50%
75%
max

Name: id, dtype: float64

57.
29.
16.

1.
15.
29.
43.
57.

000000
000000
598193
000000
000000
000000
000000
000000

eval _topics['id'].describe()

cou
mea
std
min
257
50%
75%
max

Name: id, dtype: float64

nt
n

49
125

14.

101

113.

125

138.

150

.000000
.346939
687794
.000000
000000
.000000
000000
.000000

This allows us to create a single, integrated topics list for convenience:

topics = pd.concat([train_topics, eval_topics], ignore_index=True)
topics['eval'] = False
topics.loc[topics['id'] >= 100, 'eval'] = True
topics.head()

S w N Rk o S WD R o

> W N - O

keywords

culture [agriculture, crops, livestock, forests, farming]

id title
1 Agri
2 Architecture
3 Athletics
4 A
5 Baseball

[architecture, skyscraper, landscape, building...

[athletics, player, sports, game, gymnastics]
viation [aviation, aircraft, airplane, airship, pilot,...

scope

This WikiProject strives to develop and improv...
This WikiProject aims to: 1. Thoroughly
WikiProject Athletics, a project focused on im...
The project generally considers any article re...
Articles pertaining to baseball including base...

https
https
https
https
https

2/ /e
://e
://e
://e
://e

n.wikipedia.
n.wikipedia.
n.wikipedia.
n.wikipedia.
n.wikipedia.

org/wiki/Wikipedia
org/wiki/Wikipedia
org/wiki/Wikipedia
org/wiki/Wikipedia
org/wiki/Wikipedia

explor...

homepage
:WikiPr. ..
:WikiPr. ..
:WikiPr. ..
:WikiPr. ..
:WikiPr. ..
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rel_docs assessed_docs max_tier \

0 [572, 627, 903, 1193, 1542, 1634, 3751, 3866, NaN NaN

1 [682, 954, 1170, 1315, 1322, 1324, 1325, 1435,... NaN NaN

2 [5729, 8490, 9623, 10391, 12231, 13791, 16078,... NaN NaN

3 [849, 852, 1293, 1902, 1942, 2039, 2075, 2082,... NaN NaN

4 [1135, 1136, 1293, 1893, 2129, 2140, 3797, 380... NaN NaN
eval

0 False

1 False

2 False

3 False

4 False

Finally, a bit of hard-coded data - the world population:

world_pop = pd.Series({

'Africa': 0.155070563,

'Antarctica': 1.54424E-07,

'Asia': 0.600202585,

'Europe': 0.103663858,

'Latin America and the Caribbean': 0.08609797,

'Northern America': 0.049616733,

'Oceania': 0.005348137,
o)
world_pop.name = 'geography'
And a gender global target:

gender_tgt = pd.Series({
'female': 0.495,
'male': 0.495,
'third': 0.01

19,

gender_tgt.name =

gender_tgt.sum()

'gender'

1.0
Xarray intesectional global target:

geo_tgt_xa = xr.DataArray(world_pop, dims=['geography'])
gender_tgt_xa = xr.DataArray(gender_tgt, dims=['gender'])
int_tgt = geo_tgt_xa * gender_tgt_xa

int_tgt

3)>
1.55070563e-031],

<xarray.DataArray (geography: 7, gender:
array([[7.67599287e-02, 7.67599287e-02,

[7.64398800e-08, 7.64398800e-08,
[2.97100280e-01, 2.97100280e-01,
[5.13136097e-02, 5.13136097e-02,
[4.26184951e-02, 4.26184951e-02,

1.54424000e-09],
6.00202585e-03] ,
1.03663858e-03],
8.60979700e-04],
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[2.45602828e-02, 2.45602828e-02, 4.96167330e-04],
[2.64732781e-03, 2.64732781e-03, 5.34813700e-05]])

Coordinates:
* geography (geography) object ’Africa’ ’Antarctica’ ... ’Oceania’
* gender (gender) object ’female’ ’male’ ’third’

And the order of work-needed codes:

work_order = [
'Stub’',
'Start’',
cr,
'B',
'GA',
'FA',

Now all our background data is set up.

A.3 Query Relevance

We now need to get the qrels for the topics. This is done by creating frames with entries for every relevant
document; missing documents are assumed irrelevant (0).

In the individual metric evaluation files, we will truncate each run to only the assessed documents (with
a small amount of noise), so this is a safe way to compute.

First the training topics:

train grels = train topics[['id', 'rel docs']].explode('rel docs', ignore_index=True)
train_qrels.rename(columns={'rel docs': 'page id'}, inplace=True)
train_qrels['page_id'] = train_qrels['page_id'].astype('i4"')

train_qrels = train_qrels.drop_-duplicates()

train_grels.head ()

id page_id
0o 1 572
1 1 627
2 1 903
3 1 1193
4 1 1542

eval grels = eval topics[['id', 'rel docs']].explode('rel docs', ignore_index=True)
eval_grels.rename(columns={'rel docs': 'page.id'}, inplace=True)
eval_qrels['page_id'] = eval_qrels['page_id'].astype('id"')

eval_qrels = eval_grels.drop_duplicates()

eval grels.head()

id page_id
0 101 915
1 101 2948
2 101 9110
3 101 9742
4 101 10996

And concatenate:

grels = pd.concat([train_qrels, eval_qrels], ignore_index=True)
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A.4 Page Alignments

All of our metrics require page "alignments”: the protected-group membership of each page.

A.4.1 Geography

Let’s start with the straight page geography alignment for the public evaluation of the training queries. The
page metadata has that; let’s get the geography column.

page-geo = pages[['page_id', 'geographic locations']].explode('geographic locations', ignore_index=True)

page_geo.head ()

page_id geographic_locations

0 12 NaN
1 25 NaN
2 39 NaN
3 290 NaN
4 303 Northern America

And we will now pivot this into a matrix so we get page alignment vectors:

page_geo_align = page_geo.assign(x=1).pivot(index='page id', columns='geographic_locations', values='x"')
page_geo_align.rename(columns={np.nan: 'Unknown'}, inplace=True)
page_geo_align.fillna(0, inplace=True)

page_geo_align.head ()

geographic_locations
page_id

12

25

39

290

303

geographic_locations
page_id

12

25

39

290

303

geographic_locations
page_id

12

25

39

290

303

Unknown Africa

O = = =
O O O O O

Latin America

Oceania

O O O O O
O O O O O

O O O O O
O O O O O

O O O O O
O O O O O

and the Caribbean

o O O O O
O O O O O

And convert this to an xarray for multidimensional usage:

O O O OO
O O O O O

Antarctica Asia Europe \

O O O O O
O O O O O

Northern America \

= O O O O
O O O O o

page_geo_xr = xr.DataArray(page_geo_align, dims=['page', 'geography'])

page_geo_xr
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<xarray.DataArray (page: 6023415, geography: 8)>
array([[1., 0., 0., ..., 0., O., 0.1,
(t., 0., 0., ..., 0., 0., 0.1,

(t., 0., 0., ..., 0., 0., 0.1,
(t., 0., 0., ..., 0., 0., 0.1,
(t., 0., 0., ..., 0., 0., 0.1,
(1., 0., 0., ..., 0., 0., 0.11)
Coordinates:
* page (page) int64 12 25 39 290 ... 67268663 67268668 67268699 67268751
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’

binarysize (page_geo_xr.nbytes)

’385.50 MiB’

