
University of Glasgow Terrier Team and UFMG at the
TREC 2020 Precision Medicine Track

Alberto Ueda
UFMG, Brazil

ueda@dcc.ufmg.br

Rodrygo L. T. Santos
UFMG, Brazil

rodrygo@dcc.ufmg.br

Craig Macdonald, Iadh Ounis
University of Glasgow, UK

firstname.lastname@glasgow.ac.uk

ABSTRACT
For TREC 2020, we explore different re-ranking strategies by in-
tegrating PyTerrier — a framework which allows us to build ad-
vanced retrieval pipelines — with state-of-the-art BERT-based con-
textual language models. To produce the initial ranking, we use
traditional retrieval models, such as Divergence From Randomness
(DFR) weighting models. Then, we assign new scores for each doc-
ument with BERT-based models, such as SciBERT and ColBERT.
Finally, we re-rank the documents using combinations of those
scores, via linear combination or learning-to-rank. We also conduct
experiments with models able to leverage the structure informa-
tion of the documents, i.e., by assigning different scores for their
individual sections (e.g., Background, Results, Conclusions). We
submitted five official runs, uog_ufmg_DFRee, uog_ufmg_s_dfr0,
uog_ufmg_s_dfr5, uog_ufmg_sb_df5, uog_ufmg_secL2R. Our re-
sults in TREC 2020 confirm our main observations in our tests using
the TREC 2019 test collection, showing that re-ranking strategies
such as simple linear combinations of DFR and SciBERT scores
(uog_ufmg_sb_df5) are competitive and outperform the TREC me-
dian performance.

1 INTRODUCTION
In our first participation in the TREC Precision Medicine track,
we opt to evaluate the effectiveness of traditional retrieval models
integrated with state-of-the-art contextual language models, in the
domain of medical literature. Inspired by our participation in the
TREC Deep Learning Track [15, 16], we leverage our existing team
infrastructure, while enhancing it with the integration of new deep
learning techniques — some of them specific to scientific literature,
such as the SciBERT pre-trained model. In particular, we use PyTer-
rier [11],1 a Python framework which allows advanced retrieval
pipelines to be expressed, and evaluated, in a declarative manner
similar to their conceptual design. We integrate PyTerrier with a
toolkit which allows us to straightforwardly handle BERT-based
models (CEDR [9], described in Section 4) and then conduct several
experiments on the application of different standard IR models (e.g.,
BM25, DPH, DFRee) and BERT-based models (e.g., BERT𝐶𝐿𝑆 [12],
SciBERT [3], CEDR_pacrr [9], and the more recently proposed Col-
BERT [5]). To evaluate the performance of those models and choose
which of them would be submitted, we use the datasets provided by
previous editions of the track, namely, TREC-PM 2017-2019[13]. We
combine the different scores given by each model using linear com-
binations and the LightGBM implementation of LambdaMART.2
Moreover, we conduct initial experiments using models that lever-
age the inherited structure of biomedical abstracts, i.e., the presence
of named sections such as Background, Results, and Conclusions.

1https://github.com/terrier-org/pyterrier
2https://lightgbm.readthedocs.io

The remainder of this paper is structured as follows: Section 2
describes our settings for indexing the TREC-PM 2020 data; Sec-
tion 3 discusses the models used to produce the initial candidate set
of documents, i.e., the first-phase retrieval, while in Section 4 we
show detailed information about the contextual language models
used in the second-phase retrieval; Section 5 provides the full list of
the official submissions we made to TREC and the strategies used
in each submission; Section 6 and Section 7 discuss our results and
provide concluding remarks, respectively.

2 INDEXING
To index the 29,138,919 documents (i.e., biomedical abstracts) of
the Pubmed/MEDLINE 2019 Baseline, we use Terrier [10] v5.3. For
each document, we index only its identifier (tag PMID), title (tag
articletitle) and text (tag abstracttext). We initially also in-
dexed its MeSH Terms (found in tags such as descriptorname in-
side a (meshheadlinglist)), however, in our experiments they did
not improve the first-phase nor the second-phase retrieval, hence
they were discarded. For all documents, we identify named sections
such as Background and Results (e.g., NlmCategory=“BACKGROUND”
inside an abstracttext), and we index them as Terrier fields. We
discard all the other information from the original corpus.

We use the following indexing configurations:
• Positions: to record the positions that terms occur in;
• Fields: to record the frequencies of terms occurring in dif-
ferent parts of the document: abstract title, text, and named
sections (as described previously);

• Stemming & Stopwords: to improve retrieval recall and pre-
cision, we applied Porter’s stemmer and Terrier standard
stopwords removal at indexing time.

