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ABSTRACT
This paper describes our submission to the document ranking task
of the TREC 2020 Deep Learning Track. We followed a three-stage
architecture: candidate set retrieval, feature calculation and re-
ranking using a learning-to-rank technique. In particular, in the
feature calculation stage, we leverage the traditional information re-
trieval document weighting models and the deep contextualised lan-
guage models to provide the features for the learning-to-rank tech-
nique in the final stage. We submitted three runs for the document
ranking task: uogTr31oR, uogTrQCBMP and uogTrT20 and six base-
line runs with no neural re-ranking techniques applied. Among our
submitted runs, run uogTrQCBMP, which combines query expansion,
ColBERT neural ranking and MaxPassage, was the most effective.

1 INTRODUCTION
The University of Glasgow Terrier team participated in the TREC
2020 Deep Learning track, in order to improve the effectiveness
and flexibility of our new PyTerrier [9] information retrieval toolkit
for an adhoc ranking task on a large corpus of Web documents.
PyTerrier leverages Python to allow the easy expression of complex
retrieval pipelines. In our participation, we addressed the document
ranking task of the Deep Learning Track, but without using the
provided initial rankings. We followed a three-stage framework:
candidate set retrieval, feature calculation and re-ranking using a
learning-to-rank technique. In the first stage, we performed the
candidate set retrieval using DPH, DPH with Bo1 query expansion
and a T5 [13]-based query expansion technique individually on the
index created using Terrier. During the feature calculation, we incor-
porated traditional retrieval models as well as deep contextualised
language models, such as BERT𝐶𝐿𝑆 [11], ColBERT [6] as well as
SciBERT variants, to calculate the feature values. Finally, the Lamb-
daMART [1] learning-to-rank technique was used to obtain the
final score of each ranked document based on its various features.

The structure of the remainder of this paper is structured as
follows: Section 2 discusses our indexing setup; Section 3 introduces
the notions of retrieval pipelines in PyTerrier. Section 4 describes the
three-stage architecture of our approach, including the candidate set
retrieval followed by the feature calculation and learning-to-rank
stage. Both the baseline runs and the submitted runs are detailed
in Section 5. Section 6 highlights our results. Concluding remarks
follow in Section 7.

2 INDEXING
We used the same indices for MSMARCO as we created for TREC
2019 [15]. In particular, for these indices, we chose not to use the

TREC-formatted version of the MSMARCO corpus, but instead, re-
formatted the CSV files into TREC files such that the URL & title are
clearly delineated. Next, we used several indexing configurations:

• Positions: We recorded positional information.
• Fields: We separately recorded the frequencies of terms oc-
curring in different parts of the document. In particular, we
recorded the ‘TITLE’, ‘BODY’ and ‘URL’ fields, following our
past participations in the TREC Web track [10].

• Stemming & Stopwords: We did not apply stemming nor
remove stopwords.

In all cases, we used the standard Terrier indexing configuration
to create an inverted index, and a direct index to support query
expansion and other retrieval techniques, as well as recording the
raw text of the URLs, titles and contents of the documents as meta-
data, to allow deep learning upon these textual representations, as
discussed further in Section 4.2 below. For the document contents,
we saved only 4KB of plain text. Later experiments show that this
limit had no marked impact on effectiveness.

Finally, we added an additional index for the ORCAS queries
associated to each document.

3 PYTERRIER RETRIEVAL PIPELINES
All of our experiments and submitted runs for the TREC 2020 Deep
Learning track built upon PyTerrier, our new expressive Python
bindings for Terrier [9]. In particular, PyTerrier defines all retrieval
components (rankers or re-rankers) to take the form of transformer
objects, which transform one dataframe to another. To create flex-
ible pipelines composed of multiple transformers, PyTerrier over-
loads standard Python operators for transformer objects as follows:

• >> (then): Pass the output of one transformer into another.
• + (linear combination): Combine the retrieval scores of two
transformers, ala. CombSUM.

