
TREC 2020 Notebook: CAsT Track

Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo

Abstract

This notebook describes our participation (h2oloo) in TREC CAsT 2020. We first
illustrate our multi-stage pipeline for conversational search: sequence-to-sequence
query reformulation followed by an ad hoc text ranking pipeline; then, detail our
proposed method for canonical response entry. Empirically, we show that our
method effectively reformulates conversational queries considering both historical
user utterances and system responses, yielding final ranking result 0.363 and 0.494
in terms of MAP and NDCG@3 respectively, which is our best submission to
CAsT 2020.

1 Introduction

Table 1: CAsT2020 examples.
Turn (i) Conversation utterances (ui) and system responses (ri)

u1 What are some interesting facts about bees?
r1 Fun facts about bees: 1 Honeybees are the only insect that produces food eaten by humans ... 5 Honey never spoils.
u2 Why doesn’t it spoil?
r2 Honey doesn’t spoil like other foods and even if it has turned cloudy, it’s still safe to eat ...
...

u1 Which is the biggest commercial plane?
r1 The airliner that holds the current record of highest passenger capacity is the Airbus A380 ...
u2 What are its operational costs?
r2 The Airbus A380, the largest passenger jet, costs between $26,000 and $29,000 per hour...
...

Recently, conversational search grabs the attention of researchers due to its potential applications
(e.g., smart speakers). Last year, TREC Conversational Assistant Track (CAsT 2019) [3] took a
step toward conversational IR by building a conversational passage retrieval dataset for practitioners.
However, the conversational queries of CAsT 2019 is made with an innate assumption that users’
utterances only depend on their previous utterances. The assumption limits generalization capabilities
of the models built upon the dataset since in real applications, users may also give utterances based
on system response (see the examples in Table 1). This year, the organizers of CAsT 2020 takes the
scenario into consideration and newly constructed a more comprehensive dataset.

In this paper, we focus on our participation in canonical response entry using T5 [9] as our query
reformulation (QR) model. Although many works [7, 10, 12] have demonstrated the effectiveness
of pretrained sequence-to-sequence models on the task of query reformulation. However, all of
them are based on CAsT 2019 dataset and do not take system responses into account. Thus, in this
work, we first highlight the challenges of using sequence-to-sequence models for QR in canonical
response entry. Then, we propose our method and make a comparison with other possible solutions.
We empirically demonstrate that our proposed method effectively reformulates queries when taking
system response into consideration.

2 Methodology

In this section, we first describe our multi-stage pipeline for conversational search (CS), including
the modules for query reformulation, passage retrieval and passage re-ranking. Secondly, we will
describe our approach to canonical response entry, which is the new task in CAsT 2020 dataset where
users’ utterance could depend on both historical user utterances and system responses as shown in
Table 1.

2.1 Problem setting

Given a sequence of conversational utterances us = (u1, · · · , ui, ui+1, · · ·) and the corresponding
system response rs = (r1, · · · , ri, ri+1, · · ·) for a topic-oriented session s ∈ S, where S is the set
of all dialogue sessions and ui (or ri) stands for the i-th utterance (or system response) (i ∈ N+)
in the session. For each turn i, the goal of this task is to find a set of relevant passages Pi, for
each turn’s user utterance ui that satisfies the information needs with the context in previous turns
ctx<i = u1⊕ r1⊕ · · · , ui−1⊕ ri−1, where ⊕ denotes the operation of text concatenation. For an IR
system, let P (R = 1 | q, p) denote the probability conditioned on a query-passage pair (q, p), where
R = 1 denotes that a passage p ∈ C is relevant to a query q (otherwise, R = 0).

2.2 Multi-stage Pipeline for Conversational Search

Following [7], we factorize the probability of retrieving a relevant passage p ∈ Pi for each turn i. For
the problem setting of CAsT 2020, we replace the information set for query reformulation model by
{ui, ctx<i} that comprises the utterances and responses.

P (R = 1 | {ui, ctx<i}, p) = P (R = 1 | qi, p)P (qi | {ui, ctx<i}) . (1)

With this formulation, CS can be approximated by separately maximizing the probabilities of (a) a
relevance prediction model P (R = 1 | qi, p) and (b) a query reformulation model P (qi |{ui, ctx<i}).
Thus, the goal of a query reformulation model is to reformulate a raw conversational user utterance
ui in each turn i into a clear and informative query qi for the relevance prediction model [13].

Query reformulation. Following the previous works [7], we adopt text-to-text-transfer transformer
(T5) [9] as our query reformulation model. Specifically, we adopt pretrained T5 model checkpoints
from [9] and fine-tune them on CANARD dataset [2], which is a conversational query rewriting
dataset. In CANARD, for each conversation turn, we concatenated historical queries and answers as
source texts and use human annotated queries as target texts. Using the paired source and target texts
of all conversation turns, the query reformulation models are trained by the standard sequence-to-
sequence scheme: cross-entropy loss and teacher forcing. Then, we directly transfer the fine-tuned
weights for inference in CAsT dataset:

q̂i = Seq2Seq
(
ctx<i ⊕ ui, θ̂

)
(2)

where θ̂ denotes the fine-tuned weights from CANARD dataset.