We apply the classical two-pass indexing of Terrier3 to create
both a direct and an inverted index of the corpus, to support query
expansion and other retrieval techniques. We also record the raw
text of the document titles and content as metadata, to allow deep
learning upon these textual representations, as discussed further in
Section 4. In the next section, we describe how we use that index
to create the initial candidate set of documents in our first-phase
retrieval.

3 FIRST-PHASE RETRIEVAL
To avoid computing expensive ranking models for large collections
such as Pubmed/MEDLINE, with millions of documents, we take
a common approach in most modern search engines, namely the
cascading architecture: where an initial ranking of 𝑘 documents
with respect to a query 𝑞 is thereafter re-ranked by the application
of more advanced and complex ranking techniques, such as neural

3https://github.com/terrier-org/terrier-core/blob/5.x/doc/

https://github.com/terrier-org/pyterrier
https://lightgbm.readthedocs.io
https://github.com/terrier-org/terrier-core/blob/5.x/doc/


rankers. The initial ranking is the result of the referred first-phase
retrieval. Using PyTerrier, we employ three standard models of
Information Retrieval (IR) — BM25, DPH, and DFRee — in two
different versions of each of them, with/without query expansion
(QE):

• DFRee is a hyper-parameter-free implementation of the
Divergence From Randomness hyper-geometric weighting
model [2];

• DPH [14] is the DFR-based weighting model with Popper’s
normalization (the ‘P’ in the DPH name). DPH is the default
weighting model of PyTerrier;

• BM25 (i.e. Okapi BM25) is a popular weighting model to ad-
dress various retrieval tasks. In contrast to DPH and DFRee,
we note that the BM25 hyper-parameters can be fine-tuned,
providing corpus-fitted models. However, we use the PyTer-
rier default parameter values in our experiments.

For each topic, the query consists of the concatenation of the
contents of the disease, gene, and treatment tags provided in
the TREC topics file. To expand the original queries, we used the
default parameters of query expansion in PyTerrier, in which, for
each query 𝑞, the top ten most informative terms of the top three
documents retrieved were added to 𝑞 with the weighting scores
given by the Bo1 model [1]. Although query expansion (QE) im-
proved the recall of BM25 and DPH, as expected, the DFRee ranking
model without QE, surprisingly, outperformed all of the models
considered, including those with QE. Thus, we decided to use DFRee
without QE as our first-phase retrieval model in all further experi-
ments. We also experimented with different values for the size 𝑘 of
the initial candidate set, from 200 to 5,000 documents per query. In
these experiments, we found that using 𝑘 = 1000 provided similar
performances to higher values of 𝑘 in the final ranking, not only
with respect to precision but also in terms of recall. Therefore, we
use this setting in all experiments described in this paper. We easily
deploy all the aforementioned ranking models using PyTerrier.

Next, we describe the second-phase retrieval, where we employ
more tailored ranking models to assign new scores to each docu-
ment.

4 SECOND-PHASE RETRIEVAL
Since it has been proposed, the BERT contextual language model [4]
(LM) andmany of its extensions such as ALBERT [6] and RoBERTa [8]
have showed significant improvements in several natural language
processing (NLP) tasks, such as question answering, named entity
recognition, and passage retrieval [9, 12]. In particular, in the BERT-
based text re-ranking approach of [12], the query and document
are concatenated with a [SEP] in between, and a [CLS] token at
the end. The final relevance estimate of the document for a query
is obtained from the embedding of the [CLS] token. We also use
this approach in all BERT-based experiments for TREC-PM.

More recently, some variants of the BERT language model have
been proposed for the scientific literature domain, such as Sci-
BERT [3] and BioBERT [7]. In practice, each LM variant is focused
on capturing the specific context of texts in the domain to better
represent the semantics of words in a vocabulary. In this work, we
apply the SciBERT LM, which we have found to be more effective
in biomedical search tasks compared to BERT𝐶𝐿𝑆 and BioBERT [3].