A.4.2 Gender

The "undisclosed personal attribute” is gender. Not all articles have gender as a relevant variable - articles
not about a living being generally will not.
We're going to follow the same approach for gender:

page_gender = pages[['page_id', 'gender']].explode('gender', ignore_index=True)
page_gender.fillna('unknown', inplace=True)
page_gender .head ()

page_id  gender
12 unknown

25 unknown

39 unknown

290 unknown

303 unknown

> W N E~- O

We need to do a little targeted repair - there is an erroneous record of a gender of "Taira no Kiyomori”
is actually male. Replace that:

page-gender = page_gender.loc[page_gender['gender'] != 'Taira no Kiyomori']
Now, we’re going to do a little more work to reduce the dimensionality of the space. Points:

1. Trans men are men
2. Trans women are women
3. Cisgender is an adjective that can be dropped for the present purposes

The result is that we will collapse "transgender female” and ”cisgender female” into ”female”.
The downside to this is that trans men are probabily significantly under-represented, but are now being
collapsed into the dominant group.

pgcol = page_gender['gender']
pgcol = pgcol.str.replace(r' (7:tran|ci)sgender\s+((7:fe)?male)', r'\1', regex=True)

Now, we're going to group the remaining gender identities together under the label ’third’. As noted
above, this is a debatable exercise that collapses a lot of identity.
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genders = ['unknown', 'male', 'female', 'third']
pgcol["pgcol.isin(genders)] = 'third'

Now put this column back in the frame and deduplicate.

page_gender['gender'] = pgcol
page_gender = page_gender.drop_-duplicates()

And make an alignment matrix (reordering so 'unknown’ is first for consistency):
page_gend_align = page_gender.assign(x=1).pivot(index='page_id', columns='gender', values='x')
page-gend_align.fillna(0, inplace=True)

page-gend_align = page_gend align.reindex(columns=['unknown', 'female', 'male', 'third'l)
page_gend_ align.head()

gender unknown female male third

page_id

12 1.0 0.0 0.0 0.0
25 1.0 0.0 0.0 0.0
39 1.0 0.0 0.0 0.0
290 1.0 0.0 0.0 0.0
303 1.0 0.0 0.0 0.0

Let’s see how frequent each of the genders is:

page-gend_align.sum(axis=0) .sort_values(ascending=False)

gender

unknown 4246540.0
male 1441813.0
female 334946.0
third 452.0

dtype: float64
And convert to an xarray:

page-gend xr = xr.DataArray(page_gend_align, dims=['page', 'gender'])
page_gend_xr

<xarray.DataArray (page: 6023415, gender: 4)>
array([[t., 0., 0., 0.],

(1., 0., 0., 0.1,

[t., 0., 0., 0.1,

B

[0., 1., 0.,

0.1,
[1., 0., 0., 0.1,
[1., 0., 0., 0.11)
Coordinates:
* page (page) int64 12 25 39 290 ... 67268663 67268668 67268699 67268751

* gender (gender) object ’unknown’ ’female’ ’male’ ’third’
binarysize(page_gend_xr.nbytes)

’192.75 MiB’
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A.4.3 Intersectional Alignment

We'll now convert this data array to an intersectional alignment array:

page_xalign = page_geo_xr * page_gend_Xr
page-_xalign

<xarray.DataArray (page: 6023415, geography: 8, gender: 4)>
array([[[1., 0., 0., 0.7,

(0., 0., 0., 0.1,

(0., 0., 0., 0.1,

[0., 0., 0., 0.1,
[0., 0. }
(0., 0., 0., 0.11,

o
o
o
[l

(L.,
(0., 0. .
[0., 0., 0., 0.1,

o O
o O
o O
—

[0., 0., 0., 0.1,
[0., 0., 0., 0.1,
0., 0., 0., 0.11,

(L., o., 0., 0.1,
(0., 0., 0., 0.1,
(0., 0., 0., 0.1,

0., 0., 0., 0.1,
[0., 0., 0., 0.1,
(0., 0., 0., 0.11,

(L., o., 0., 0.1,
(0., 0., 0., 0.1,
(0., 0., 0., 0.1,

[0., 0., 0., 0.1,
0., 0., 0., 0.1,
(0., 0., 0., 0.11,

[f+., o., 0., 0.1,
0., 0., 0., 0.1,
0., 0., 0., 0.1,

(0., 0., 0., 0.1,

(0., 0., 0., 0.1,
[0., 0., 0., 0.11D)
Coordinates:
* page (page) int64 12 25 39 290 ... 67268663 67268668 67268699 67268751
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’
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binarysize(page_xalign.nbytes)
’1.54 GiB’

Make sure that did the right thing and we have intersectional numbers:
page-_xalign.sum(axis=0)

<xarray.DataArray (geography: 8, gender: 4)>

array([[2.06922e+06, 8.21940e+04, 4.05772e+05, 1.85000e+02],
[7.76580e+04, 1.04830e+04, 4.34670e+04, 8.00000e+00],
[9.62500e+03, 0.00000e+00, 1.00000e+00, 0.00000e+00],
[4.27422e+05, 3.79980e+04, 1.35310e+05, 2.10000e+01],
[7.65203e+05, 9.67970e+04, 4.27747e+05, 6.30000e+01],
[1.01464e+05, 1.61660e+04, 6.77640e+04, 4.00000e+00],
[7.21244e+05, 8.25430e+04, 3.30205e+05, 1.59000e+02],
[9.26820e+04, 1.45240e+04, 5.07260e+04, 2.00000e+01]11)
Coordinates:
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’

And make sure combination with targets work as expected:
(page_xalign.sum(axis=0) + int_tgt) * 0.5

<xarray.DataArray (geography: 7, gender: 3)>

array([[5.24153838e+03, 2.17335384e+04, 4.00077535e+00],
[3.82199400e-08, 5.00000038e-01, 7.72120000e-10],
[1.89991486e+04, 6.76551486e+04, 1.05030010e+01],
[4.83985257e+04, 2.13873526e+05, 3.15005183e+01],
[8.08302131e+03, 3.38820213e+04, 2.00043049e+00],
[4.12715123e+04, 1.65102512e+05, 7.95002481e+01],
[7.26200132e+03, 2.53630013e+04, 1.00000267e+011])
Coordinates:
* geography (geography) object ’Africa’ ’Antarctica’ ... ’Oceania’
* gender (gender) object ’female’ ’male’ ’third’

A.5 Task 1 Metric Preparation

Now that we have our alignments and qrels, we are ready to prepare the Task 1 metrics.
Task 1 ignores the "unknown” alignment category, so we’re going to create a kga frame (for Known
Geographic Alignment), and corresponding frames for intersectional alignment.

page_kga = page_geo_align.iloc[:, 1:]
page_kga.head ()

geographic_locations Africa Antarctica Asia Europe \

page_id

12 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0
39 0.0 0.0 0.0 0.0
290 0.0 0.0 0.0 0.0
303 0.0 0.0 0.0 0.0
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geographic_locations Latin America and the Caribbean Northern America \

page_id

12 0.0 0.0
25 0.0 0.0
39 0.0 0.0
290 0.0 0.0
303 0.0 1.0

geographic_locations 0Oceania

page_id

12 0.0
25 0.0
39 0.0
290 0.0
303 0.0

Intersectional is a little harder to do, because things can be intersectionally unknown: we may know
gender but not geography, or vice versa. To deal with these missing values for Task 1, we're going to ignore
totally unknown values, but keep partially-known as a category.