Passage retrieval. Our passage retrieval model facilitates first-stage candidate elicitation that takes
reformulated queries to search for relevant passages in the passage collection. We use the tightly-
coupled teacher distillation proposed by Lin et al. [6] to incorporate dense representations of dual
encoders and sparse representations from BM25. Both our teacher model, ColBERT [5], and student
model, dual encoders with BERT-base, are trained on the MS MARCO passage ranking dataset [1].
The dense representation indexing and searching are facilitated by Faiss [4] in which we use flat index
and inner product as our metric for searching. As for our sparse representation, we use Anserini [11]
to calculate BM25 matching scores. Finally, we use the hybrid scheme proposed in [6] to fuse the
similarity scores of dot products from dense representations and BM25 matching scores from sparse
representations.

Passage re-ranking. In our multi-stage pipeline, we use T5 as our text re-ranking model. Initiated
from the checkpoints in [9], we fine-tune the T5 model for paired (query, passage) text relevance
ranking. We adopt the training scheme proposed by [8] to leverage the implicit knowledge in
pretrained tokens via recasting the passage ranking task under text-to-text framework. To be more
specific, we use “true” and “false” tokens as our relevance target tokens and calculate the relevance

2

ranking according to the value of the “true” logit, which is softmax normalized among the pair of
tokens. Our re-ranking model training is also based on the MS MARCO passage ranking dataset.
During inference, we take reformulated queries and concatenate them with top-1000 relevant passages
returned by our passage retrieval model.

2.3 Canonical Response Entry

To include the information from system response, we can naively concatenate all the historical user
utterances and system responses as the context for query reformulation (see Naive in Figure 1);
however, this approach causes problems such as:

1. Long processing time: system responses are passages which normaly contains 100-150 words in
average. Thus, including all system responses to the context lead to long input texts.

2. Performance degradation: the whole passages from system responses may include unrelated
context, and the noisy context raises difficulties when conducting query reformulation.

Naive Type-a

Type-b Recursive

u1 uiu2
r1 ri−1

…⊕ ⊕ u1 uiu2

̂s1 ̂si−1

…

r1 ri−1

⊕ ⊕

u1 uiu2 …

̂si−1
ri−1

⊕ ⊕ ̂q 1 uîq 2 …

̂si−1
ri−1

⊕ ⊕

ri : system response

ui : user utterance ̂q i : reformulated query

̂si : extracted sentence

(a) Query reformulation inference types

2 4 6 8 10 12
Turn

0

200

400

600

800

1000

1200

of

 T
ok

en
s

Naive
Type-a
Type-b
Recursive

(b) Average # of tokens input to T5 by turn depth
Figure 1: The comparison of different query reformulation methods

Information extraction from system response. To address the problems, we propose to first
extract a representative sentence from system responses, that is most related to the dialogue, and then
append the extracted sentence to the context (see Type-a in Figure 1). Formally speaking, given a
system response ri consisting a number of n(ri) sentences, the response is represented as a tuple(
s1i , . . . , s

n(ri)
i

)
, where ski denotes the k-th sentence in ri and we seek to reduce the long context

by replacing ctx<i with ctxa<i = u1 ⊕ ŝ1 ⊕ · · · , ui−1 ⊕ ŝi−1, where ŝi−1 denotes the sentence
extracted from the (i− 1)-th response ri−1.

From Table 1, out first observation is that ŝi−1 is likely to have textual overlaps with the next
utterance ui or the answer of its previous utterance ui−1. Looking at the first example, the utterance
u2 continues the topic in the last sentence of its previous response r1, while from the second
conversation, the pronounce in u2 refers to Airbus A380 in the first sentence of r1, which is the
answer for u1. According to the observation, we formulate the function of extracting sentence from
ri−1 as finding the sentence most related to ui (or ui−1):

ŝi−1 =


argmax

1≤x≤n(ri−1)

Sim(sxi−1, ui) if max
1≤x≤n(ri−1)

Sim(sxi−1, ui−1) 6= 0;

argmax
1≤x≤n(ri−1)

Sim(sxi−1, ui−1) if max
1≤x≤n(ri−1)

Sim(sxi−1, ui) 6= 0;

∅, otherwise.

(3)

where Sim(·, ·) is the similarity measurement of two texts. For simplicity, we use the number of
keyword matching as the similarity function.1 If there is no keyword matching between any sentence

1For each input text, we define keywords as the word with noun, verb or adjective POS tags.