Listing 1: Example how to apply a BERT-based model using
PyTerrier and CEDR. In particular, in this example we cre-
ate and test the SciBERT-pm, a SciBERTmodel fine-tuned in
previous TREC-PM track editions.
1 # 1 s t −phase r e t r i e v a l : DFRee
2 dfree = pt.BatchRetrieve(index , wmodel="DFRee",

3 metadata =["docno","articletitle","abstracttext"])

4
5 # 2nd−phase r e t r i e v a l : SciBERT re − r ank ing DFRee
6 scibert_pm = dfree >> CEDRPipe(modelname="SciBERT")

7
8 # f i n e − tune SciBERT on t r a i n i n g & v a l i d a t i o n t o p i c s
9 scibert_pm.fit(topicsTrain , qrelsTrain ,

10 topicsValid , qrelsTrain)

11
12 # e v a l u a t e per formance
13 pt.Experiment ([dfree , scibert_pm],

14 topicsTest , qrelsTest ,

15 ['map', 'ndcg'],

16 names=["DFRee", "SciBERT -pm"])

To use SciBERT in our experiments, we add a simple integration
between PyTerrier and the CEDR [9] toolkit, described next.

CEDR: Contextualized Embeddings for Document Ranking. The
CEDR toolkit4 allows us to use state-of-the-art BERT language
models, including the original BERT𝐶𝐿𝑆 model (with no additional
fine-tuning, and known as “vanilla BERT” in CEDR) and the PACRR
model [9]. Moreover, it provides us with the possibility of fine-
tuning the BERT-based models for different corpora. We made ex-
periments with fine-tuned versions of the BERT𝐶𝐿𝑆 , CEDR-PACRR,
and SciBERT models, but the former two were discontinued as they
were observed to exhibit less effectiveness than using a fine-tuned
SciBERT model, described next.

SciBERT. We implement an integration class for SciBERT in
CEDR, based on the BERT𝐶𝐿𝑆 model, differing only by the pre-
trained models for the vocabulary and text tokenizer which are
loaded. Then, we fine-tune the SciBERT and other BERT-based
models in our corpus. To fine-tune the pretrained SciBERT model,
we use the 80 queries from TREC-PM 2017 and 2018 (72 for training
and 8 for validation) and the top 1,000 articles retrieved by DFRee
for each query, over a maximum number of epochs equal to 100
with an early-stopping of the fine-tuning process after 20 iterations
without validation improvements (i.e., parameter 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 20).
For all BERT-based text re-rankings in this work, we use the simple
concatenation of the article’s title and abstract as the document
representation. To change the resulting fine-tuned model from the
original one, we name it SciBERT-pm, in contrast to the original
SciBERT model. Listing 1 illustrates an example of how we create
and apply the SciBERT-pm model using PyTerrier. Note that in Line
6 we use PyTerrier’s operator >> – known as “Then” – which indi-
cates that we are chaining two pipelines, i.e., applying one PyTerrier
transformation to re-rank the results of the proceeding transformer.
For instance, in this example, the scibert_pm pipeline is deployed
as the SciBERT re-ranking of the initial documents retrieved by the
DFRee model. However, it is noteworthy to mention that both the
first-phase and second-phase retrieval will be executed only when
4https://github.com/Georgetown-IR-Lab/cedr

2

https://github.com/Georgetown-IR-Lab/cedr


it is necessary: for instance, in our case, in Line 9, when PyTerrier
needs the results to start the fine-tuning process.

After fine-tuning the model (with scibert_pm.fit(), we may
store it for reuse in other experiments later. The output of pt.Experiment()
will be a table comparing the results of the DFRee and SciBERT-
pm retrieval pipelines, according to the given TREC qrels file, in
terms of MAP (Mean Average Precision) and nDCG (normalized
Discounted Cumulative Gain) .

ColBERT. We also employ ColBERT [5], a recently proposed
contextual embedding with promising results for IR ad hoc tasks.
ColBERT has been shown to be faster and at least as effective
as BERT𝐶𝐿𝑆 , which was confirmed in our experiments. However,
in our tests for TREC-PM, ColBERT was not as effective as our
SciBERT-pm model, so the former was not used in further exper-
iments. The reason for this disappointing performance might be
related to the fine-tuning process applied to SciBERT-pm. At the
time of writing this paper, we did not fine-tune ColBERT in our
TREC-PM data, leaving this as future work.

Using Document Structure. This approach builds on the observa-
tion that different biomedical abstract sections — e.g., Background
and Conclusions —may convey different semantics.We hypothesize
that the linguistic nuances of each section can be modelled individ-
ually with SciBERT and combined to improve our ranking models.
To test this hypothesis, we once again use the top 1,000 abstracts
retrieved by DFRee for each of the TREC-PM 2017 and 2018 queries.
However, in contrast to the SciBERT-pm model, which is fine-tuned
only once using the entire abstract, we produce one fined-tuned Sci-
BERT model per each identified abstract section. We denote these
novel models as SciBERT-s (i.e., section-based SciBERT). Thus, be-
sides the original SciBERT-pm score, in this approach, we also have
additional SciBERT-s scores, one score for each abstract section. In
our initial experiments for TREC, we assume that all biomedical ab-
stracts inherited have four sections (namely, Background, Methods,
Results, and Conclusions). For the documents without the named
sections, we use logistic regression classifier5 to determine the sec-
tion of each abstract sentence, trained on 30k sentences from the
corpus that were separated into section by their respective authors.