• ∼ (cache): Cache (aka. memoize) the outputs of the retrieval
transformer to disk, such that subsequent retrieval opera-
tions occur faster.

• ∗ (feature union): Consider the outputs of two transformers
as separate features for learning-to-rank.

All ranking features described in the rest of this paper were
expressed as pipelines of transformers using these operators. We
refer the reader to [9] for more information about the PyTerrier
data model and the flexibility of the operators.

4 ARCHITECTURE
Conceptually, our ranking framework mirrored that of our previous
participation, in that it consists of 3 stages:



(1) Candidate retrieval
(2) Feature calculation
(3) Re-ranking using a learning-to-rank technique
In the following, we describe each of these stages in details.

4.1 Candidate Retrieval
In line with past experience from our participation to the TREC 2019
Deep Learning track, we used the DPH hypergeometric model [14]
from the Divergence From Randomness (DFR) framework for the
first retrieval pass. Indeed, we found DPH to be at least as effective
as BM25 without the need for parameter tuning. Similarly, we used
the Bo1 query expansion model. Figure 1 presents the heatmaps of
retrieval effectiveness including MAP, NDCG and NDCG@10 when
varying the number of feedback documents and expansion terms
for Bo1 on the TREC 2019 document ranking topics. We found
that Bo1 was very effective with its default settings of 3 feedback
documents and 10 expansion terms – this is the setting applied
in our TREC 2020 participation. Finally, we experimented with a
query expansion variant that makes use of T5 [13] for generating
an expanded query.

4.2 Feature calculation
We then focused on re-ranking the candidate documents. Each fea-
ture was expressed as a PyTerrier retrieval pipeline. Our feature
groups encapsulated both classical ranking features, such as statis-
tical retrieval models, and query independent features. We also had
a number of BERT-based features.

Retrieval models. We calculated DPH and the number of match-
ing query term features on each field (title, URL, contents). We also
calculated a sequential dependence feature [12]. Finally, we applied
DPH on smaller passages of the document text, and then took the
maximum score.

Query independent features. Field lengths for title, URL and doc-
ument contents, in terms of the number of indexed tokens.

Query Expansion. Rescoring of the candidate documents by appli-
cation of the Bo1 query expansion mechanism; similarly, rescoring
of the top-documents by application of collection enrichment, i.e.
query expansion with the reformulated query obtained from the
top-ranked Wikipedia documents.

GLoVe. Representation of document and query in the word2vec
space, using the GloVe embeddings. Query document similarity
was computed using Word Movers Distance [7], as implemented
by GenSim.

BERT-based features. We calculated BERT𝐶𝐿𝑆 [11] andColBERT [6]
features1. In both cases, we also varied the underlying neural
language model between bert-based-uncased and scibert. For
BERT𝐶𝐿𝑆 , we used the CEDR implementation [8].

Following [3], for long documents, we added features applying
MaxPassage on both the BERT𝐶𝐿𝑆 and ColBERT neural re-rankers,
by composing passaging and maximum score transformers around
the BERT transformers. Listing 1 provides salient PyTerrier code
for creating a retrieval pipeline encompassing DPH with query ex-
pansion and ColBERT MaxPassage, composed using the >> (then)

1 As estimated through the special CLS token, explaining the BERT𝐶𝐿𝑆 name.

Listing 1: DPH with QE and ColBERT MaxPassage.
1 # dep loy DPH + QE , r e t r i e v e the doc metadata
2 f i r s t p a s s _ d ph _q e = pt . B a t chRe t r i e v e ( index ,
3 wmodel= "DPH" ,
4 metadata =[ " docno " , " t i t l e " , " body " ] ,
5 c o n t r o l s = { " qe " : " on " , " qemodel " : " Bo1 " } ,
6 num_resu l t s =100 )
7
8 # load an e x i s t i n g f i n e − tuned ColBERT model
9 c o l b e r t = Co lBERTP ipe l ine ( " d i r / c o l b e r t . dnn " , d o c _ a t t r = " body " )
10
11 # compose c o l b e r t , u s ing MaxPassage
12 qe_co lbe r t _100_maxpas sage = f i r s t p a s s _ d ph _q e >>
13 pt . t e x t . s l i d i n g (
14 l e ng th =128 ,
15 s t r i d e =64 ,
16 p r ep end_a t t r = " t i t l e " ) >>
17 c o l b e r t >>
18 pt . t e x t . max_passage ( )

operator. Finally, we devised linear combinations of BERT features,
using PyTerrier’s + operator.

