
RMIT at TREC Deep Learning Track 2020

J. Shane Culpepper
RMIT University

Melbourne, Australia

Binsheng Liu
RMIT University

Melbourne, Australia

Abstract

RMIT University submitted multiple baseline
runs to improve the diversity of system types
in the judgment pool for the TREC Deep
Learning Track in 2020. All of these runs
used the publicly available Terrier and Indri
search engines and no machine learning. In
addition, we submitted a single non-baseline
run which applied a custom pairwise ranker to
a Bart transformer to rerank passages for the
passage ranking task. The RMIT Bart run as
well as several of the more basic baseline runs
performed well overall in the document and
passage ranking tasks based on the preliminary
assessment provided by NIST.

1 Introduction

The TREC Deep Learning Track in in its second
year in 2020. The track used the MS-MARCO [Ba-
jaj et al., 2016] document and passage reranking
collection created by Microsoft just as it did in
2019. NIST provided 100 new queries to partic-
ipants, who were asked to provide the top-100
documents and passages from their respective MS-
MARCO collections. This year, the track organiz-
ers provided an additional training collection cre-
ated at Microsoft, called ORCAS [Craswell et al.,
2020], which provides an additional 18 million
training queries.

One of the key goals of the track is to explore the
performance of Deep Learning models for informa-
tion retrieval and to compare these new approaches
with more traditional IR ranking algorithms. The
results were promising in 2019, but relatively few
submissions were received which did not use Deep
Learning. So, in 2020, the organizers reached out
to several IR research groups and asked them to
submit additional baseline runs that used more tra-
ditional IR techniques such as query expansion,
sequential dependency models, and feature-based
learning-to-rank.

In response to the request, RMIT submitted 12
baseline runs to the document ranking track and 8
baseline runs to the passage ranking task. None of
the runs use LTR as this remains difficult to do with
the current collection as only plain text is available
for passages and documents in the collection, and
many of the most effective features require semi-
structured data such as HTML. We did however
submit a single Deep Learning run using BART for
the passage ranking task for comparison.

In the following sections we will describe the
collection curation and processing, baseline config-
urations, and a few initial observations.

2 Collection Preparation

While the TREC organizers provide a version of
the document collection in TRECTEXT format, we
opted to perform our own pre-cleaning of the collec-
tion to remove various errors in the text provided
by Microsoft. All document text was processed
using python along with the clean-text[gpl],
spacy, and lemminflect packages. The same
transforms were applied to all documents, passages,
and queries before constructing TRECTEXT files
which were indexed using Indri or Terrier as de-
scribed in the next section.

3 System Descriptions

Document Ranking Runs. The 12 runs submit-
ted for the document ranking task are described in
Table 1. We used two different publicly available
search engines – Indri and Terrier. Note that we
have a publicly available fork of Terrier which in-
cludes implementations of several stemmers which
are not available in the official version. We also
have made modifications to a few different rank-
ing algorithms such as BM25 in order to allow us
to set both k1 and b parameters as we have found
that the default values for these two parameters

https://pypi.org/project/clean-text/
https://spacy.io
https://github.com/bjascob/LemmInflect
https://www.lemurproject.org/indri
https://terrier.org


Run Name Description

RMIT DFRee Terrier v5.1, Krovetz stemming, DFRee ranker, DRF sequential depen-
dency type SD with µ = 4000 and n-gram length = 5, Bo1 query expan-
sion with 5 documents and 50 terms.