Re-Ranking. In order to leverage both standard retrieval (first-
phase) and semantic (second-phase) scores, we use as simpler score
aggregation alternatives, for each document 𝑑 and query 𝑞, linear
combinations between the DFRee and SciBERT-pm scores, varying
the weighting parameter alpha (𝛼) from 0 to 1, as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑑, 𝑞) = 𝛼 × 𝑠𝑐𝑜𝑟𝑒𝑚1 (𝑑, 𝑞) + (1 − 𝛼) × 𝑠𝑐𝑜𝑟𝑒𝑚2 (𝑑, 𝑞)

where 𝑚1 are statistic-based models – such as DFRee – and 𝑚2
are semantic-based models, such as SciBERT-pm. In particular, the
combination of DFRee and SciBERT-pm was the best we found in
our experiments based on the past editions of TREC-PM, hence
we focus on this combination in our TREC submissions this year.
In general, our experiments showed that these combinations are
consistently better than the models evaluated separately, also con-
sidering other statistic-based models, such as BM25 and DPH, and
other semantic-based models, such as PACRR and ColBERT. We

5Namely, SKLearn’s LogisticClassifier: https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LogisticRegression.html

aim to investigate and explain the reasons for such a behavior in
future studies.

For our structure-based experiments, in which we have more
than two features as input — given by the section-based models —
we use a listwise learning-to-rank (LTR) method to combine the
features. Specifically, we adopt the LightGBM 3.06 implementation
of LambdaMART. To train the LTR model, we use 80 queries (TREC-
PM 2017 and 2018), of which the first 72 queries we use as training
set and the last 8 queries as our validation set. For the configuration
settings, we use the default parameter values of LightGBM ranker.

5 SUBMITTED RUNS
We submitted the following five runs to the TREC 2020 Precision
Medicine Track:

• uog_ufmg_DFRee: this run is the result of the first-phase
retrieval with PyTerrier’s batch retrieval with DFRee, as
detailed in Section 3;

• uog_ufmg_s_dfr0: this run is the result of the second-phase
retrieval with the SciBERT-pm re-ranking, using DFRee as
the initial ranking model (c.f. uog_ufmg_DFRee), as detailed
in Section 4;

• uog_ufmg_s_dfr5: this run is the linear combination (𝛼 = 0.5)
of the scores of DFRee and SciBERT-pm (uog_ufmg_DFRee
and uog_ufmg_s_dfr0, respectively);

• uog_ufmg_sb_df5: this run is the result of the same method-
ology used in the previous uog_ufmg_s_dfr5 run, but with
a different query tokenization;

• uog_ufmg_secL2R: this run is the result of the second-phase
retrieval with the structured-based SciBERT-s re-ranking, as
detailed in Section 4.

6 RESULTS & ANALYSIS
Table 1 summarizes the results of our submitted runs in TREC-PM
2020 for the evaluation metrics Inferred Discounted Cumulative
Gain (infNDCG), Precision@10 (P@10), and R-precision (R-prec),
the official evaluation metrics of the track.

Firstly, we note that uog_ufmg_DFRee is better than TREC me-
dian for P@10 and their performances are close to each other for
infNDCG and R-prec. This shows that our first-phase retrieval
with DFRee is a reasonably good baseline and a reliable starting
point to subsequent re-rank approaches. As expected by our exper-
iments in TREC-PM 2019, the pure re-ranking with SciBERT-pm
(uog_ufmg_s_dfr0) is less effective than the DFRee model. The
goal with this approach is to allow us to combine DFRee scores
with semantic-based models scores, in particular, SciBERT-pm.

However, our linear combination uog_ufmg_s_dfr5 in TREC-
PM 2020 did not reproduce the same improvements over its base-
lines as observed in TREC-PM 2019, although it slightly outper-
formed the DFRee run for P@10. We will investigate the differ-
ences between the TREC-PM 2019 and 2020 results as future work.
Nonetheless, our best run uog_ufmg_sb_df5 followed the same
experimental methodology of uog_ufmg_s_df5, but with a differ-
ent query tokenization. The run uog_ufmg_sb_df5 outperformed
not only all our submitted runs, but also the TREC median on all
measures.
6https://github.com/microsoft/LightGBM

3

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/microsoft/LightGBM


Table 1: Results of the five submitted runs for TREC-PM
2020. The last two rows show the median and best perfor-
mances over all submissions, aggregated by average.