We also need to ravel our tensors into a matrix for compatibility with the metric code. Since 'unknown’
is the first value on each axis, we can ravel, and then drop the first column.

xshp = page_xalign.shape

xshp = (xshp[0], xshp[i] * xshp[2])

page_xa_df = pd.DataFrame(page_xalign.values.reshape(xshp), index=page xalign.indexes['page'])
page_xa_df .head ()

0 1 2 3 4 5 6 7 8 9 ... 22 23 24 \
page
12 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
290 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
303 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
26 26 27 28 29 30 31
page
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 0.0 0.0
39 0.0 0.0 0.0 0.0 0.0 0.0 0.0
290 0.0 0.0 0.0 0.0 0.0 0.0 0.0
303 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[6 rows x 32 columns]
And drop unknown, to get our page alignment vectors:
page kia = page xa df.iloc[:, 1:]

A.5.1 Geographic Alignment

We'll start with the metric configuration for public training data, considering only geographic alignment.
We configure the metric to do this for both the training and the eval queries.
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Training Queries

train_qalign = train_qrels.join(page_kga, on='page_id').drop(columns=['page_id']) .groupby('id"').sum()
tqa_sums = train_galign.sum(axis=1)
train qalign = train qalign.divide(tgqa_sums, axis=0)

train_qalign.head()

Africa Antarctica Asia Europe Latin America and the Caribbean \
id
1 0.049495 0.00000 0.121886 0.356566 0.031650
2 0.013388 0.00000 0.112008 0.574026 0.026105
3 0.109664 0.00000 0.125529 0.456033 0.100040
4 0.062495 0.00025 0.116161 0.327272 0.079514
5 0.000835 0.00000 0.065433 0.010149 0.064755

Northern America Oceania

id

1 0.261616 0.178788
2 0.228715 0.045758
3 0.158419 0.050316
4 0.369277 0.045032
5 0.850192 0.008636

train_qtarget = (train_qalign + world_pop) * 0.5
train_qtarget.head()

Africa Antarctica Asia Europe \
id
1 0.102283 7.721200e-08 0.361044 0.230115
2 0.084229 7.721200e-08 0.356105 0.338845
3 0.132367 7.721200e-08 0.362866 0.279848
4 0.108783 1.250113e-04 0.358182 0.215468
5 0.077953 7.721200e-08 0.332818 0.056906

Latin America and the Caribbean Northern America Oceania

id

1 0.058874 0.155616 0.092068
2 0.056101 0.139166 0.025553
3 0.093069 0.104018 0.027832
4 0.082806 0.209447 0.025190
5 0.075427 0.449904 0.006992

And we can prepare a metric and save it:

tl_train metric = metrics.TasklMetric(train qrels.set_index('id'), page_kga, train_qtarget)
binpickle.dump(tl_train metric, 'taskl-train-geo-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 337312647 bytes with 5 buffers

Eval Queries Do the same thing for the eval data for a geo-only eval metric:
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eval_qalign = eval_qrels.join(page_kga, on='page id').drop(columns=['page_id']).groupby('id').sum()

eqa_sums = eval_qalign.sum(axis=1)

eval galign = eval_qalign.divide(eqa_sums, axis=0)

eval _gtarget = (eval_galign + world_pop) * 0.5

tl_eval metric = metrics.TasklMetric(eval qrels.set_index('id'), page_kga, eval_qtarget)
binpickle.dump(tl_eval metric, 'taskl-eval-geo-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 337312643 bytes with 5 buffers

A.5.2 Intersectional Alignment
Now we need to apply similar logic, but for the intersectional (geography * gender) alignment.

As noted as above, we need to carefully handle the unknown cases.

Demo To demonstrate how the logic works, let’s first work it out in cells for one query (1).
What are its documents?

qdf = qrels[qrels['id'] == 1]
qdf.name = 1

qdf

id page_id
0 1 572
1 1 627
2 1 903
3 1 1193
4 1 1542
6959 1 67066971
6960 1 67075177
6961 1 67178925
6962 1 67190032
6963 1 67244439

[6964 rows x 2 columns]
We can use these page IDs to get its alignments:

g-xa = page._xalign.loc[qdf['page_id'].values, :, :]
g-xa

<xarray.DataArray (page: 6964, geography: 8, gender: 4)>
array([[[1., 0., 0., 0.1,

[0., 0., 0., 0.1,

[0., 0., 0., 0.1,

[0., 0., 0., 0.1,
[0., O. .
[0., 0., 0., 0.11,

o
o
o
—

(L., o., 0., 0.1,
[0., O. .
[0., 0., 0., 0.1,

o
o
o
[
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(0., 0., 0., 0.1,
f0., O. .
(0., 0., 0., 0.11,

o
o
o
[

(L., o., 0., 0.1,
[0., O. .
(0., 0., 0., 0.1,

o
o
o
[

[0., 0., 0., 0.1,
[0., 0., 0., 0.1,
[0., 0., 0., 0.17,

(L., o., 0., 0.1,
(0., 0., 0., 0.1,
(0., 0., 0., 0.1,

[0., 0., 0., 0.1,
[0., 0. }
(0., 0., 0., 0.11,

o
o
o
[l

(L.,
(0., 0. .
[0., 0., 0., 0.1,

o O
o O
o O
—

(0., 0., 0., 0.1,

(0., 0., 0., 0.1,
[0., 0., 0., 0.11D)
Coordinates:
* page (page) int64 572 627 903 1193 ... 67178925 67190032 67244439
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’

Summing over the first axis ('page’) will produce an alignment matrix:

g.am = g_xa.sum(axis=0)
g-am

<xarray.DataArray (geography: 8, gender: 4)>

array([[3767., 52., 200., 0.],
[ 128., 12., 7., 0.1,
[ o., 0., 0., 0.1,
[ 322., 11., 29., 0.1,
[ 940., 23., 96., 0.1,
[ 79., 8., 7., 0.1,
[ 618., 28., 131., 0.1,
[ 484., 6., 41., 0.1D
Coordinates:
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’
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Now we need to do reset the (0,0) coordinate (full unknown), and normalize to a proportion.

g-am[0, 0] =0
g-am = g-am / g-am.sum()
g-am

<xarray.DataArray (geography: 8, gender: 4)>

array([[0. , 0.01613904, 0.06207325, O. 1,
[0.03972688, 0.00372439, 0.00217256, O. 1,
(o. , 0. , 0. , 0. 1,
[0.09993793, 0.00341403, 0.00900062, 0. 1,
[0.29174426, 0.00713842, 0.02979516, O. 1,
[0.02451893, 0.00248293, 0.00217256, O. 1,
[0.19180633, 0.00869025, 0.04065798, O. 1,
[0.15021726, 0.0018622 , 0.01272502, O. 1D
Coordinates:
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’

Ok, now we have to - very carefully - average with our target modifier. There are three groups:

o known (use intersectional target)
o known-geo (use geo target)
o known-gender (use gender target)

For each of these, we need to respect the fraction of the total it represents. Let’s compute those fractions:

q-fk_all = g-am[1:, 1:].sum()
q-fk_geo = gq-am[1:, :1].sum()
g-fk_gen = g_am[:1, 1:].sum()
q-fk_all, q_fk_geo, gq_fk_gen

(<xarray.DataArray ()>
array(0.12383613),
<xarray.DataArray ()>
array(0.79795158) ,
<xarray.DataArray (>
array(0.07821229))

And now do some surgery. Weighted-average to incorporate the target for fully-known:

g-tm = g-am.copy()

g-tm[1:, 1:]1 *= 0.5

g-tm[1:, 1:] += int_tgt * 0.5 * g_fk all
q-tm

<xarray.DataArray (geography: 8, gender: 4)>
array([[0.00000000e+00, 1.61390441e-02, 6.20732464e-02, 0.00000000e+00],
[3.97268777e-02, 6.61502352e-03, 5.83910794e-03, 9.60166894e-05],
[0.00000000e+00, 4.73300933e-09, 4.73300933e-09, 9.56163501e-11],
[9.99379268e-02, 2.01028882e-02, 2.28961843e-02, 3.71633817e-04],
[2.91744258e-01, 6.74645100e-03, 1.80748185e-02, 6.41866532e-05],
[2.45189323e-02, 3.88031961e-03, 3.72513649e-03, 5.33101956e-05],
5 3

