ABSTRACT
This paper describes our participation (IRLab-Amsterdam) in TREC CAsT 2021. Our approach adapts a pre-trained token-level dense retriever (ColBERT) to perform zero-shot conversational search. Specifically, our query encoder reads the entire conversation history to contextualize the embeddings of the last user utterance/query, while the token-level matching function uses the contextualized embeddings to retrieve directly from the collection. The advantages of our method are two-fold: (a) it does not need any conversational data for training (ie. query resolutions, or conversational relevance judgements) and (b) it avoids complex pipeline systems based on rewriting that can affect performance (response latency) and robustness.

KEYWORDS
information retrieval, conversational search

1 INTRODUCTION
Data scarcity is one of the most important characteristics of conversational search, since most conversational queries are low-tailed (ie. they appear once) [11]. To deal with this problem, most methods first solve the surrogate task of conversational query resolution/rewriting by using human annotated query rewrites, which allows them to simplify conversational search to ad-hoc search [5, 6, 8, 10]. Despite their effectiveness in the current offline evaluation paradigm, those approaches (a) assume the presence of question reformulation data from a similar domain, which are not always available or easy to collect and (b) further complicate the retrieval pipeline by introducing higher response latency as well as robustness issues.

To overcome these issues, we adapt a pre-trained ad-hoc token-level dense retriever (ColBERT) to the conversational search setting, that uses no additional data specific to conversational search (ie. question rewriting or conversational relevance judgements). We achieve this in two steps: Firstly, our query encoder reads the entire conversation history and contextualizes the token-level embeddings of the last user utterance. Following that, our matching function uses the contextualized embeddings of the last turn’s tokens to do dense retrieval directly from the corpus. Therefore, our method is zero-shot when it comes to conversational data, as it only relies on supervision from ad-hoc query relevance judgments, which are available at a large scale and much easier to collect.

Additionally, our method is much simpler and efficient in contrast to rewriting-based approaches, which have many different components that are often trained, tuned and evaluated in isolation. This increases the effort required for deployment and maintenance, but crucially calls into question the robustness and user satisfaction in the end of the pipeline.

Another serious shortcoming of pipeline systems is high response latency to a new query. Each component needs to run sequentially, as it takes input from the previous step. We should also note here, that in production systems the problem becomes even worse, as more components are usually added to those pipelines, such as speech-to-text or other post-processing modules.

2 METHODOLOGY
In this section, we describe our zero-shot dense retriever for Conversational Passage Retrieval.

2.1 Task & Notations
Let \(q_t \) be the user query to the system at the \(t \)-th turn, and \(p_t \) the corresponding canonical passage response provided by the competition organizers. We formulate our passage retrieval task as follows: Given the last user utterance \(q_t \) and the previous context of the conversation at turn \(t: ctx_t = (q_0, p_0, ..., q_{t-1}, p_{t-1}) \), we want return a ranking of \(K \) documents \(R_{q_t} = (p_{q_t}^1, p_{q_t}^2, ..., p_{q_t}^K) \) from a collection \(C \), that are most likely to satisfy the users’ information need.

2.2 Token-level Dense Retrieval
In this section we briefly describe ColBERT[3], the dense retriever we adapted to our conversational task. In contrast to other dense retrievers that construct global query and document representations (eg. DPR[2] or ANCE[9]), ColBERT maintains embeddings of all query and document tokens and therefore performs matching on the token-level.

In practice, instead of relying on aggregated representations (ie. [CLS] token), each token passes through multiple attention layers in a typical transformer architecture and is contextualized with respect to its surroundings [1, 7]. Then, those token embeddings are used to perform the matching. Specifically, each query token is matched with the most similar document token, using a maxSimilarity operation. The score of a query-document pair is an aggregation over all query terms of the most similar term in this document:

\[
S_{q,d} := \sum_{i \in |E_q|} \max_{j \in |E_d|} E_{q_i} \cdot E_{d_j}^T
\]

Overall, this allows ColBERT to perform a more fine-grained matching on the term level, while computing soft term matches on contextualized token embeddings.

2.3 Conversational token-level Dense Retrieval
In our approach, we extend this idea of contextualizing embeddings of terms using their neighbors, to the task of conversational search. We argue that, when dealing with conversations, it is important for each turn to be contextualized with respect to the previous context,
as most conversational queries have continuity and even contain anaphoras to previous turns [6, 8, 10].

Therefore, the query encoder \(f_{QE} \) reads the previous conversational context \(cx_t \) along with the last utterance \(q_t \) to produce the contextualized token embeddings of turn \(t \):

\[
E^t_{q_t} := f_{QE}(cx_t \circ [SEP] \circ q_t)
\]

Since the token embeddings of the last utterance are now contextualized with information from the previous history, we use ColBERT’s token-level matching function (equation 1) to compute query-document relevance scores:

\[
S_{q,d} := \sum_{i \in [|q_t|]} \max_{j \in [|d|]} E^t_{q_t} \cdot E^T_{d_j}
\]

3.2 Experimental Results

In this section, we discuss the official evaluation results of our submitted runs. Those can be found in Table 1. We also note that our results have been negatively affected by a bug that was discovered after the submission deadline, and therefore are tentative. Due to this reason, we are unable to provide additional baselines and oracles that further investigate the effectiveness of our method.

As we can see from the results in Table 1, our zero-shot retrievers perform lower than the average performance of the median run. The performance gap is roughly 40% for both the canonical and raw type submissions. Nonetheless, it is important to highlight that, in contrast to most other methods to be found in the literature our method: (a) does not take advantage of any additional training data and (b) is a first-stage ranker that does not use any cross-attentions between query and documents.

After comparing our two runs, it also becomes evident that canonical passages are an important part of the conversation and increasing the input length to our query encoder does not have such a detrimental effect.

4 CONCLUSIONS

In this paper, we describe our submissions in TREC CAsT 2021. We propose a zero-shot dense retriever, that uses supervision only from the ad-hoc ranking tasks and does not need any conversational-search related data. We show that our methods’ performance as a zero-shot first-stage ranker is adequate, given that it significantly simplifies the previous complex conversational retrieval pipelines used in previous literature.