Run infNDCG P@10 R-prec
uog_ufmg_DFRee 0.418 0.500 0.315
uog_ufmg_s_dfr0 0.280 0.332 0.197
uog_ufmg_s_dfr5 0.408 0.513 0.309
uog_ufmg_sb_df5 0.498 0.548 0.391
uog_ufmg_secL2R 0.401 0.455 0.311
Median 0.432 0.456 0.326
Best 0.696 0.722 0.568

Finally, the results of run uog_ufmg_secL2R reflect our first ex-
periments with the structured-based framework, i.e., when we use
multiple SciBERT-s models to re-rank the different abstract sec-
tions. This approach outperformed the SciBERT-pm model (i.e.,
uog_ufmg_s_dfr0) on all metrics, which suggests that this is a
promising research direction. However, the structure-based run
was not consistently better than the other runs or the TREC me-
dian. To overcome this, we aim to further study the exact benefits
we can achieve when we use structure-based information.

It is noteworthy to mention that the reported results above con-
cern Phase 1 of the TREC-PM 2020 evaluation, i.e., for the relevance
assessment. At the time of writing this paper, Phase 2, i.e., the evi-
dence assessment, was not yet available to participants. The goal
of this second phase of evaluation is as follows: given a pair of
a disease-treatment as a query and a biomedical article retrieved,
the aim is to determine how strong is the evidence brought by the
article with respect to the pair disease-treatment. Articles with
strong evidence should be ranked over articles with weaker evi-
dence (whether positive or negative). In fact, we did not implement
any specific methods to model the evidence strength of the articles.
Instead, our approaches were purely relevance-oriented. We will
present our obtained results in Phase 2 in the final version of the
notebook paper.

7 CONCLUSIONS
In our participation in the TREC 2020 Precision Medicine Track
we investigated the integration of domain-specific state-of-the-
art contextual language models, such as SciBERT, with PyTerrier
retrieval pipelines, in a two-phase retrieval process. In terms of
effectiveness, we observed promising improvements using simple
linear combinations such as uog_ufmg_sb_df5, outperforming the
median performance of the TREC participants. Moreover, part of

the experimental methodology built for this task was used in the
critical and urgent task provided by TREC-Covid, within the context
of the ongoing pandemic. Finally, as discussed in this paper, several
interesting research directions were raised during the experiments
that we conducted this year for this task.

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior, Brazil (Capes), Finance Code
001.

REFERENCES
[1] Giambattista Amati. 2003. Probability models for information retrieval based

on divergence from randomness. Ph.D. Dissertation. Department of Computing
Science, University of Glasgow.

[2] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic Models of
Information Retrieval Based on Measuring the Divergence from Randomness.
ACM Trans. Inf. Syst. 20, 4 (2002), 357–389.

[3] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL. 4171–4186.

[5] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proceedings of SIGIR.
39–48.

[6] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. arXiv preprint 1909.11942 (2020).

[7] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36, 4 (2020),
1234–1240.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv preprint 1907.11692
(2019).

[9] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized embeddings for document ranking. In Proceedings of SIGIR. 1101–
1104.

[10] Craig Macdonald, Richard McCreadie, Rodrygo LT Santos, and Iadh Ounis. [n.d.].
From Puppy to Maturity: Experiences in Developing Terrier.. In Proceedings of
OSIR workshop at SIGIR.

[11] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation in
Information Retrieval Using PyTerrier. In Proceedings of ICTIR. 161–168.

[12] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[13] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, William R. Hersh,
Steven Bedrick, Alexander J. Lazar, and Shubham Pant. 2019. Overview of the
TREC 2019 Precision Medicine Track. In Proceedings of TREC.

[14] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In Proceedings
of SIGIR. 232–241.

[15] Ting Su, Xi Wang, Craig Macdonald, and Iadh Ounis. 2019. University of Glasgow
Terrier Team at the TREC 2019 Deep Learning Track. In Proceedings of TREC.

[16] Xiao Wang, Yaxiong Wu, Craig Macdonald, and Iadh Ounis. 2020. University of
Glasgow Terrier Team at the TREC 2020 Deep Learning Track. In Proceedings of
TREC.

4


	Abstract
	1 Introduction
	2 Indexing
	3 First-phase Retrieval
	4 Second-phase Retrieval
	5 Submitted Runs
	6 Results & Analysis
	7 Conclusions
	Acknowledgments
	References