Entity BERT Feature. We also calculated a variant of BERT𝐶𝐿𝑆
using entities.

Table 1 summarises all feature groups and the total number of
features in each group. Not all features were applied for all runs.
For this reason, the right-hand side of Table 1 has columns for
four feature sets, which define the features groups used within each
feature set. Of note, the “16” and “17o” feature sets do not use deep
learned neural ranking features; “17o“ and “31o” feature sets both
deploy a feature encapsulating the ORCAS query click as a field;
finally, for the “20” feature set, we eliminated a subset of the BERT-
based features based on feature performance and learner feature
importances.

4.3 Learning-to-rank
Following previous years, we made use of a learning-to-rank tech-
nique to combine the various retrieval approaches. To do so, all
selected features were combined using the ∗ (feature union) opera-
tor of PyTerrier.

While we again used LambaMART [1], we switched from the
Jforests [4] implementations we have used in recent years to the
Python integrations provided by xgBoost [2] and LightGBM [5].
After some experimentation, we settled on LightGBM as the most
effective of the two.

4.4 Experimental Setup Details
We used 1000 queries from the MSMARCO training document
ranking task for training the BERT𝐶𝐿𝑆 deep learned models and the
learning-to-rank configurations. The ColBERT model was trained
using the file triples.train.small.tsv.gz from the MSMARCO
passage ranking task. Validation and run selection were conducted
using the TREC 2019 Deep Learning track document ranking task
queries and relevance assessments.

When applying MaxPassage, we applied a sliding window of
128 tokens which advanced by 64 tokens each time. The title of the
document is prepended to each passage.

All our runs were created using PyTerrier in Jupyter notebooks.
PyTerrier is available from https://github.com/terrier-org/pyterrier.
Example notebooks for runs submitted to the MSMARCO leader-
board are available at https://github.com/cmacdonald/pyterrier-

https://github.com/terrier-org/pyterrier
https://github.com/cmacdonald/pyterrier-msmarco-document-leaderboard-runs
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Figure 1: Query expansion performances with Bo1 for given distinct feedback terms and documents.

Table 1: Feature group descriptions and alignment with feature sets. ✓ denotes that all features in that group (row) were used
in that feature set (column), while # denotes the number of features selected from that group.

Feature Group Description # Feature Sets
16 17o 20 31o

Retrieval Models DPH, DPH on individual fields, PL2F, number of matching query
terms per field, DFR sequential dependence, DPH MaxPassage

10 ✓ ✓ ✓ ✓

QI Features Field lengths 3 ✓ ✓ ✓ ✓
QE Features Query expansion and collection enrichment scores 2 ✓ ✓ ✓ ✓

GloVe Word Mover Distance 1 ✓ ✓ ✓ ✓
BERT-based Features BERT𝐶𝐿𝑆 , ColBERT as well as SciBERT variants, with and with-

out MaxPassage
12 ✓ ✓

Entity-based BERT Feature A variant of BERT𝐶𝐿𝑆 encapsulating entity knowledge 1 ✓
ORCAS DPH calculated on the ORCAS field 1 ✓ ✓

msmarco-document-leaderboard-runs. Our integrations of CEDR
and ColBERT are available as PyTerrier plugins from https://github.
com/cmacdonald/pyterrier_bert.

