
Naver Labs Europe @ TREC Deep Learning
2020

Thibault Formal1,2, Benjamin Piwowarski1, and Stéphane Clinchant2

1 Sorbonne Université, LIP6, F-75005 Paris, France
benjamin.piwowarski@lip6.fr

2 Naver Labs Europe, Meylan, France
{thibault.formal,stephane.clinchant}@naverlabs.com

Abstract. This paper describes our participation to the 2020 TREC
Deep Learning challenge. While the track comprises 4 tasks in total
(document and passage (re-)ranking), we only focused on the passage
full ranking task, for which the goal is to retrieve and rank a set of 1000
passages directly from the collection of 8.8M entries. We submitted three
runs, coming from a diverse set of experiments we conducted through-
out the year regarding the use of BERT in ranking models. We explored
simple dense embedding-based first stage retrieval, the impact of train-
ing transformer models from scratch with Masked Language Modeling
(MLM) on the target collection, as well as diverse training settings and
hyperparameter configurations.

1 Introduction

Over the last two years, the release of large pre-trained language models such as
BERT [4] has led to tremendous progress in Information Retrieval. BERT-based
models –following work from [10]– are now state-of-the-art for ad-hoc IR, and
rank first on the MSMARCO passage and document ranking leaderboards3.
Starting in 2019, the TREC Deep Learning track –building on the publicly re-
leased MSMARCO dataset [9]– has provided a testbed for IR researchers that
aim to study new models (deep or not) in a large scale training regime. Evalua-
tion methodology is similar to last year [2], thus we provide rankings for a test
set of 200 queries, later annotated by NIST assessors.

Following the recent trend that transfers knowledge from pre-trained lan-
guage models from the re-ranking setting to the full ranking one [3,12,17], part
of our submission consists in moving from term-based retrieval (e.g. BM25) to
dense embedding-based semantic retrieval. In the meantime, while techniques
such as distillation lead to more efficient models that keep performance at the
same level [5], we are interested in a slightly different –but related– question:
can we train, from scratch, on the target collection, language models that are
inherently smaller (in terms of number of parameters, training and inference

3 https://microsoft.github.io/msmarco/



2 T. Formal, B. Piwowarski and S. Clinchant

time) ?

Focusing on these two points, our submission is rooted in a set of experiments
that studies various training settings, ranging from standard hyperparameters,
losses, regularization techniques such as mixup [18], ensembling and so forth.

2 Methodology

From lexical to semantic first stage retrieval In a classic two-stage ranking sys-
tem, term-based models like BM25 remain a go-to for the initial retrieval, as they
provide baselines that are both efficient (through the inverted index) and actu-
ally hard to beat [16]. For this challenge, following recent works [1, 6, 14,15,17],
we experimented with semantic first stage retrieval, based on a BERT Siamese
architecture. Documents and queries are fed independently to BERT –allowing
for offline document indexing–, and (fixed-length) document/query represen-
tations are obtained from a pooling of BERT embeddings: this is the so-called
representation-based approach in IR. We found no clear difference between using
[CLS] or taking the average of contextual embeddings (but we consider the latter
as we got slightly better results). Relevance is obtained by computing similarity
between representations (dot product in our case). For the similarity search, we
used the FAISS library4 [8], with the (exact, brute-force) IndexFlatIP index.
We give the performance for this retrieval stage (best model) in Table 1.

MRR@10 (dev) R@1000 (dev) NDCG@10 (DL 2019) R@1000

Siamese-BERT 0.312 0.941 0.637 0.625

Table 1. Performance of first-stage semantic retrieval, on MSMARCO dev set (sparse
labels) and TREC Deep Learning 2019 test set.

Learning Language Models from scratch We are also interested in the questions
of models size as well as the role of pre-training in ranking models, particularly:
(i) do models need to be that big (e.g. 12 layers, 110M parameters for BERT
base) ?; (ii) is pre-training on such large collections (BooksCorpus + English
Wikipedia) necessary to obtain reasonable performance ?; (iii) thus, can we get
smaller and better models (for the task) by directly pre-training LMs on the
target collection (more suited vocabulary, domain-specific pre-training) ?

This issue has already been investigated in [11], with Target Corpus Pre-
training, but our goal differs a bit, as we also aim to learn smaller models, while
having control on parameters such as the vocabulary, which could be critical,
for instance on very specific corpora (e.g. medical or legal).

4 https://github.com/facebookresearch/faiss



Naver Labs Europe @ TREC Deep Learning 2020 3

In order to do so, we investigate the performance of lighter transformer models,
directly pre-trained with MLM on the MSMARCO passage collection. These
checkpoints are then later used as a starting point for fine-tuning ranking mod-
els. We were able to train such models with the same level of performance,
thus reducing inference time at no cost. We tested several configurations (in
terms of architecture, training setting etc.), and we give some representative
results in Table 2 (for a RoBERTa-type pre-training). While the study of the
trade-off between model size and performance is interesting, we chose to use the
RoBERTa-medium checkpoint for the challenge, as we are more interested in
performance than efficiency.

MRR@10 (dev) architecture # params

BERT-base [10] 0.347 L = 12, H = 768 110M
BERT-base (our training) 0.365 L = 12, H = 768 110M
RoBERTa-medium 0.360 L = 6, H = 1024 98M
RoBERTa-small 0.358 L = 4, H = 1024 56M
RoBERTa-mini 0.269 L = 2, H = 512 17M

Table 2. Performance of RoBERTa re-rankers, pre-trained with MLM on MSMARCO
collection and later fine-tuned on BM25-based pairs. On this example, the number of
heads is kept fixed across experiments (A = 12).

