
M4D-MKLab/ITI-CERTH Participation

in TREC Deep Learning Track 2021

Alexandros-Michail Koufakis, Theodora Tsikrika,
Stefanos Vrochidis, Ioannis Kompatsiaris

Information Technologies Institute, Centre for Research and Technology Hellas,
6th Km. Charilaou - Thermi Road, 57001 Thermi-Thessaloniki, Greece

{akoufakis, theodora.tsikrika, stefanos, ikom}@iti.gr

Abstract

Our team’s (CERTH ITI M4D) goal in the TREC Deep Learning Track was to study how the Con-
textualized Embedding Query Expansion (CEQE) [1] method performs in such setting and how our
proposed modifications affect the performance. In particular, we examine how CEQE performs with
the addition of bigrams as potential expansion terms, and how an IDF weight component affects
the performance. The first run we submitted is produced by a query expansion pipeline that uses
BM25 for retrieval and CEQE with the IDF modification for query expansion. The second submitted
run used a modification of CEQE with the addition of bigrams as candidate expansion terms and a
re-ranking step using CEDR. Our runs showed promising results, especially for Average Precision.

1 Introduction

The TREC Deep Learning (DL) track1 is actively developing and improving a large dataset based
on MS MARCO for document and passage retrieval. It offers ample data for the development of
novel methodologies while it has the challenge of partially labeled training data that incentivizes
semi-supervised and transfer learning.

Recently, transformers [2, 3, 4, 5, 6, 7] and other DL architectures [8, 9] were used to produce word
embeddings that allow operations in the vector space instead of using word-based statistics. Moreover,
in some cases contextualized word embeddings were produced (which means that the embeddings
depend on the neighboring words). Such contextualized embeddings are better equipped to tackle
polysemy and other issues that require understanding of the context. Word embeddings have been
already studied [10, 11, 12, 13, 14, 15] in numerous Information Retrieval (IR) tasks showcasing great
results.

Query Expansion (QE) is a well established technique [16, 17, 18, 19, 20] and entails the process
of adding new terms in the original query to better represent the information need. Pseudo-Relevance
Feedback (PRF) is a particular family of QE techniques that works on the assumption that the top-K
retrieved documents are likely to be relevant and expands the query based on the contents of those
documents. Recently, some studies [21, 22, 1, 23, 24] examined the potential of using contextualized
embeddings to perform QE. These studies reported great results, but there are more directions open
for exploration. In particular, we performed some preliminary studies on variations of Contextualized
Embedding Query Expansion (CEQE) [1]:

• How does IDF affect the performance?

• How does the addition of bigrams affect the performance?

1https://microsoft.github.io/msmarco/TREC-Deep-Learning.html

https://microsoft.github.io/msmarco/TREC-Deep-Learning.html

• How does the addition of term weight affects the performance?

The rest of the document is structured as follows; Section 2 presents the contextualized embedding
methodology and the variations we examined, Section 3 analyzes the experiments and evaluates our
performance in TREC DL 2021, and finally Section 4 concludes with an overview of the paper and
some future directions for improvement.

2 Methodology

In this section we present briefly the original CEQE [1] formulation and its derivation from probabilis-
tic language modeling approaches, especially the Relevance Model [18]. Subsequently, the two new
modifications of CEQE are presented. The two modifications correspond to the runs submitted by
our team to TREC DL 2021.

Probabilistic language modeling approaches quantify the relevance of terms to a query in terms of
the probability that the word be generated based on a language model. In the case of PRF the language
model is calculated via the set of pseudo-relevant documents and the whole corpus. Equations 1 and
2 show that the probability of a word to be relevant based on the feedback relevance model (�R) is
proportional to summation of some simpler probabilities that can be estimated through statistical
metrics.

p(w|�R) ∝
X
D2R

p(w;Q;D) (1)

X
D2R

p(w;Q;D) =
X
D2R

p(w|Q;D)p(D) =
X
D2R

p(w|D)p(Q|D)p(D) (2)

In order to make the simplifications of equation 2 in original RM formulation is assumed that
query Q and term w are independent. In CEQE they note that this assumption is not valid in
case of contextualized vector representations as each word is dependent to its context. The CEQE
parametrization is presented in eq 3:X

D2R

p(w;Q;D) =
X
D2R

p(w|Q;D)p(Q|D)p(D) (3)