[1.91806331e-01, 5.86585240e-03, 2.18497134e-02, 3.07217202e-05],

N W~ N OO
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[1.50217256e-01, 1.09501611e-03, 6.52642517e-03, 3.31146285e-06]1])
Coordinates:
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’

And for known-geo:

g-tm[1:, :1] *= 0.5
g-tm[1:, :1] += geo_tgt_xa * 0.5 * g_fk geo

And known-gender:

g-tm[:1, 1:] *= 0.5
g-tm[:1, 1:] += gender_tgtxa * 0.5 * q_-fk_gen

q-tm

<xarray.DataArray (geography: 8, gender: 4)>

array ([[0.00000000e+00, 2.74270639e-02, 5.03941651e-02, 3.91061453e-04],
[8.17328395e-02, 6.61502352e-03, 5.83910794e-03, 9.60166894e-05],
[6.16114376e-08, 4.73300933e-09, 4.73300933e-09, 9.56163501e-11],
[2.89435265e-01, 2.01028882e-02, 2.28961843e-02, 3.71633817e-04],
[1.87231499e-01, 6.74645100e-03, 1.80748185e-02, 6.41866532¢-05],
[4.66104719e-02, 3.88031961e-03, 3.72513649e-03, 5.33101956e-05],
[1.15699041e-01, 5.86585240e-03, 2.18497134e-02, 3.07217202e-05],
[7.72424054e-02, 1.09501611e-03, 6.52642517e-03, 3.31146285e-06]1])
Coordinates:
* geography (geography) object ’Unknown’ ’Africa’ ... ’Oceania’
* gender (gender) object ’unknown’ ’female’ ’male’ ’third’

Now we can unravel this and drop the first entry:
g-tm.values.ravel () [1:]

array([2.74270639e-02,
.61502352e-03, 5.83910794e-03,
.73300933e-09, 4.73300933e-09,

5.03941651e-02,
5
4
.01028882e-02, 2.28961843e-02,
1
3
2
6

.91061453e-04,
.60166894e-05,
.56163501e-11,
.71633817e-04,
.41866532e-05,
.33101956e-05,
.07217202e-05,

.31146285e-06])

.17328395e-02,
.16114376e-08,
.89435265e-01,
.87231499e-01,
.66104719e-02,
.15699041e-01,
.72424054e-02,

.74645100e-03, 1.80748185e-02,
.88031961e-03, 3.72513649e-03,
.86585240e-03, 2.18497134e-02,
.09501611e-03, 6.52642517e-03,

= 0w o N O
W WooWwowow
N = DN O

Implementation Now, to do this for every query, we’ll use a function that takes a data frame for a query’s
relevant docs and performs all of the above operations:

def query._xalign(qdf):
pages = qdf['page_id']
pages = pages[pages.isin(page_xalign.indexes['page'])]
g-xa = page_xalign.loc[pages.values, :, :]
g.am = g _xa.sum(axis=0)

g-am[0, 0] =0
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g-am = g-am / g-am.sum()

# compute fractions in each section
q-fk_all = gqam[1:, 1:].sum()
q-fk_geo = q.am[1:, :1].sum()
q-fk_gen = q.am[:1, 1:].sum()

# known average
g.am[1:, 1:] *= 0.5
g-am[1:, 1:] += int_tgt * 0.5 * g_-fk.all

# known-geo average
g-am[i:, :1] *= 0.5
g-am[1:, :1] += geo_tgtxa * 0.5 * g_fk_geo

# known-gender average
g-am[:1, 1:] *= 0.5
g-am[:1, 1:] += gender_tgtxa * 0.5 * q_fk._gen

# and return the result
return pd.Series(q-am.values.ravel()[1:])

query_xalign(qdf)

0 2.742706e-02
1 5.039417e-02
2 3.910615e-04
3 8.173284e-02
4 6.615024e-03
5 5.839108e-03
6 9.601669e-05
7 6.161144e-08
8 4.733009e-09
9 4.733009e-09
10 9.561635e-11
11 2.894353e-01
12 2.010289e-02
13 2.289618e-02
14 3.716338e-04
15 1.872315e-01
16 6.746451e-03
17 1.807482e-02
18 6.418665e-05
19 4.661047e-02
20 3.880320e-03
21 3.725136e-03
22 5.331020e-05
23 1.156990e-01
24 5.865852e-03
25 2.184971e-02
26 3.072172e-05
27 7.724241e-02
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28 1.095016e-03
29 6.526425e-03
30 3.311463e-06

dtype: float64

Now with that function, we can compute the alignment vector for each query.

train_qtarget =
train_qtarget

0

id

1 0.027427 O
2 0.012235 ©
3 0.022553 O
4 0.012472 O
5 0.023416 O
6 0.126820 O
7 0.050837 O
8 0.038785 O
9 0.069002 O
10 0.064617 O
11 0.060435 O
12 0.020151 O
13 0.014332 0
14 0.046850 O
15 0.068267 O
16 0.135784 O
17 0.067934 O
18 0.018251 0
19 0.103573 O
20 0.089270 O
21 0.108101 O
22 0.026161 O
23 0.024937 O
24 0.081419 O
26 0.107975 O
26 0.041788 O
27 0.038810 O
28 0.023529 O
29 0.087081 O
30 0.056876 O
31 0.063926 O
32 0.061350 O
33 0.030389 O
34 0.096244 O
35 0.087547 O
36 0.112926 O
37 0.186952 0
38 0.027033 0
39 0.050328 ©
40 0.165541 0

train_qrels.groupby('id') .apply(query_xalign)

.050394
.032073
.035541
.029112
.063398
.201558
.115432
.054361
.167276
.137545
.128320
.038214
.035379
.041965
.1561259
.156886
.174287
.036588
.097443
.071413
.211342
.069192
.066835
177767
.121840
.043538
.078021
.051249
.191848
.090125
.104654
.076521
.0563928
.136311
.111057
.177999
.406140
.049546
.062821
.274278

O OO OO OO ODODODOODODODODODODODODODODODODODIODODODOOOOOOOOOOOoOOoOOo

.000391
.000232
.000292
.000209
.000436
.001691
.000836
.000521
.001087
.001016
.000979
.000332
.000250
.000561
.001103
.001904
.001217
.000276
.001247
.000807
.001605
.000429
.000461
.001498
.001155
.000835
.000587
.000376
.001402
.000739
.000819
.003383
.000424
.001169
.000998
.001500
.003590
.000385
.000569
.002251

O O O OO OO ODODODODODODODODODODODODODODODODODODODODOOOO0OOOOOOO O OoOOo

.081733
.073168
.023527
.094840
.020521
.000021
.000026
.000065
.005630
.046254
.029760
.007651
.009309
.041140
.000377
.009884
.013029
.030822
.013579
.038786
.027217
.003891
.027385
.068779
.008671
.068601
.065195
.000296
.031724
.018007
.068785
.000257
.061496
.022726
.017422
.033846
.019620
.018166
.013145
.035258

O OO O OO OO0 ODODODODODODODODODODODODODODODODODODOOOOOOOOOO O OoOOo

w
(an]

4

.006615
.003571
.040981
.004409
.024932
.028097
.034747
.038044
.028051
.008038
.020073
.032456
.034996
.016396
.030622
.026627
.026528
.023188
.027784
.021002
.016228
.036267
.025748
.005003
.026618
.027419
.006552
.035349
.014463
.027345
.010576
.036019
.010157
.020403
.028479
.017653
.006586
.026696
.027890
.004510