5 RUNS
We submitted 3 runs to the Document Ranking task. We were also
invited by the track organisers to submit baselines runs, which
applied no neural re-ranking techniques. We chose to submit 6
baseline runs, which also acted as baselines for our group’s main
submission runs. In addition, we describe three additional runs on
our stemmed index.

5.1 Baseline Runs
Our submitted baseline runs to the document ranking task of the
TREC 2019 Deep Learning track contained no neural features, and
constituted runs with and without learning-to-rank and query ex-
pansion. In particular, our 6 baseline runs are as follows:

• uogTrBaseDPH: Applying DPH on our unstemmed index.
• uogTrBaseDPHQ: Applying DPH and Bo1 query expansion
on our unstemmed index. This corresponds to the retrieval
transformer expressed in line 2 of Listing 1.

• uogTrBaseL16:Re-ranking the results identified by uogTrBase-
DPH using the 16 feature set. Re-ranking is performed by
LightGBM.

• uogTrBaseL17o: As uogTrBaseL16, but with an additional
feature in the form of a DPH score on the ORCAS field.

• uogTrBaseQL16: As uogTrBaseL16, but re-ranking the can-
didate set obtained from uogTrBaseDPHQ.

• uogTrBaseQL17o: As uogTrBaseL17o, but re-ranking the
candidate set obtained from uogTrBaseDPHQ.

5.2 Submitted Group Runs
We submitted the following 3 runs:

• uogTr31oR: Applying all 31 features, re-ranked using Light-
GBM. This run re-ranks the candidate sets obtained from
uogTrBaseDPH. Compared to uogTrBaseL17o, it adds neural
re-ranking features.

• uogTrQCBMP: Applies ColBERT MaxPassage on the candi-
date sets obtained from uogTrBaseDPHQ. This run can be
obtained using the code in Listing 1.

• uogTrT20: Applies the 20 features set on the candidate set
identified by our T5-based query expansion model.

In addition, we describe 3 additional runs that using a stemmed
index (but do not apply LTR):

• uogTrBaseDPHSS: Applying DPH on our stemmed index.
• uogTrBaseDPHQSS: Applying DPH and Bo1 query expan-
sion on our stemmed index.

• uogTrQCBMPSS: Applies ColBERT MaxPassage on the can-
didate sets obtained from uogTrBaseDPHQSS.

6 RESULTS & ANALYSIS
Table 2 lists the obtained effectiveness results for all our runs, in-
cluding our baseline, submitted group runs and additional runs, as
well as the TREC per-topic best and median scores across all partic-
ipating systems, in terms of MAP, P@102, NDCG@10, NDCG@100
and MRR.

Firstly, we analyse the performance of the baseline runs. Com-
paring uogTrBaseDPH with uogTrBaseDPHQ, it is clear that query
expansion benefited all metrics except MRR. For the application
2 We were not provided with Best or Median numbers for P@10.
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of learning-to-rank, the picture is mixed: there are improvements
between uogTrBaseDPH and uogTrBaseL16 for all metrics except
MRR; between uogTrBaseDPHQ and uogTrBaseQL16, only a small
improvement for NDCG@100 is observed. Finally, we see that
adding an ORCAS feature made small improvements: comparing
uogTrBaseL16with uogTrBaseL17o, P@10, NDCG@10, NDCG@100
are slightly improved; comparing uogTrBaseQL16with uogTrBaseQL17o,
MAP, P@10, NDCG@10, NDCG@100 and MRR are also improved.

Next, we turn our attention to our submitted group runs. Among
these three runs, run uogTrQCBMP – which did not deploy learning-
to-rank – was the most effective on all metrics except MRR; this run
deployed ColBERT MaxPassage on top of DPH + QE. Compared to
the corresponding baseline uogTrBaseDPHQ run, this achieved an
improvement of 8.4% in MAP and 14.6% in NDCG@10.