Moreover, in CEQE they propose three methods to calculate p(w|Q;D) according to the updated
formulation. First, in eq 4 they define p(w|Q;D) as the normalized distances between the mentions of

a word in a document (~mD
w) and the centroid of the query (~Q). A word mention within a document is

the embedding of the word given its context within the document. MD
w is the complete set of mentions

of a word in a document D. The centroid of a query is defined as the mean of the individual token
embeddings, i.e. ~Q , 1

jQj
P

qi2Q ~q, where qi is a query token and ~q its embedding. The function � is

a similarity function, e.g. cosine similarity.
The BERT tokenizer sometimes splits words into multiple tokens (especially complex and long

words), for example, ”surfboarding” is split into three tokens ”[’surf’, ’##board’, ’##ing’]”. Such
tokens are called wordpieces [25]. As CEQE works on word-level embeddings it aggregates the indi-
vidual wordpieces to compose the corresponding word embedding. In particular, it uses the centroid
of the token embeddings as the aggregation method, ~w ,

P
pi2w ~pi, where pi are the wordpieces of

word w.

p(w|Q;D) ,

P
mD

w 2MD
w
�(~Q; ~mD

w)P
mD2MD

�
�(~Q; ~mD)

(4)

The other two proposed methods of the new formulation are based on individual query term
representations, instead of the centroid. Equation 5 shows the alternative form of the p(w|q;D).
This equation differs to eq 4 in that the mentions of a word are compared with all individual query
terms. Thus, in order to have an overall similarity between the query and the word, a pooling step is
performed. In particular, eq 6 (called ”MaxPool”) shows the first pooling technique, which defines that
similarity to the most similar query term is selected. Eq 7 shows the alternative pooling technique that

multiplies the similarities between a word and all the individual query terms. Finally, eq 8 normalizes
the results of eq 6 and 7 in order for the final p(w|Q;D) to be a relevance distribution of terms derived
from contextual representations in top retrieved documents. Z 0 is a normalization factor that is the
sum over the terms in document D.

p(w|q;D) ,

P
mD

w 2MD
w
�(~q; ~mD

w)P
mD2MD

�
�(~q; ~mD)

(5)

fmax(w;Q;D) = maxq2Qp(w|q;D) (6)

fprod(w;Q;D) =
Y
q2Q

p(w|q;D) (7)

p(w|Q;D) ,
fmax=prod(w;Q;D)

Z 0 (8)

In this work we only used the MaxPool method as it produced the best results as the authors
of CEQE showed, and we confirmed it through our own experimentation. The MaxPool formulation
seems to be effective in a broader context within the contextualized embeddings as in ColBERT used
a similar function for similarity. In particular Khattab and Zaharia [26] named it MaxSim but is
essentially the max similarity between a word and the individual terms of a query/document (query
in CEQE, document in ColBERT).

2.1 CEQE with IDF and term weights

Clinchant and Gaussier in their analysis on PRF models [27] observed that well-known PRF models
of that period (published in 2013) tend to select common terms with low IDF, violating the heuristics
constraints Fang et al. [28] formulated, indicating sub-optimal performance.

In proposed CEQE implementations, the IDF effect is not explicitly satisfied via the equations, as
the probability p(w|Q;D) considers solely the similarity within the feedback set. No term distribution
metrics are used.

f 0
max(w;Q;D) = maxq2Q(IDFw ∗ p(w|q;D))

The updated equation (modifies the equation 6) by injecting the IDF of a word w as weight to
the probability p(w|q;D). For our preliminary tests we do not modify the normalization step (eq 8)
which means that the final scores are not probabilities. However, we performed QE by adding the
proposed terms with their corresponding weights to the original query, and the fact that their score
is not a probability does not affect this method.

Moreover, we tried to use the scores as weights in the final retrieval step. The motive for this is to
encourage terms that are highly similar to the query (thus having increased score) while discouraging
less similar terms. In particular, the parameter � (0 < � < 1) applies a weight to the original query
terms and � − 1 weight is applied on the expansion terms. For example, without using weights the
query ”types of dysarthria from cerebral palsy” with � = 0:2 would be expanded:

typeˆ0.2 cerebralˆ0.2 dysarthriaˆ0.2 ofˆ0.2 palsyˆ0.2 fromˆ0.2 speechˆ0.8 motorˆ0.8 musclesˆ0.8
...
Where the first terms are terms from the original query with the weight � = 0:2 and the following
terms are the expansion terms with weight � = 1 − 0:2 = 0:8. While when applying the scores as
weights it would be similar to:

typeˆ0.2 cerebralˆ0.2 dysarthriaˆ0.2 ofˆ0.2 palsyˆ0.2 fromˆ0.2 speechˆ0.059 motorˆ0.018 mus-
clesˆ0.018 ...

2.2 CEQE with bigrams

Another direction that modern QE works on contextualized embeddings seem to leave space for im-
provement is the utilization of n-grams. Particularly so, because BERT and contextualized embeddings
inherently consider context, we hypothesized that groups of neighboring words would represent better
the particular meaning of a query. For example, if a word in a particular context is found to match
better the meaning of the query, then the neighboring words are likely to be important as well for the
particular meaning. Thus, the expansion with bigrams could prove more bene�cial than single words
in the representation of the information need.