3

Table 2: Experimental results

Cond. Query reformulation Retrieval (dense+sparse) Re-ranking (T5-3B) BLEU Run
Model(T5) Inference R@1000 MAP NDCG@3 MAP NDCG@3

Manual - - 0.840 0.324 0.463 0.459 0.613 100.00 -
1 base Query-only 0.668 0.225 0.343 0.330 0.452 63.75 Run4
2 base Type-b 0.661 0.216 0.337 - - 63.12 -
3 base Recursive 0.684 0.220 0.328 - - 62.18 -
4 large Query-only 0.696 0.238 0.360 - - 64.33 -
5 large Type-a 0.708 0.239 0.364 - - 64.43 -
6 large Type-b 0.697 0.238 0.358 0.345 0.480 64.64 -
7 large Recursive 0.724 0.250 0.367 0.363 0.494 65.23 Run2

in ri−1 and ui (or ui−1), we do not include any sentence from ri−1. Observing Figure 1(b) (Naive vs
Type-a), replacing the whole passages with their representative sentences significantly reduces the
number of tokens for query reformulation to an acceptable level.

Recursive inference. While aforementioned method has already reduced the length of input texts
for query reformulation, in this work, we further seek to reduce the input length without losing of
context information. Intuitively, at turn i, the most important response for reformulating ui is the
previous response ri−1 (or ŝi−1). Thus, we can remove the other responses from the context, i.e.,
ctxb<i = u1 ⊕ u2 ⊕ · · ·ui−1 ⊕ ŝi−1 (see Type-b in Figure 1). However, this may sacrifice some
context information from the removing responses. To address this issue, we propose to replace the
raw utterances in the context ctxb<i with the reformulated ones (see Recursive in Figure 1):

ctxrecur<i = q̂1 ⊕ q̂2 ⊕ · · · q̂i−1 ⊕ ŝi−1 (4)

where q̂i is the reformulated query at turn i in equation 2. Our insight is that at each turn i,
query reformulation can bring the context information from response into q̂i; thus, ideally, ctxrecur<i
maintains sufficient context information from both historical utterances and responses without the
the concatenation of all historical system responses. Equation 4 shows that at each turn, the context
ctxrecur<i for query reformulation depends on the output of previous turns. This is the reason why we
call it recursive inference.

3 Experiments

Settings. In our experiments, we use T5-base and T5-large fine-tuned on the CANARD dataset
and test their query reformulation (QR) performance under different inference settings: Query-only,
Type-a, Type-b and Recursive. While inference, we use greedy search (beam size 1) for simplicity. We
evaluate model performance in two perspectives: (1) Query reformulation performance: we compare
models’ reformulated queries with manual reformulated queries and quantify the performance using
BLEU scores using manual annotated queries provided by CAsT 2020 as golden queries. (2)
Downstream passage ranking: we feed the reformulated queries to our multi-stage pipeline for
passage retrieval and test the overall (R@1000, MAP) and top-k (NDCG@3) ranking performance.

Results. Observing Table 2, T5-large shows better performance than T5-base in terms of BLEU and
the downstream passage retrieval task. Among all, our proposed recursive inference using T5-large
(condition 7) yields the best overall and top-k ranking performance, which is our best run submitted
to CAsT 2020. Another observation is that ranking effectiveness seems to have positive correlation
with reformulation metrics. It is worth noting that T5-base and T5-large show different trends among
inference types. First, query-only inference yields better QR performance when using T5-base while
inference with system response outperforms Query-only inference when using T5-large. This is
possibly because in addition to context information, concatenating system response also introduces
unrelated information and T5-base does not have sufficient capability to rewrite queries under the
complex scenario. Finally, the comparison of ours and manual QR methods, large performance gap
can be seen, indicating that there is still room for improvement.

Case study. Figure 2 compares the reformulated queries with the two inference types: Query-only,
Recursive. Observing turns 2, 3 and 5, Recursive inference shows better ranking result than
query-only inference since recursive method captures the context, Airbus A380, from system

4

Turn Raw Manual T5-base Query-only T5-large Query-only T5-base Recursive T5-large Recursive

1 which is the biggest commercial plane ?

NDCG@3 - 1 1 1 1 1

2
What are its operational
costs?

What are the operational
costs of the Airbus
A380?

what are the operational
costs of the biggest
commercial plane ?

which is the biggest
commercial plane ?

what are the operational costs of the Airbus A380 ?

NDCG@3 - 0.5307 0 0 0.5307 0.5307

3

How does its fuel
consumption compare to
its competitors? compare
to its competitors?

How does the Airbus
A380 fuel consumption
compare to its
competitors?

how does the biggest
commercial plane 's fuel
consumption compare to
its competitors ?

how does Which is the
biggest commercial plane
's fuel consumption
compare to its
competitors ?

how does the fuel consumption of the Airbus A380
compare to its competitors ?