RMIT DPH Terrier v5.1, Krovetz stemming, DPH ranker, DRF sequential dependency
type SD with µ = 4000 and n-gram length = 5, Bo1 query expansion
with 2 documents and 50 terms.

indri-sdmf Indri v5.17, Sequential Dependencies with fields, title w = 0.35, url
w = 0.35, body unigram w = 0.99, coocurrence w = 0.1, unordered
window of size 8 and w = 0.2

rindri-bm25 Indri v5.17, Krovetz stemming, Okapi ranker, k1 = 1.6, b = 0.7
rmit indri-fdm Indri v5.17, Full Dependency Model with default parameters
rmit indri-sdm Indri v5.17, Sequential Dependency Model with default parameters
rterrier-dph Terrier v5.1, Krovetz stemming, DPH ranker with default parameters.
rterrier-dph sd Terrier v5.1, Krovetz stemming, DPH ranker, DRF sequential dependency

type SD with µ = 4000 and n-gram length = 5. All other parameters
were the default.

rterrier-expC2 Terrier v5.1, Krovetz stemming, In expC2 ranker with c = 2.
rterrier-tfidf Terrier v5.1, Krovetz stemming, TF IDF ranker with default parameters.
rterrier-tfidf2 Terrier v5.1, Krovetz stemming, LemurTF IDF ranker with default pa-

rameters.
terrier-jskls Terrier v5.1, Krovetz stemming, Js KLs ranker, DRF sequential depen-

dency type SD with µ = 4000 and n-gram length = 5, KL query expan-
sion with 1 documents and 10 terms.

Table 1: System Descriptions for document ranking runs.

are rarely the best choice. All of the modifica-
tions can be found in a GitHub repository located
at https://github.com/jsc/terrier-5.1.1.1.
We performed a very basic parameter sweep of var-
ious system configurations using the QREL judg-
ments from the 2019 track queries as the judgments
are too shallow to perform parameter tuning using
the MS MARCO test set, which contain a single
judgment per query. The original MS MARCO test
queries work reasonably well if you only wish to
tune for reciprocal rank, but not for deeper mea-
sures used in the final TREC assessments such as
AP@100 and NDCG@10. Therefore, the best pa-
rameter configurations were drawn from tuning
runs with the 2019 queries, or the default parame-
ters were used as described in the table.

Passage Ranking Runs. The 8 runs submitted
for the document ranking task are summarized in
Table 2. All of the baseline runs followed the same
process as described for the document ranking runs.
The one major exception was the RMIT-Bart which is
the only non-standard baseline produced by RMIT

in 2020. The details of this run a along with a basic
analysis is provided in the next section.

4 RMIT Bart Run

4.1 Ranking Model
BART [Lewis et al., 2019] is a pretrained trans-
former model with an encoder-decoder architec-
ture. We convert the BART model into a neural
ranking model by adding a fine-tuning layer on
top of the decoder layer. Figure 1 shows how the
model works. Below the last feed-forward layer is
the pretrained BART model which takes the con-
catenation of a query and a document as input for
both the encoders and the decoders and produces
contextualized embeddings for every token. To get
a relevance prediction, we project the embeddings
of the last token into a scalar score as only the last
token can attend the whole sentence. This is in con-
trast with typical BERT ranking models [Nogueira
and Cho, 2019, Nogueira et al., 2019] where the em-
beddings of the first token is used for fine-tuning.

The BartForSequenceClassification API from Hug-
gingface is used to implement our ranker, but any

https://github.com/jsc/terrier-5.1.1.1
https://github.com/huggingface/transformers


Run Name Description

indri-fdm Indri v5.17, Full Dependency Model with default parameters
indri-sdm Indri v5.17, Sequential Dependency Model with default parameters
indri-lmds Indri v5.17, Query Likelihood Model with µ = 460
terrier-BM25 Terrier v5.1, Krovetz stemming, Okapi BM25 ranker modified to use

k1 = 1.6, b = 0.7.
terrier-dph Terrier v5.1, Krovetz stemming, DPH ranker. All parameters were the

default.
terrier-InL2 Terrier v5.1, Krovetz stemming, InL2 ranker. All parameters were the

default.
TF IDF d 2 t 50 Terrier v5.1, Krovetz stemming, TF IDF ranker, Bo1 query expansion

with 2 documents and 50 terms.
DLF d 5 t 25 Terrier v5.1, Krovetz stemming, DLF ranker, Bo1 query expansion with 5

documents and 25 terms.
RMIT-Bart Anserini v0.9.3 indexing+retrieval, BART reranking (Details in Sec-

tion 4).