O OO OO OO ODODODODODODODODODODODODODODODODODODODODODOOOOOOOOO O OoOOo

.005839
.003669
.059556
.004901
.025194
.030215
.051416
.038746
.066632
.008038
.021687
.032725
.038045
.016052
.032842
.025196
.051011
.027944
.025663
.020420
.017338
.043268
.048173
.005585
.026711
.033208
.006769
.035468
.016746
.030689
.010732
.035636
.009832
.022574
.026493
.017997
.008204
.030492
.028400
.005636

el el eolNolNeolNeolNolNolNolNolNolNolNolNolNolNeolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNolNe]

.000096
.000070
.000574
.000086
.000504
.000519
.000646
.000702
.000554
.000162
.000358
.000653
.000655
.000299
.000601
.000448
.000503
.000445
.000485
.000334
.000296
.000671
.000503
.000101
.000511
.000323
.000132
.000714
.000289
.000509
.000158
.001173
.000194
.000389
.000460
.000286
.000132
.000534
.000558
.000086



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

= e
= O

W WNDNDNDNDNNNDMNDNNDMNNDE P P P2 22
= O O 00 NO O P> WNE O OO NO” O WwN

O OO O OO ODODODODOOOOOCOoOOo

B, NDNNOOWOOR, WNWEFENOOND®ONNPDPOTONNDNERFEL,OOO®

.043914
.042045
.088816
.073139
.102279
.049735
.002770
.048879
.023329
.021747
.042260
.011937
.064740
.006491
.001431
.127312
.064556

O OO OO OO OODOOOOOoOOoOOoOOo

.161144e-08
.684003e-08
.665751e-08
.197781e-04
.031701e-08
.098131e-11
.510823e-11
.442770e-11
.304181e-09
.535438e-08
.692777e-08
.618901e-09
.094806e-09
.055074e-08
.900724e-10
.842701e-09
.276972e-09
.861625e-08
.328731e-08
.147228e-08
.290303e-08
.776095e-09
.946374e-06
.717212e-05
.449778e-09
.841889e-08
.496504e-08
.9562129e-10
.675860e-08
.508983e-08
.918211e-08

.084869
.077639
.236394
.110720
.175641
.096882
.006868
.130381
.043920
.035992
.067426
.020075
.088902
.008134
.003218
.042703
.101994

O OO OO OO OOOOO0OOOoOOoOOoOOo

.000647
.000601
.001634
.000924
.001615
.000772
.000048
.000901
.000338
.000290
.000551
.000161
.000772
.000073
.000023
.000891
.000905

NNNEFE WOFRNPENOFLEFPLPNNNNDMNDNEOWWERE ONWWNDNDEENWDS

.733009e-09
.431828e-09
.774295e-08
.231748e-09
.482831e-08
.5569433e-08
.182076e-08
.460808e-08
.728670e-08
.004062e-09
.763909e-08
.220520e-08
.230352e-08
.473139e-08
.964395e-08
.208922e-08
.481865e-08
.194840e-08
.391224e-08
.646900e-08
.461251e-08
.307219e-08
.469539e-08
.981659e-09
.520965e-08
.590954e-08
.524548e-09
.520143e-08
.426019e-08
.510388e-08
.782549e-09

NN WO R NPAPNOFREFENNNNDNNNMNDNDE WWE 0ONWWOONDDNDWD

.009875
.072132
.045119
.008159
.010408
.057043
.065464
.000374
.008751
.006747
.013784
.067402
.019943
.071422
.106429
.003167
.243893

O OO O OO OO0 OOOO0OOoOOoOOoOOo

.733009e-09
.431828e-09
.774295e-08
.231748e-09
.482831e-08
.067750e-06
.182076e-08
.460808e-08
.728670e-08
.004062e-09
.763909e-08
.220520e-08
.230352e-08
.473139e-08
.964395e-08
.208922e-08
.481865e-08
.194840e-08
.391224e-08
.646900e-08
.461251e-08
.307219e-08
.469539e-08
.981659e-09
.520965e-08
.590954e-08
.524548e-09
.520143e-08
.426019e-08
.510388e-08
.782549e-09

31

O OO O OO OO0 OOOOOOoOOoOOo

.035748
.011772
.006863
.029961
.025755
.016799
.006435
.031816
.032725
.063491
.027519
.003922
.029669
.004520
.000485
.049226
.072830

el el eolNeolNeolNolNolNeolNolNolNoNoNoNoNoNoNoNoNoo o NoNoNeoNeo o oo Neo ool

.003725
.003276
.039630
.002998
.038382
.019846
.052265
.029176
.074846
.005030
.015362
.018456
.042302
.009435
.031470
.015761
.024976
.034100
.018990
.009959
.012144
.056006
.062443
.004040
.019174
.018563
.040466
.020403
.010663
.023381
.006588

.047432
.012999
.007995
.033199
.026896
.021288
.006435
.055275
.037509
.085334
.028445
.003828
.032655
.004449
.000485
.030645
.147165

O OO O OO OO0 OOOOOOoOOoOOo

21

O OO OO OO ODODODODODODODODODODODODODODODOOOOOOOOoOOoOOo

.000617
.000206
.000139
.000677
.000464
.000285
.000126
.000632
.000638
.000706
.000553
.000077
.000507
.000084
.000010
.000626
.000380

[oleoleolNolNolNeolNolNolNolNolNolNolNolNolNolNolNe])
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.000053
.000039
.000312
.000048
.000280
.000288
.000358
.000396
.000307
.000090
.000199
.000363
.000364
.000166
.000334
.000249
.000280
.000247
.000269
.000185
.000165
.000373
.000278
.000056
.000284
.000179
.000073
.000396
.000161
.000283
.000088
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33
34
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37
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43
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49
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53
54
55
56
57

=
= O

12
13
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20
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O OO OO OO ODODODOOOOOOOO OO OO o

.115699
.114341
.024684
.176399
.121270
.000052
.000078
.000206
.018965
.035855
.092015
.051786
.013124
.181400
.000563
.036754
.004093
.031099
.039630
.095128
.057092
.003974

.5569296e-10
.137857e-08
.046956e-08
.596396e-08
.620009e-08
.795991e-08
.809025e-08
.283586e-08
.449979e-08
.226594e-06
.738518e-08
.527317e-04
.089076e-09
.390308e-09
.188359e-05
.389264e-08
.726048e-10
.473119e-09
.998116e-09
.364949e-08
.702715e-08
.477752e-08
.771162e-08
.841679e-02
.393092e-09
.318478e-08
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O O O OO OO ODODODOOOOOOOO OO oo

H WD PENDNWONWWWOFRLRNNORFE, WPERNNOEFENERL OW

.269452e-08
.548780e-09
.915463e-08
.268898e-08
.407441e-08
.524601e-09
.632373e-08
.751992e-08
.246660e-09
.024027e-08
.016696e-08
.834258e-09
.764847e-08
.288793e-08
.402732e-08
.222844e-09
.114976e-08
.144257e-08
.352802e-08
.725022e-08
.811868e-09
.500337e-08
.140914e-09
.832648e-10
.050337e-08
.539335e-08

24

.005866
.003410
.023416
.003847
.014276
.043116
.019805
.078311
.013625
.009666
.019263
.059223
.018640
.066251
.027242
.055762
.008305
.013915
.060017
.046829
.021791
.021571

O O O OO OO ODODODOOOO0OO0OOOO OO oo

25

.021850
.015195
.049637
.020421
.274932
.107266
.095237
.129290
.092816
.019314
.108094
.374352
.0562865
.040491
.081673
.113471
.012349
.022385
.046816
.029166
.063754
.041587