We generated both unigrams and bigrams from the feedback documents as candidate expansion
terms that undergo a similar selection process. The bigram embeddings were generated as the cen-
troid of the two individual terms, in similar fashion to the transition from wordpieces to words. We
devised a procedure for selecting the best expansion terms from the pool of unigrams and bigrams.
This procedure includes some �ltering through the potential bigram expansion terms to remove near
duplicates and noisy terms. In detail, the following list presents the �ltering conditions:

1. No bigrams with stopwords.

2. No bigrams with numbers.

3. No bigrams with terms from the original query.

4. No bigrams with terms that are already selected as unigram expansion term.

5. No bigrams with terms with document frequency less than 25.

We observed that stopwords and numbers (conditions 1 & 2) tended to dilute the bigrams and result
in bigrams that are not signi�cantly di�erent than their unigram counterparts. Bigrams that include
terms from the original query (condition 3) tended to be already su�ciently represented. Likewise,
terms that were already selected as unigrams (condition 4) tended to be su�ciently represented
already. Finally, similar to AlQatan et al. [29] we used words above a minimum document frequency
(condition 5). Too infrequent terms often were result of imperfect data collection, for example the
mangled words "unmuteif" and "palsydysarthria" have low document frequency and indeed they
are not good expansion terms. While BERT can make sense of such words, traditional word based
methods are hindered by them. Moreover, words that are so under-represented in the collection o�er
limited potential for improvement as they inuence just a handful of document. For example, the
query "types of dysarthria from cerebral palsy" is expanded2:
#combine:0=0.95:1=0.95:2=0.95:3=0.95:4=0.95:5=0.95:6=0.05:7=0.05: [...] 41=0.05:42=0.05 [...]
(types of dysarthria from cerebral palsy speech symptoms [...] #1(lobe cranially) #1(also symptom)
[...])
Where the �rst terms are from the original query with weight 0 :95 and the following are unigram and
bigram expansion terms with weight 0:05.

3 Experiments

In this section we describe our two submitted runs and o�er some analysis on the results. Our
modi�cations on the original CEQE methods were implemented based on the o�cial code3. CEQE
and the new modi�cations were integrated to the pyterrier platform 4. We had a machine with GTX
2080Ti 11GB, 128GB RAM, and an HDD for all stages of our experiments. In both of our runs, the
best parameters for the models were selected after grid search using the qrels of TREC DL 2019 and
2020 on the new dataset (this year's MS MARCO v2). In particular, the parameters that were tuned
are shown in the table 1. The parametersfb docs and fb terms represent the number of feedback
documents and the number of feedback terms and they follow the naming convention of the pyterrier
platform that we used. The last parameter lambda (�) de�nes the term weight coe�cient as described

2The query formatting is di�erent than in subsection 2.1 in order to enable pair of words to match
3https://github.com/sherinaseri/ceqe-release
4https://pyterrier.readthedocs.io/en/latest/

Parameter Name Range/Values
fb docs 5, 10, 15
fb terms 10, 15, ... 60
lambda 0.05, 0.1, ... 0.9, 0.95

Table 1: The parameters that were tuned via grid search

in section 2.1. Documents were preprocessed with Porter Stemmer and punctuation and stopword
removal.

3.1 Run 1: CEQE with IDF and term weights

Our �rst submitted run (ID: bigrams cont qe5) was the result of a query expansion pipeline without
reranking. The query expansion was performed via the CEQE algorithm with the addition of IDF
component optimized for Normalized Discounted Cumulative Gain with cuto� at 10 (NDCG@10) and
the addition of the CEQE scores as term weights (cf. section 2.1). The parameters that yielded the
best results in the validation set werefb docs= 5, fb terms = 45, lambda = 0 :2. The pipeline follows
the three steps:

1. BM25 for initial retrieval.

2. Query expansion with CEQE IDF with the score as weights.

3. BM25 on expanded queries.

Initially the default BM25 retrieves a set of documents (the number is dictated by the fb docsparam-
eter) for the original query, then the CEQE algorithm expands the query with fb terms expansion
terms, and the �nal documents are retrieved according to the expanded query using the default BM25
again. Inference took 30 seconds per query, but the delay is mostly due to the large size of the index
and the absence of an SSD drive.

Figure 1 shows the percentage of queries that were above, below or at the median in our �rst
run. Each piechart shows the performance for a di�erent metric. In Average Precision ("map") 74%
queries achieved better performance than the median. In Precision at 10 ("P10") 21% of queries were
above median and 26% below. In the case of Reciprocal Rank ("reciprank") is not easy to evaluate
our performance because the median in all but one query was 1, indicating that most runs retrieved
a relevant document in the �rst position. As the organizers pointed out, due to the large size of the
dataset, the number of positive labels is very large. This caused a large number of perfect scores in
Precision at 10 and Reciprocal Rank. In Normalized Discounted Cumulative Gain with cuto� at 10
("ndcg cut 10") we scored above median in slightly less than half (46%) of the queries.