Table 2: System Descriptions for passage ranking runs.

Feed Foward

Encoders

…

Self-aention

Feed Forward

Decoders

…

Cross-aention

Feed Forward

Self-aention

documentquery

Score

documentquery

Figure 1: RMIT-BART ranking model takes as input the
concatenation of a query and a document and produces
a scalar score based on the last token’s contextualized
embeddings.

of the XXXForSequenceClassification APIs could be
used to create a ranking model with few modifi-
cations, making it a very compelling tool for IR
researchers to use in the future.

4.2 Training
We construct our own training data instead of using
the tuples released by Microsoft. We first index the
DeepCT [Dai and Callan, 2019] enriched collec-
tion and tune BM25 for recall using 1000 randomly

selected training queries. Then we retrieve 1000
passages for each training query to use as our train-
ing data. The re-construction of the training data
ensures that the passages in the training set, the val-
idation set, and the testing set are consistent with
our first-stage run.

Each training instance contains a query Q
with one positive document D+ and one pseudo-
negative document D− (there are no true negative
judgments provided by the organizers). The loss
for a training instance is calculated as

Loss = max(0, 1− (S(Q,D+)− S(Q,D−)))
(1)

where S(·) is the score produced by the ranking
model.

We train the model for 10 epochs and sample
new negative documents in each epoch. We set
the learning rate to 5e−6 with a 1 epoch warmup,
a training batch size of 32, gradient accumula-
tion is set to 4 batches, and the maximum se-
quence length is set to 256 tokens. We use the
AdamW [Loshchilov and Hutter, 2019] optimizer
with β1 = 0.9, β2 = 0.999, and weight decay =
5e−5.

Using strong negative documents — which the
model fails to rank lower than positive documents
during training — to reinforce the model results
when the effectiveness is low for the instance. We
visually inspected a few strong negative documents
and found that they could easily be labeled as posi-
tive if assessed by a human. This is not surprising



as the MS-MARCO judgments are not guaranteed
to be complete. So care should be taken when re-
searchers use this data augmentation technique as it
may simply be an over-optimization that is highly
collection-specific. Nevertheless, if the goal is to
improve effectiveness on this collection it appears
to work quite well.

4.3 Results

Table 3: RMIT-BART effectiveness.

Metric Value

NDCG@10 0.754
NDCG@20 0.721
NDCG@1000 0.719
MAP 0.512
Recall 0.809
RBP(0.50) 0.722 +0.000
RBP(0.80) 0.621 +0.018
RBP(0.95) 0.375 +0.186

Qid
0.0

0.2

0.4

0.6

0.8

1.0

nd
cg
@
10

RMIT-BART
Worst
Median
Best

(a) NDCG@10.

Qid
0.0

0.2

0.4

0.6

0.8

1.0

nd
cg
@
10
00 RMIT-BART

Worst
Median
Best

(b) NDCG@1000.

Figure 2: Per-query result.

Table 3 summarizes the effectiveness results for
the RMIT-BART run in 2020. Figure 2 shows the
RMIT-BART breakdown at the query level w.r.t. the
worst, the median and the best results in terms
of NDCG@10 and NDCG@1000 as provided by
the organizers. It is clear RMIT-BART was more
effectiveness than the median for the majority of

Duplicates Topic ID

157 640502
122 583468

99 555530
69 673670
29 1133579
15 169208
10 768208, 1132532

9 1108651
8 701453
6 1136043
5 258062
4 1037496
3 121171, 1127540, 1051399
2 877809, 390360, 330975, 135802, 1131069,

1110678, 1103153
1 730539, 174463, 141630, 1136047,

1115210, 1113256, 1106979, 1064670,
1049519, 1043135

Table 4: The 33 assessed topics which had one or more
duplicate / near-duplicate query in the training sets.

assessed topics this round, but there is still room
for improvement in the future.