H WD PN WONWWWOFRNNORFE, WPERNNOEFENERL OW

.269452e-08
.548780e-09
.915463e-08
.268898e-08
.407441e-08
.524601e-09
.632373e-08
.751992e-08
.246660e-09
.024027e-08
.016696e-08
.834258e-09
.764847e-08
.288793e-08
.402732e-08
.222844e-09
.114976e-08
.144257e-08
.352802e-08
.725022e-08
.811868e-09
.500337e-08
.140914e-09
.832648e-10
.050337e-08
.539335e-08

26

.000031
.000022
.000202
.000027
.000161
.000206
.000212
.000390
.000177
.000052
.000114
.000248
.000210
.000096
.000192
.000143
.000161
.000142
.000155
.000301
.000095
.000215

O OO OO OO OODOOOOOOOOO OO oo
O OO OO OO OODODOOOOO0OOOOO oo o
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27

.077242
.021868
.006253
.020782
.002668
.000011
.000025
.000009
.003089
.002990
.007596
.000264
.001067
.013693
.000053
.001202
.009967
.006749
.0056411
.013124
.005012
.002399

.028172
.006866
.014686
.022650
.011137
.003671
.060619
.017383
.004435
.044898
.011024
.005395
.021775
.021510
.020366
.004587
.040424
.043209
.052002
.026850
.002125
.033812
.003063
.000407
.017079
.008785

O OO O OO OO0 ODODODODODODOOOOOOO OO OO Oo

28

.001095
.000564
.007383
.000413
.000967
.006256
.0056422
.006967
.002289
.000561
.002075
.001192
.003577
.007532
.002905
.001196
.006974
.004953
.009550
.022892
.001616
.004103

O OO OO OO OODODOOOO0OO0OOO0OOO oo o

.000623
.000108
.000216
.000256
.000159
.000073
.000296
.000310
.000048
.000341
.000115
.000077
.000311
.000258
.000158
.000070
.000351
.000354
.000378
.000307
.000043
.000282
.000055
.000005
.000351
.000173

29

.006526
.001981
.012547
.002940
.002729
.011167
.022694
.010040
.014736
.000703
.005840
.001423
.008987
.004746
.005808
.004210
.068220
.012171
.007900
.022115
.003392
.008146
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

=
= O
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—
w

O OO OO OO ODODODODODODODODODODODODODODODODO0OOOO0OODOOOOOOO

NNEFE O, WNNDENRER,DNDW

.015388
.027928
.014254
.082215
.078969
.000095
.042854
.054574
.219361
.000847
.201573
.0562654
.041752
.078388
.006714
.093509
.065119
.012825
.005666
.110739
.114799
.019854
.028069
.076146
.323062
.001728
.012655
.012840
.043987
.025983
.016227
.230042
.169513
.008593
.012217

O O O OO OO ODODODODODODODODODODODODODODODODODOO0OO0OODOOOOOOO

30

.311463e-06
.401088e-06
.941043e-05
.960754e-06
.737119e-05
.797145e-05
.226348e-05
.745849e-05
.909121e-05
.600064e-06
.234124e-05
.253246e-05
.260124e-05

.009643
.001698
.033132
.031768
.010545
.013312
.018284
.052398
.016084
.114151
.036510
.036538
.047621
.029082
.002602
.024950
.113381
.001876
.024614
.015094
.004912
.057218
.064359
.016152
.012990
.012689
.025667
.029417
.026819
.001793
.032331
.010873
.000705
.124741
.006500

O O O OO OO ODODODODODODODODODODODODODODODODODOOO0OODOOOOOOO

.019771
.004029
.029596
.030960
.020511
.015522
.065101
.122136
.041382
.163417
.035536
.0563567
.046893
.049013
.003479
.162515
.161825
.003391
.043943
.044887
.021888
.108907
.057022
.056417
.052856
.107462
.0569400
.052854
.034925
.003307
.037326
.017122
.002079
.009902
.007919

O O OO OO OO0 ODODOODODODODODODODODODODOODOOOOODOOOOOOO

.000162
.000032
.000164
.000373
.000042
.000228
.000093
.000180
.000051
.007096
.000062
.000124
.000147
.000091
.000042
.000171
.000179
.000028
.000203
.000066
.000044
.000179
.000257
.000127
.000040
.000202
.000204
.000244
.000177
.000025
.000162
.000043
.000003
.000342
.000100

O O O OO OO ODODODODODOODODODODODODODODODODO0OODODODOOOOOOOOOOo

33

.003743
.003765
.003736
.011697
.002120
.000010
.002069
.004532
.012882
.000136
.012494
.002378
.011016
.007908
.000689
.003899
.006309
.001379
.003246
.023176
.028936
.002327
.005433
.007826
.006125
.000013
.004836
.001221
.003715
.003268
.009199
.016006
.054992
.000587
.001217

O O OO OO OO0 ODODODODODODODODODODODODODODOODODODOOOOOOOoOOo

.001768
.000173
.006643
.001897
.000443
.001309
.000779
.005387
.002229
.007762
.003009
.004169
.005620
.004810
.000226
.002351
.002483
.000311
.008020
.002026
.000689
.006161
.007857
.001007
.000402
.002687
.009386
.007420
.004418
.000132
.014358
.000788
.000017
.015458
.000533

[l eolNolNeolNeolNolNolNolNolNolNolNeolNolNolNolNolNolNololNolNolNolNolNolNolNolNolNolNolNolNolNolNolNo)

.006251
.000173
.002734
.001897
.000226
.001398
.001065
.012916
.002363
.010439
.002928
.005004
.002706
.004007
.000293
.008503
.004523
.000700
.014145
.007717
.007027
.009630
.009324
.002357
.000588
.050811
.031794
.012814
.006425
.000700
.015661
.000843
.000154
.001078
.000533



14 1.030686e-05
15 2.074047e-05
16 1.545478e-05
17 1.736444e-05
18 1.535626e-05
19 1.673026e-05
20 1.152258e-05
21 1.022368e-05
22 2.313905e-05
23 1.727819e-05
24 3.485431e-06
25 1.763800e-05
26 1.113115e-05
27 4.564918e-06
28 2.462878e-05
29 9.977184e-06
30 1.756400e-05
31 5.445081e-06
32 9.152766e-04
33 6.680830e-06
34 1.340159e-05
35 1.587440e-05
36 9.847201e-06
37 4.564955e-06
38 1.841747e-05
39 2.742263e-04
40 2.971187e-06
41 2.115769e-05
42 7.113344e-06
43 4.781607e-06
44 1.934433e-05
45 7.035552e-05
46 9.814252e-06
47 4.353830e-06
48 2.179402e-05
49 2.199888e-05
50 2.345797e-05
51 1.906569e-05
52 2.666984e-06
53 1.749368e-05
54 1.075735e-05
556 3.381175e-07
56 4.295529e-05
57 1.077000e-05

[57 rows x 31 columns]
And save:

tl_train metric = metrics.TasklMetric(train qrels.set_index('id'), page_kia, train_qtarget)
binpickle.dump(tl_train metric, 'taskl-train-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 1493808204 bytes with 5 buffers
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Do the same for eval:

eval_qtarget = eval_qrels.groupby('id').apply(query_xalign)
tl_eval metric = metrics.TasklMetric(eval_qrels.set_index('id'), page_kia, eval_qtarget)
binpickle.dump(tl_eval metric, 'taskl-eval-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 1493808200 bytes with 5 buffers

A.6 Task 2 Metric Preparation

Task 2 requires some different preparation.
We're going to start by computing work-needed information:

page-work = pages.set_index('page_id').quality_score_disc.astype(pd.CategoricalDtype(ordered=True))
page_work = page_work.cat.reorder_categories(work_order)
page_work.name = 'quality'

A.6.1 Work and Target Exposure

The first thing we need to do to prepare the metric is to compute the work-needed for each topic’s pages,
and use that to compute the target exposure for each (relevant) page in the topic.