Figures 3, 4, 5 and 6 show the performance of our runs per query for the four di�erent metrics.
The black horizontal lines cover the whole range between the best and worst performance across
all the submitted runs. Figures 5 and 6 con�rm that that many runs reached the perfect score at
precision@10 and reciprocal due to the numerous positive results in the dataset. Otherwise, there
does not seem to be a clear tendency in our run 1.

Overall, our run performs very well in Average Precision, which is the only metric that evaluates all
the top 100 documents. This indicates that our run performs comparatively better outside the top 10
documents. NDCG@10 is the only metric that considers the di�erent similarity labels (0: irrelevant,
1-4: gradually more relevant). The other metrics transform the labels to binary (0: irrelevant, 1-4:
relevant). NDCG@10 seems to follow a similar pattern with Precision at 10 in that it performs slightly
bellow median, indicating no meaningful di�erence with the two scoring approaches.

3.2 Run 2: CEQE with Bigrams and CEDR reranking

The second run (ID: bigram qe cedr) improves on the previous pipeline with the addition of a reranking
step at the end. This run uses the bigram variation of CEQE algorithm (cf. section 2.2) and was

5The ID mistakenly suggests the use of bigrams

Figure 1: Percentage of queries that performed better/worse than the median

optimized for recall@100 as an reranking step was employed. The best parameters werefb docs= 5,
fb terms = 30, lambda = 0 :95.

In detail the steps:

1. BM25 for initial retrieval.

2. Query expansion with CEQE Bigrams.

3. BM25 on expanded queries.

4. Reranking with CEDR.

BM25 performed the initial retrieval stage, followed by QE with Bigram variation of CEQE, then
BM25 retrieved documents based on the expanded queries, �nally, a CEDR model re-ranked the
top 100 documents. CEDR was trained with batch size 512, for 126 iterations with early stopping.
We used CEDR as a re-ranking step after the query expansion step, to examine the e�ect of the
improved recall along with a �nal document re-ranking stage. We chose to use CEDR for re-ranking
as it produces good results in a reasonable time frame without the necessity of the resource intensive
BERT re-training/�ne-tuning. We used the PyTerrier port of the CEDR algorithm 6 and the "bert-
base-uncased"7 BERT model.

Inference took approximately 35 seconds per query which is 5 seconds slower than the �rst run
that did not include a re-ranking step. This indicates that the re-ranking step did not add a great
overhead, and as previously the main cause of delay was the slow disk access (HDD).

Figure 2 shows the percentage of queries that performed better/worse than median for our second
run. The second run seems to follow the tendencies of the �rst, meaning that it performs very well
on Average Precision but less so in the other metrics. This indicates once more that our methodology
under-performs in the top 10 documents while performing better than the median in the top 100, in

6https://github.com/cmacdonald/pyterrier_bert
7https://huggingface.co/bert-base-uncased

Figure 2: Percentage of queries that performed better/worse than the median

most cases. This result is counter-intuitive given that run 2 has an re-ranking step contrary to run
1. The re-ranking step is expected to rearrange the top 100 documents and boost the score of the
most similar, thus, increasing the top 10 metrics (P10, ndcgcut 10). In practice, it appears that
the re-ranking step harmed the performance uniformly in all metrics. This is possibly due to the use
of the default BERT model (not �ne-tuned) for CEDR, incompatibility issues with the training data
(previous years' qrels were used), or some other inaccuracy in CEDR's training.

Figures 3, 4, 5 and 6 seem to reinforce the notion that run 2 performed better than median on
Average Precision and less so in the other metrics, but we did not identify any other pattern in relation
to run 1.

4 Conclusion

In this paper we presented our participation in TREC DL 2021. We submitted two runs for the
document ranking task with some variations of PRF based on BERT embeddings. In our �rst run we
examined the direct addition of IDF as a score component and used the scores as term weights. In our
second run we performed QE on both unigrams and bigrams and �nally added a CEDR re-ranking
stage. The resuls show that our runs performed very well on Average Precision on top 100 documents
while they were not as e�ective in the metrics that examined the top 10 documents. Interestingly,
the second run that included a re-ranking step did not perform as well as the �rst run, likely due to
ine�ective re-ranking. Overall, our runs' performance was promising and indicates that it can bene�t
greatly from an e�ective re-ranking stage.

Figure 3: Average Precision per query

Figure 4: NDCG at 10 score per query

Figure 5: Precision at 10 per query

	Introduction
	Methodology
	CEQE with IDF and term weights
	CEQE with bigrams

	Experiments
	Run 1: CEQE with IDF and term weights
	Run 2: CEQE with Bigrams and CEDR reranking

	Conclusion
	Acknowledgements