RMIT-BART performed the worst for topic
673670 “what is a alm” and 405163 “is
caffeine an narcotic” (leftmost of Figure 2a).
The rank position 1 documents for theses two
topics appear to be relevant in our opinion, but
were labeled as non-relevant by the assessors.
For example, document 8632360 is “ALM is a

set of pre-defined processes that start

somewhere in the business as an idea, a

need ...”. The relevant documents actually have
different definitions of the acronym “ALM” which is
ambiguous.

So it is quite possible one might expect some
level of assessor disagreement on the current judg-
ments, but this has not been studied for the col-
lection to our knowledge. Since the topics do not
originate with the NIST assessors which is often
the case in TREC exercises, the assessors would
not be classified as “gold”, which can lead to lower
assessor agreement [Damessie et al., 2017, 2018].
This is always a possibility when assessing results
with only a query and not a full description of the
true information need. Relevance labels become
more likely to interpreted differently when assessed
independently by multiple assessors. This is a clas-
sic and lingering problem is IR evaluation worth
exploring further in future work.



5 Other Observations

One interesting observation related to the TREC
DL 2020 Task – there appear to be a significant
number of duplicate and near duplicate queries in
the training data available. Table 4 summarizes
the duplicate or near duplicate queries contained in
one of the training set. Of the 60 assessed topics,
roughly half of them had one or more duplicate in
the training sets. We intend to do a more detailed
analysis of this phenomenon in future work.

6 Conclusion

We have described all of the runs submitted for the
TREC DL 2020 reranking tasks in this report. Our
baseline runs used basic Terrier and Indri configu-
rations. In addition, we have performed a prelimi-
nary analysis of the RMIT-Bart run which applied
a more common Deep Learning approach simi-
lar to many of the other participating teams. The
RMIT Bart run as several of the more basic base-
line runs performed well overall in the document
and passage ranking tasks based on the preliminary
assessment provided by NIST, which we will ana-
lyze further once the TREC conference concludes
in November of 2020.

Acknowledgments

This work was supported by Australian Research
Council Grant DP190101113.

References
P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao,

X. Liu, R. Majumder, A. McNamara, B. Mitra,

T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Ti-
wary, and T. Wang. MS MARCO: A human gener-
ated machine reading comprehension dataset. arXiv
preprint arXiv:1611.09268, 2016.

N. Craswell, D. Campos, B. Mitra, E. Yilmaz, and
B. Billerbeck. ORCAS: 18 million clicked query-
document pairs for analyzing search. arXiv preprint
arXiv:2006.05324, 2020.

Z. Dai and J. Callan. Context-Aware Sentence/Passage
Term Importance Estimation For First Stage Re-
trieval. arXiv:1910.10687 [cs], Nov. 2019.

T. T. Damessie, T. P. Nghiem, F. Scholer, and J. S.
Culpepper. Gauging the quality of relevance assess-
ments using inter-rater agreement. In Proc. SIGIR,
pages 1089–1092, 2017.

T. T. Damessie, J. S. Culpepper, J. Kim, and F. Scholer.
Presentation ordering effects on assessor agreement.
In Proc. CIKM, pages 723–732, 2018.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad,
A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer. BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation,
Translation, and Comprehension. arXiv:1910.13461
[cs, stat], Oct. 2019.

I. Loshchilov and F. Hutter. Decoupled Weight Decay
Regularization. arXiv:1711.05101 [cs, math], Jan.
2019.

R. Nogueira and K. Cho. Passage Re-ranking with
BERT. arXiv:1901.04085 [cs], jan 2019.

R. Nogueira, W. Yang, K. Cho, and J. Lin. Multi-Stage
Document Ranking with BERT. arXiv:1910.14424
[cs], oct 2019.