Among the two learning-to-rank runs, uogTrT20 was the most
effective for MAP and P@10; on closer examination of the results,
we conclude that the promising effectiveness of this approach is
due to the reduced learning-to-rank feature set, rather than the new
query expansion approach. Comparing uogTr31oR with baseline
uogTrBaseDPH, we find that the BERT features result in an uplift
of 22.2% in MAP (0.3070→ 0.3722) and 18.8% in NDCG@10 (0.4871
→ 0.5476). To illustrate the effectiveness of the deployed features,
Figure 2 plots the performances of the features for the TREC 2019
and TREC 2020 topics (numbers above each bar are the rank of
that feature among all others). We observe a strong correlation
between the performances of the features in these rankings, with
the strongest feature (ColBERT MaxPassage, as deployed in run
uogTrQCBMP) consistently the most effective. In both figures, the
linear combination of SciBERT and BERT results in the 2nd most
effective feature.

Finally, we look at the overall reported performances. We note
that the TREC Median pseudo-system appears to be very strong
this year, and we were disappointed not to exceed it on average
(we only exceed it for NDCG@10, 0.5733 vs. 0.5791); we have since
investigated and eliminated possible confounding variables such
as the stemming configuration, and the 4KB size of the document
recorded in the Terrier index used for the BERT models. We con-
tinue to investigate ways to improve our performance compared to
the TREC median.

Analysing the overall trends, while it is clear that learning-to-
rank models are flexible and can be used to successfully combine
effective ranking features, for this task, it may not result in models
that are more effective than the most effective constituent fea-
tures. The high effectiveness of run uogTrQCBMP is testament to
this observation. After the TREC submissions, we further conducted
additional runs on a stemmed index, namely uogTrBaseDPHSS
and uogTrBaseDPHQSS, as well as uogTrQCBMPSS. In general, com-
pared to the unstemmed index, runs using the stemmed index
provide higher performance. Among the three additional runs,
uogTrQCBMPSS exceeds the TREC median performance on all met-
rics except MRR demonstrating the effectiveness of the established
model and the importance of the proper experimental setting for
stemming on this test collection.

Table 2: Performance of submitted and baseline runs.

MAP P@10 NDCG@10 NDCG@100 MRR
TREC Best 0.6109 - 0.8019 0.7663 0.9822

TREC Median 0.3902 - 0.5733 0.5859 0.9444

baseline runs

uogTrBaseDPH 0.3070 0.5089 0.4871 0.4972 0.8415
uogTrBaseDPHQ 0.3461 0.5444 0.5052 0.5345 0.8052
uogTrBaseL16 0.3248 0.5289 0.4964 0.5052 0.8219
uogTrBaseL17o 0.3248 0.5333 0.5120 0.5090 0.7980
uogTrBaseQL16 0.3436 0.5311 0.4998 0.5357 0.7930
uogTrBaseQL17o 0.3530 0.5511 0.5203 0.5399 0.8276

submitted runs

uogTr31oR 0.3468 0.5622 0.5476 0.5284 0.8926
uogTrQCBMP 0.3752 0.6000 0.5791 0.5673 0.8722
uogTrT20 0.3692 0.5667 0.5453 0.5296 0.8711

additional runs

uogTrBaseDPHSS 0.4023 0.5689 0.5145 0.5626 0.8313
uogTrBaseDPHQSS 0.4213 0.5778 0.5173 0.5734 0.8343
uogTrQCBMPSS 0.4066 0.6022 0.5936 0.6050 0.8819

7 CONCLUSIONS
Overall, our participation in the TREC Deep Learning track was
a useful activity to refine methods of integration of deep learning
techniques as retrieval pipelines in PyTerrier. In terms of effective-
ness, our most effective run uogTrQCBMP outperformed the TREC
median in terms of NDCG@10 and uogTrQCBMPSS exceeds the
TREC median on all metrics except MRR. Moreover, the learning-
to-rank runs were not among the most effective, which emphasises
the difficulty in learning effective models for adhoc retrieval tasks
using training datasets with very few judgements, echoing our
findings from TREC 2019.
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