Training details We consider the MSMARCO passage ranking dataset, which
contains approximately 8.8M passages. For training the LMs, we use fairseq

[13] and adopt a fairly standard procedure borrowed from machine translation:
we removed non-printing characters, normalized unicode punctuation, and used
moses tokenizer. Then, a vocabulary of 20k subwords is learned with subword-
nmt. For fine-tuning models –either from the standard checkpoint or our own
pre-training–, we generally follow the same strategy. We experimented tuning
the learning rate, the training loss (pointwise cross-entropy and various pairwise
losses), some regularization strategies like mixup [18], the number of iterations
and so forth. For training first stage ranking models, we acknowledge the dis-
crepancy between training with pairs provided by MSMARCO (hence built from
BM25) and the objective of increasing recall w.r.t. to say BM25, following ob-
servations already made in [15,17]. To reduce such gap, we use in-batch negative
training pairs, where for a given query q, positive documents from other queries
in the batch are used as negatives. Similarly, while training re-rankers, we want
the distribution of items seen by the models during training and inference to be
the same. Thus, when they are expected to re-rank documents from a dense first
stage retrieval, we train the models with pairs built from this model (and not
the ones provided by MSMARCO). We train and evaluate each model using 4
TESLA V100 GPUs (with 32G memory), and we generally set the batch size so
that we fit memory.



4 T. Formal, B. Piwowarski and S. Clinchant

Runs description and results Our submission follows a logic where runs are
(supposedly) incrementally richer.

1. NLE pr1: first stage Siamese-BERT (1) + ensemble of 8 BERT re-rankers
(averaging scores) (2)

2. NLE pr2: first stage ensemble of 2 Siamese-BERT (averaging scores), first is
(1), second comes from our own RoBERTa checkpoint trained from scratch
with MLM on MSMARCO, and later fine-tuned (RoBERTa-medium in Table
2). Re-ranking with an ensemble (averaging scores) of 8 BERT re-rankers (2)
+ 4 ELECTRA + 3 RoBERTa (from own RoBERTa-medium checkpoint)

3. NLE pr3: Last run is an ensemble of NLE pr2 and a pipeline of BM25 + 6
BERT re-rankers, using reciprocal rank following [7]

In table 3, we provide results from our runs on the 2019 and 2020 tracks.

model NDCG@10 (2019) NDCG@10 (2020)

BEST 0.765 0.803
NLE pr1 0.739 0.733
NLE pr2 0.749 0.734
NLE pr3 0.753 0.746

Table 3. Performance of submitted runs on TREC Deep Learning 2019 and 2020 test
sets.

3 Conclusion

We briefly introduced our methodology and the resulting evaluations of our sub-
missions for the 2020 TREC Deep Learning passage ranking task. The challenge
was a way for us to summarize and organize past experiments, and confront some
novels ideas to the IR community. We plan to dig more into those, by exploring
how to extend and/or improve the standard Siamese architecture for first stage
retrieval, as well as complementing our study of LM pre-training for IR (by e.g.
varying vocabulary size or architecture configurations).

References

1. Chang, W.C., Yu, F.X., Chang, Y.W., Yang, Y., Kumar, S.: Pre-training tasks for
embedding-based large-scale retrieval (2020)

2. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the
trec 2019 deep learning track (2020)

3. Dai, Z., Callan, J.: Context-aware sentence/passage term importance estimation
for first stage retrieval (2019)



Naver Labs Europe @ TREC Deep Learning 2020 5

4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805

5. Gao, L., Dai, Z., Callan, J.: Understanding bert rankers under distillation.
Proceedings of the 2020 ACM SIGIR on International Conference on Theory
of Information Retrieval (Sep 2020). https://doi.org/10.1145/3409256.3409838,
http://dx.doi.org/10.1145/3409256.3409838

6. Gao, L., Dai, Z., Chen, T., Fan, Z., Durme, B.V., Callan, J.: Complementing lexical
retrieval with semantic residual embedding (2020)

7. Han, S., Wang, X., Bendersky, M., Najork, M.: Learning-to-rank with bert in tf-
ranking (2020)

8. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus (2017)
9. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.:

MS MARCO: A human generated machine reading comprehension dataset. CoRR
abs/1611.09268 (2016), http://arxiv.org/abs/1611.09268

10. Nogueira, R., Cho, K.: Passage re-ranking with BERT. CoRR abs/1901.04085
(2019), http://arxiv.org/abs/1901.04085

11. Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with bert
(2019)

12. Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction.
arXiv preprint arXiv:1904.08375 (2019)

13. Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., Auli,
M.: fairseq: A fast, extensible toolkit for sequence modeling. In: Proceedings of
NAACL-HLT 2019: Demonstrations (2019)

14. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks (2019)

15. Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P., Ahmed, J., Over-
wijk, A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval (2020)

16. Yang, W., Lu, K., Yang, P., Lin, J.: Critically examining the
“neural hype”. Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in Informa-
tion Retrieval (Jul 2019). https://doi.org/10.1145/3331184.3331340,
http://dx.doi.org/10.1145/3331184.3331340

17. Zhan, J., Mao, J., Liu, Y., Zhang, M., Ma, S.: Repbert: Contextualized text em-
beddings for first-stage retrieval (2020)

18. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. CoRR abs/1710.09412 (2017), http://arxiv.org/abs/1710.09412