This is because an ideal ranking orders relevant documents in decreasing order of work needed, followed
by irrelevant documents. All relevant documents at a given work level should receive the same expected
exposure.

First, look up the work for each query page (query page work’, or qpw):

gpw = grels. join(page_work, on='page id')

qpw

id page_id quality
0 1 572 C
1 1 627 FA
2 1 903 C
3 1 1193 B
4 1 1542 GA

2199072 150 63656179  Start
2199073 150 63807245 NaN
2199074 150 64614938
2199075 150 64716982
2199076 150 65355704

QaQQ

[2199077 rows x 3 columns]
And now use that to compute the number of documents at each work level:

qwork = qpw.groupby(['id', 'quality'])['page_id'].count()
qwork

id quality

1 Stub 1527
Start 2822
C 1603
B 610
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GA 240

150 Start 138

C 127
B 35
GA 16
FA 8

Name: page_id, Length: 636, dtype: int64

Now we need to convert this into target exposure levels. This function will, given a series of counts for
each work level, compute the expected exposure a page at that work level should receive.

def qw_tgt_exposure(qw_counts: pd.Series) -> pd.Series:
if 'id' == qw_counts.index.names[0]:
gqw_counts = gw_counts.reset_index(level='id', drop=True)
gwc = gqw_counts.reindex(work_order, fill value=0).astype('id"')
tot = int(qwc.sum())
da = metrics.discount(tot)
qup = qwc.shift(l, fill_value=0)
qwc_s = qwc.cumsum()
qwp-s = qwp.cumsum()
res = pd.Series(
[np.mean(da[s:e]) for (s, e) in zip(qwp_s, quwc_s)],
index=qwc.index

)

return res
We’ll then apply this to each topic, to determine the per-topic target exposures:

qw_pp-target = qwork.groupby('id').apply(qw_tgt_exposure)
qw_pp-target.name = 'tgt_exposure'
qw_pp-target

C:\Users\michaelekstrand\Miniconda3\envs\wptrec\lib\site-packages\numpy\core\fromnumeric.py:3440: Runti
return _methods._mean(a, axis=axis, dtype=dtype,

C:\Users\michaelekstrand\Miniconda3\envs\wptrec\lib\site-packages\numpy\core\_methods.py:189: RuntimeWa
ret = ret.dtype.type(ret / rcount)

id quality

1 Stub 0.114738
Start 0.087373
C 0.081146
B 0.079298
GA 0.078702
150 Start 0.154202
C 0.127359
B 0.120441
GA 0.118827
FA 0.118126

Name: tgt_exposure, Length: 636, dtype: float32

We can now merge the relevant document work categories with this exposure, to compute the target
exposure for each relevant document:
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gp-exp = qpw.join(qw_pp-target, on=['id', 'quality'])
gp-exp = gp-exp.set_index(['id', 'page_id'])['tgt_exposure']
gp-exp.index.names = ['q_id', 'page_id']

qp-exp

q_id page_id

1 572 0.081146
627 0.078438
903 0.081146
1193 0.079298
1542 0.078702

150 63656179 0.154202
63807245 NaN
64614938 0.127359
64716982 0.127359
65355704 0.127359

Name: tgt_exposure, Length: 2199077, dtype: float32

A.6.2 Geographic Alignment

Now that we’ve computed per-page target exposure, we're ready to set up the geographic alignment vectors
for computing the per-group expected exposure with geographic data.
We're going to start by getting the alignments for relevant documents for each topic:

gp-geo-align = qrels.join(page_geo_align, on='page id').set_index(['id', 'page_id'])
gp_geo_align.index.names = ['q id', 'page id']

gp-geo-align
Unknown Africa Antarctica Asia Europe \
q_id page_id
1 572 1.0 0.0 0.0 0.0 0.0
627 1.0 0.0 0.0 0.0 0.0
903 1.0 0.0 0.0 0.0 0.0
1193 1.0 0.0 0.0 0.0 0.0
1542 1.0 0.0 0.0 0.0 0.0
150 63656179 1.0 0.0 0.0 0.0 0.0
63807245 NaN NaN NaN NaN NaN
64614938 1.0 0.0 0.0 0.0 0.0
64716982 1.0 0.0 0.0 0.0 0.0
65355704 1.0 0.0 0.0 0.0 0.0
Latin America and the Caribbean Northern America Oceania
q_id page_id
1 572 0.0 0.0 0.0
627 0.0 0.0 0.0
903 0.0 0.0 0.0
1193 0.0 0.0 0.0
1542 0.0 0.0 0.0
150 63656179 0.0 0.0 0.0
63807245 NaN NaN NaN
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64614938 0.0 0.0 0.0
64716982 0.0 0.0 0.0
65355704 0.0 0.0 0.0

[2199077 rows x 8 columns]
Now we need to compute the per-query target exposures. This starst with aligning our vectors:
gp-geo_exp, gqp-geo_align = gp_exp.align(gp_-geo_align, fill_value=0)

And now we can multiply the exposure vector by the alignment vector, and summing by topic - this is
equivalent to the matrix-vector multiplication on a topic-by-topic basis.

gp-aexp = gp-geo_align.multiply(gp_geo_exp, axis=0)
g-geo-align = gp-aexp.groupby('q-id').sum()

Now things get a little weird. We want to average the empirical distribution with the world population
to compute our fairness target. However, we don’t have empirical data on the distribution of articles that
do or do not have geographic alignments.

Therefore, we are going to average only the known-geography vector with the world population. This
proceeds in N steps:

1. Normalize the known-geography matrix so its rows sum to 1.

2. Average each row with the world population.

3. De-normalize the known-geography matrix so it is in the original scale, but adjusted w/ world popu-
lation

4. Normalize the entire matrix so its rows sum to 1

Let’s go.
qg-known = g_geo_align.drop(columns=['Unknown'])

Normalize (adding a small value to avoid division by zero - affected entries will have a zero numerator
anyway):

gg-ksums = qg known.sum(axis=1)
qg-kd = qg_known.divide(np.maximum(qg ksums, 1.0e-6), axis=0)

Average:

qg-kd = (qg_kd + world.-pop) * 0.5
De-normalize:

gg-known = qg kd.multiply(qg ksums, axis=0)
Recombine with the Unknown column:

g-geo_tgt = g-geo_align[['Unknown']].join(qg -known)
Normalize targets:

g-geo_tgt = g_geo_tgt.divide(q-geo_tgt.sum(axis=1), axis=0)
q-geo_tgt
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Unknown Africa Antarctica Asia Europe \

q_id
1 0.575338 0.043635 3.278897e-08 0.153851 0.098450
2 0.173889 0.069608 6.378567e-08 0.294269 0.280798
3 0.234897 0.101882 5.907510e-08 0.278161 0.215027
4 0.312664 0.076008 8.262075e-05 0.246140 0.145192
5 0.182143 0.063760 6.314834e-08 0.273795 0.046710
146 0.292441 0.090378 5.463208e-08 0.299627 0.067556
147 0.434276 0.060053 4.368069e-08 0.195520 0.130625
148 0.637050 0.033542 2.802409e-08 0.233693 0.045680
149 0.370828 0.061724 4.857964e-08 0.243518 0.172170
150 0.414091 0.062031 4.523918e-08 0.208319 0.131270

Latin America and the Caribbean Northern America Oceania
q_id
1 0.025042 0.065388 0.038296
2 0.046323 0.115193 0.019920
3 0.071196 0.077784 0.021053
4 0.058319 0.143947 0.017648
5 0.061549 0.366345 0.005697
146 0.045686 0.178497 0.025815
147 0.061604 0.091005 0.026916
148 0.018613 0.025322 0.006099
149 0.040886 0.073876 0.036999
150 0.042203 0.116868 0.025218