NDCG@3 - 0.0782 0 0 0.0782 0.0782

4

How do the freighter
versions compare to each
other?

How do the freighter
versions of the Airbus
A380 and Boeing 747
compare to each other?

how do the freighter
versions of the biggest
commercial plane
compare to each other?

how do the freighter
versions of which is the
biggest commercial plane
compare to each other ?

how do the freighter versions of the airbus a380
compare to each other ?

NDCG@3 - 0 0 0.3612 0 0

5
Why did the A380 stop
being produced?

Why did the Airbus
A380 stop being
produced?

Why did the A380 stop being produced? why did the airbus a380 stop being produced ?

NDCG@3 - 0.4058 0.1353 0.1353 0.4058 0.4058

6
What was Boeing's
response to compete with
it?

What was Boeing’s
response to compete with
the Airbus A380?

what was Boeing 's response to compete with the
a380 ?

what was Boeing 's
response to compete with
Airbus ?

what was Boeing 's
response to compete with
the Airbus A380 ?

NDCG@3 - 0.1246 0.3605 0.3605 0 0.1246

Figure 2: Case study (Session 90). Due to space limitation, we omit the last two turns (turns 7 and
8). For simplicity, we compare QR methods’ ranking performance from our retrieval (dense+sparse)
module.

response and keeps it in the reformulated queries. However, at turn 4, recursive inference fails to
capture another context, Boeing 747, from response and reformulates queries incorrectly, which even
get worse performance than the query-only counterpart (using T5-large). Furthermore, from turn 6,
we observe that T5-large shows better QR capability than T5-base under the scenario of recursive
inference. That is, recursive inference using T5-base loses the keywords, A380, and this downgrades
its ranking performance.

Discussion. From our numerical results and case study, we demonstrate that recursive inference can
capture the context from system response and that T5-base does not have sufficient capability under
such scenario. However, we admit that it is challenging to quantify the measurement since we do
not know exactly which user utterances refer to the context from system response. In addition to the
ranking results, another interesting aspect is to compare model performance on the user utterances
referring to the context from system responses and historical utterances separately.

4 Conclusion

In this notebook, we introduce our multi-stage conversational search pipeline, including query
reformulation, passage retrieval and passage re-ranking modules. In addition, we highlight the main
challenges of using sequence-to-sequence models for QR in canonical response entry and how we
address this problem. Our experimental results show that our proposed method effectively captures
the context from system response without concatenating the whole response (passages) into the input
texts for QR.

References
[1] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. McNamara,

B. Mitra, T. Nguyen, et al. MS MARCO: A human generated machine reading comprehension
dataset. arXiv:1611.09268, 2016.

[2] A. Elgohary, D. Peskov, and J. Boyd-Graber. Can you unpack that? learning to rewrite
questions-in-context. In Proc. EMNLP, pages 5917–5923, 2019.

[3] D. Jeffrey, C. Xiong, and J. Callan. CAsT 2019: The conversational assistance track overview.
In Proc. TREC, 2019.

5

[4] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs.
arXiv:1702.08734, 2017.

[5] O. Khattab and M. Zaharia. ColBERT: Efficient and effective passage search via contextualized
late interaction over BERT. In Proc. SIGIR, page 39–48, 2020.

[6] S.-C. Lin, J.-H. Yang, and J. Lin. Distilling dense representations for ranking using tightly-
coupled teachers. 2020.

[7] S.-C. Lin, J.-H. Yang, R. Nogueira, M.-F. Tsai, C.-J. Wang, and J. Lin. Query reformulation
using query history for passage retrieval in conversational search. 2020.

[8] R. Nogueira, Z. Jiang, and J. Lin. Document ranking with a pretrained sequence-to-sequence
model, 2020.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21:1–67, 2020.

[10] S. Vakulenko, S. Longpre, Z. Tu, and R. Anantha. Question rewriting for conversational question
answering. arXiv:2004.14652, 2020.

[11] P. Yang, H. Fang, and J. Lin. Anserini: Reproducible ranking baselines using Lucene. ACM J.
Data. Inf. Qual., 10(4):Article 16, 2018.

[12] S. Yu, J. Liu, J. Yang, C. Xiong, P. Bennett, J. Gao, and Z. Liu. Few-shot generative conversa-
tional query rewriting. In Proc. SIGIR, pages 1933–1936, 2020.

[13] S. Zou, G. Tao, J. Wang, W. Zhang, and D. Zhang. On the equilibrium of query reformulation
and document retrieval. In Proc. SIGIR, pages 43–50, 2018.

6

	Introduction
	Methodology
	Problem setting
	Multi-stage Pipeline for Conversational Search
	Canonical Response Entry

	Experiments
	Conclusion

