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Abstract. This technical report describes the approach of the Univer-
sità della Svizzera italiana and the University of Amsterdam for MS
MARCO document ranking task and TREC Deep Learning track 2020.
Two step document ranking, where the initial retrieval is done by a classi-
cal information retrieval method, followed by neural re-ranking model, is
the new standard. The best performance is achieved by using transformer-
based models as re-rankers, e.g., BERT.We employ Longformer, a BERT-
like model for long documents, on the MS MARCO document re-ranking
task. The complete code used for training the model can be found on:
https://github.com/isekulic/longformer-marco
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1 Introduction

Document ranking is central problems in information retrieval (IR). Given a
query, the task is to rank the documents of some collection so that the most
relevant ones appear on top of the list. Recently, neural ranking models have
shown superior performance compare to the traditional IR methods. Given the
much higher computational need of neural models, the two step retrieval process
is widely adapted. First, a traditional IR method, like BM25 or query likelihood,
retrieves top k documents from a given collection. Then, a computationally ex-
pensive neural model re-ranks the top k documents from the initial retrieval
step.

A number of neural models for ranking has been proposed in recent years.
Some of them are: DRMM [4], KNRM [10], Co-PACRR [5], DUET [7], and
Conformer-Kernel with QTI [8]. With a combination of new generation of neural
models, namely the transformer architecture, and large-scale datasets, neural
rankers arose as superior to traditional methods, which was not possible before
[6]. Most notable model from the transformers family is probably BERT [2],
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which has been very successfully applied to passage ranking [9], outperforming
state-of-the-art by a large margin.

The largest dataset for the document ranking task is MS MARCO (Microsoft
Machine Reading Comprehension). Transformer architecture, namely BERT, has
already proven effective on the MS MARCO passage ranking task. However, the
documents are much longer than the passages, making the task of document
ranking more challenging.

To address the issue of increased length of the documents, we employ Long-
former [1] – a BERT-like model for long documents. Longformer has an adjusted
attention mechanism that combines local, BERT-like windowed attention, with
a global attention, allowing the model to attend over much longer sequences than
standard self-attention. Compared to BERT that typically processes up to 512
tokens at a time, Longformer is pre-trained on documents with length of 4096
tokens. We reach MRR@100 of 0.329 and 0.305 on the official dev and the test
sets, respectively.

2 Dataset

We train and evaluate Longformer on MS MARCO document ranking dataset. It
consists of more than 370k queries, 3.2 million documents, and the correspond-
ing relevance labels for query-document pairs. Relevance labels are transferred
from the MS MARCO passage ranking task, by mapping a positive passage to a
document containing the passage, for each query. This is done under an assump-
tion that the document that contains a relevant passage is a relevant document.
Additional information about the dataset is present in Table 1.

Table 1. Number of documents in MS MARCO corpus and the number of queries in
train, dev, and test set.

# documents 3.2M

# queries
train 367,013
dev 5,193
test 5,793

The document ranking task features two tasks:

Document Re-Ranking Given a candidate top 100 documents for each query,
as retrieved by BM25, re-rank the documents by relevance.

Document Full Ranking Given a corpus of 3.2m documents generate a can-
didate top 100 documents for each query, sorted by relevance.

We participate in the document re-ranking task, where we use Longformer to
assign relevance to the 100 documents retrieved by BM25, which are provided
by the organizers.
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3 Experiments

We train Longformer [1] to estimate relevance of a query-document pair. The
training setting is formulated as in [9]. We feed the query as sentence A and the
document as sentence B to the tokenizer, which yields the following input to the
Longformer3:

<s> query </s> document </s>

We truncate the document such that the sequence of the concatenated query,
document, and the separator tokens does not exceed 4096 tokens. After passing
the sequence through the Longformer model, the <s> vector is given as input
to a classifier head, consisting of two linear layers with dropout and a non-
linear function. The classifier outputs a two-dimensional vector, where the first
dimension indicates probability of a document not being relevant to the query,
while the second indicates relevance probability. For a given query, we rank
the candidate documents based on the relevance probability, which is computed
independently for each document.

We fine-tune the pre-trained Longformer with a cross-entropy loss, using the
following hyperparameters: batch size of 128, Adam optimiser with the initial
learning rate of 3×10−5, a linear scheduler with warmup for 2500 steps, trained
for 150k iterations. Further hyperparameter tuning might yield better results.
For training, we also reduce the positive to negative document ratio to 1:10,
from the given 1:100 (as each query is given top 100 documents extracted by
BM25 by the organisers). We use PytorchLightning [3] for our training setting
implementation and HuggingFace’s Transformers package [?] for Longformer im-
plementation.

4 Results

4.1 TREC Deep Learning 2020

The results of our TREC Deep Learning submission are presented in Table 2.
We participate in document re-ranking task with one run only.

Table 2. TREC Deep Learning 2020 results.

Run name MRR MAP MAP@10

longformer_1 0.8889 0.3503 0.2028

3 Tokens <s> and </s> are equivalent to the [CLS] and [SEP] tokens in BERT
tokenizer, respectively.



4 I. Sekulić et al.

4.2 MS MARCO document re-ranking

The results on the MS MARCO document re-ranking task on the dev and the
test set are presented in Table 3. The official metric is mean reciprocal rank
(MRR@100). Other submissions and approaches can be found on the official
leaderboard4.

Table 3. MRR@100 of the Longformer and the official baselines provided by the
organisers. [8]

dev test

Indri Query Likelihood 0.192
Conformer-kernel with QTI (NDRM3) 0.293
Conformer-kernel with QTI (NDRM1) 0.307
Longformer 0.336 0.305

5 Conclusions

We employed Longformer for MS MARCO document re-ranking task. We sub-
mitted the model to the official MS MARCO leaderboard, as well as to the TREC
Deep Learning track 2020. The results suggest that further work is required to
match the performance of other transformer-based models.
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