[106 rows x 8 columns]

This is our group exposure target distributions for each query, for the geographic data. We're now ready
to set up the matrix.

train_geo_qtgt = g-geo_tgt.loc[train topics['id']]

eval_geo _qtgt = g.geo_tgt.loc[eval topics['id']]

t2_train geometric = metrics.Task2Metric(train_qrels.set_index('id'),
page_geo_align, page_work,
train_geo_qtgt)

binpickle.dump(t2_train geo metric, 'task2-train-geo-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 2018 bytes with 9 buffers

t2_eval geo metric = metrics.Task2Metric(eval qrels.set_index('id'),
page_geo_align, page_work,
eval_geo_qtgt)

binpickle.dump(t2_eval_geometric, 'task2-eval-geo-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 2014 bytes with 9 buffers

A.6.3 Intersectional Alignment

Now we need to compute the intersectional targets for Task 2. We're going to take a slightly different
approach here, based on the intersectional logic for Task 1, because we’ve come up with better ways to write
the code, but the effect is the same: only known aspects are averaged.

39



We'll write a function very similar to the one for Task 1:

def query_xideal(qdf, ravel=True):
pages = qdf ['page id']
pages = pages[pages.isin(page_xalign.indexes['page'])]
g-xa = page.-xalign.loc[pages.values, :, :]

# now we need to get the exposure for the pages, and multiply
p-exp = gp-exp.loc[qdf.name]

assert p_exp.index.is_unique

p-exp = xr.DataArray(p-exp, dims=['page'])

# and we multiply!
g-xa = g_xXa * p_exp

# normalize into a matriz (this time we don't clear)
g-am = g-xa.sum(axis=0)
g-am = gq-am / g-am.sum()

# compute fractions in each section - combined with gq_am[0,0], this should be about 1
q-fk_all = gq.am[1:, 1:].sum()
q-fk_geo = q.am[1:, :1].sum()
g-fk_gen = gam[:1, 1:].sum()

# known average
g-am[1:, 1:] *= 0.5
g-am[1:, 1:] += int_tgt * 0.5 * g_-fk.all

# known-geo average
g.am[1:, :1] *= 0.5
g-am[1:, :1] += geo_tgtxa * 0.5 * q_fk_geo

# known-gender average
g-am[:1, 1:] *= 0.5
g-am[:1, 1:] += gender_tgt xa * 0.5 * gq_fk gen

# and return the result
if ravel:

return pd.Series(q-am.values.ravel())
else:

return q_am

Test this function out:
query_xideal(qdf, ravel=False)

<xarray.DataArray (geography: 8, gender: 4)>
array([[5.40211229e-01, 1.22904624e-02, 2.26610467e-02,
[3.80909493e-02, 2.90804953e-03, 2.59344827e-03,

2 .75635724e-04],
2
[2.85527900e-08, 2.09691080e-09, 2.09691080e-09,
1
8
1

.25392005e-05] ,
.23618344e-11],
.64648516e-04],
.84372324e-05],
.36185304e-05],

[1.34695670e-01, 8.88355123e-03, 1.01072347e-02,
[8.71895859e-02, 2.97387866e-03, 8.25814408e-03,
[2.16878846e-02, 1.67819032e-03, 1.65196427e-03,

= N 00NN
NN = DD
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[5.32652519e-02, 2.51534798e-03, 9.59370956e-03, 1.36109402e-05],
[3.48679417e-02, 4.71346052e-04, 2.95512391e-03, 1.46710935e-06]11)

Coordinates:
* geography (geography) object ’Unknown’ ’Africa’
* gender (gender) object ’unknown’ ’female’ ’male’
And let’s go!
gxtgt = qrels.groupby('id').progress_apply(query_xideal)
q-xtgt
{"model_id":"","version major":2,"version minor":0}
0 1 2 3 4
id
1 0.540211 0.012290 0.022661 0.000176 0.038091 O
2 0.135109 0.010633 0.027958 0.000201 0.063400 O
3 0.185923 0.018891 0.029817 0.000245 0.018607 O
4 0.283620 0.008665 0.020234 0.000145 0.069568 O
5 0.102865 0.021347 0.057531 0.000396 0.017768 O
146 0.242344 0.017108 0.032738 0.000250 0.033631 ©0
147 0.380085 0.025582 0.026067 0.001304 0.028472 O
148 0.620663 0.005550 0.010755 0.000082 0.031143 O
149 0.365415 0.002870 0.002516 0.000027 0.060143 O
150 0.228180 0.057917 0.127065 0.000930 0.014522 0
7 8 9 22
id
1 0.000043 2.855279e-08 2.096911e-09 0.001652
2 0.000059 5.789347e-08 2.916166e-09 0.002811
3 0.000471 1.300894e-08 2.280358e-08 0.032680
4 0.000059 8.261490e-05 2.894759e-09 0.002071
5 0.000458 1.758741e-08 2.255280e-08 0.034300
146 0.000212 3.349054e-08 1.046506e-08 0.009259
147 0.000207 2.317530e-08 1.019747e-08 0.018809
148 0.000024 2.563480e-08 1.182699e-09 0.000659
149 0.000016 4.700522e-08 7.793387e-10 0.002786
150 0.000320 1.332948e-08 1.579530e-08 0.016691
25 26 27 28 29
id
1 0.002515 0.009594 0.000014 0.034868 0.000471 O
2 0.002826 0.012684 0.000019 0.017811 0.000468 O
3 0.018746 0.039812 0.000164 0.004908 0.005947 O
4 0.002601 0.013870 0.000019 0.015398 0.000279 O
5 0.012692 0.249255 0.000146 0.002342 0.000883 O
146 0.010455 0.003362 0.000068 0.013121 0.012324 O
147 0.022379 0.017457 0.000066 0.016122 0.005498 O
148 0.000380 0.004670 0.000008 0.003416 0.000041 O
149 0.000250 0.001781 0.000005 0.036944 0.000027 O

41

.002908
.003032
.033486
.003021
.022647
.031692
.017849
.001188

.000783
.021052

.002955
.001639
.010179
.001968
.002456
.000362
.0056220

.002642
.000027

’Oceania’
’third’

O O O O O

O O O O O

23

.000024
.000033
.000257
.000033
.000254

O O O O O

.000118
.000115
.000013
.000009
.000178

O O O O O

30

=N RN

o 00 NN

.002593
.003115
.049321
.003361
.022888
.024843
.014999
.001188

.000783
.026136

24

.063265
.099662
.019061
.127457
.104245

O O O O O

.164611
.050914
.020264
.071839
.040721

O O O O O

31

.467109e-06
.040304e-06
.595459e-05
.025326e-06
.5677913e-05

.321910e-06
.134685e-06
.274784e-07
.452665e-07



150 0.017971 0.058074 0.000103 0.009900 0.000547 0.013698 1.071915e-03

[106 rows x 32 columns]

train_qtgt = gq-xtgt.loc[train_ topics['id']]
eval _qtgt = q-xtgt.loc[eval_topics['id']]

t2_train metric = metrics.Task2Metric(train_qrels.set_index('id'),
page_xa_df, page_work,
train_qtgt)

binpickle.dump(t2_train metric, 'task2-train-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 1879 bytes with 9 buffers

t2_eval metric = metrics.Task2Metric(eval_qrels.set_index('id'),
page_xa_df, page_work,
eval qtgt)
binpickle.dump(t2_eval metric, 'task2-eval-metric.bpk', codec=codec)

INFO:binpickle.write:pickled 1875 bytes with 9 buffers
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