
HSRM-LAVIS at TREC 2020 Deep Learning Track: Neural
First-stage Ranking Complementing Term-based Retrieval

Marco Wrzalik
marco.wrzalik@hs-rm.de

RheinMain University of Applied Sciences

Dirk Krechel
dirk.krechel@hs-rm.de

RheinMain University of Applied Sciences

ABSTRACT
This paper describes our submission to the passage ranking task
of the TREC 2020 Deep Learning Track. With our work we focus
on improving first-stage ranking and investigate its effect on end-
to-end retrieval. Our approach aims to complement term-based
retrieval methods with rankings from a representation-focused
neural ranking model for first-stage ranking. Thus, we compile re-
ranking candidates by mixing rankings from our complementary
model with BM25 rankings. Our model incorporates ALBERT to ex-
ploit local term interactions and language modeling pretraining. For
efficient retrieval, our passage representations are pre-computed
and can be indexed in an Approximate Nearest Neighbor index.
We investigate the characteristics of our approach based on the
following three submitted runs: First, isolated rankings from our
complementing first-stage ranking model for to reveal its stan-
dalone effectiveness. Second, mixed candidates from both BM25
and our model to inspect its complementary behavior. Third, rank-
ings from an ELECTRA-based re-ranker using the candidates from
the second run as an example of end-to-end results.

1 INTRODUCTION
The current state of the art in passage retrieval is dominated by
re-ranking models. They follow a two- or multi-stage ranking ap-
proach, where a number of candidate passages is re-ranked by a
more sophisticated model. The candidates are typically retrieved
by a sparse bag-of-words retrieval model such as BM25. Although
BM25 has proven decent performance as a first-stage ranker, it
tends to miss relevant passages. Recently, this has been counter-
acted with neural extensions to the sparse retrieval model such as
query- and document expansion [15, 23, 25] or term weighting [6].
With our submission we investigate a first-stage ranking approach
based on dense representations from a language model with the
goal to complement term-based rankings. This has been pursued
in the past: Boytsov et al. [2], for instance, generated dense doc-
ument representations using static word embeddings to retrieve
re-ranking candidates based on k-nearest neighbor search. In con-
trast, our model incorporates ALBERT [9], a language model and
text encoder similar to BERT [7], which is used to exploit local
term interactions and language modeling pretraining. We optimize
our model towards representations that reflect relevance through
vector similarity. At the same time, we guide our model towards
a complementary behavior to BM25 by sampling negative exam-
ples from BM25 rankings. We hypothesize that using a BERT-like
encoder is of great use for this task: Both language modeling pre-
training and local interactions based on the attention mechanism
of the incorporated transformer module [19] contribute to a better
understanding of queries and passages. This differs to most previ-
ous representation-focused IR models based on language modeling

Table 1: Overview of our runs submitted to the passage re-
trieval task of the TREC 2020 Deep Learning Track.

Run-id Description

CoRT-standalone Standalone first-stage rankings from our
complementary model, which will be ref-
ered to as "CoRT".

CoRT-bm25 Mixed rankings (50:50) from BM25 and our
complementary model, which we refer to
as "CoRT+BM25".

CoRT-electra Exemplary end-to-end results using an
ELECTRA-based re-ranker and CoRT-bm25
as candidate passages. We refer to this run
as "CoRT+BM25→ELECTRA".

approaches [2, 8, 13], since local term interactions were rarely ex-
ploited to form first-stage rankings. Many recent re-ranking models
implicitly use the attention mechanism for query-passage interac-
tions [11, 12, 14, 18]. In our approach, however, we intentionally
dispense with query-passage interactions in favor of low compu-
tational effort to make retrieval from the full corpus feasible. At
inference time, only the given query needs to be encoded, while
the relevance score is computed as the dot product between query
and passage representations. This can effectively be done using a
GPU or through an Approximate Nearest Neighbor (ANN) index to
avoid exhaustive scoring.

Preliminary to our submission to TREC 2020 DL, we used the
pooled judgments from the passages task of TREC 2019 DL to
evaluate our model [21]. There, we found that 26% of the top-10
candidates from our complementary model are not included in the
pooled judgments. At the same time, our model performs well ac-
cording to top-10 precision: Our standalone model achieves 54.2%
P@10 while BM25, which is densely labeled among the top-10 rank-
ings, only achieves 40.5% P@10. Therefore we want to contribute
our rankings to the assessment pool of the this year’s deep learning
track. Also, we greatly appreciate the opportunity to obtain dense
labels for the top-10 passages of our first-stage ranking experiments,
which will be of great use for the analysis of our model. Beneath
the first-stage ranking we also submit an exemplary end-to-end
ranking pipeline: we conduct a re-ranking experiment using our
complementing first-stage ranking approach. With this, we want
to benchmark our approach against state-of-the-art models and
demonstrate the effect of increasing candidate selection quality on
end-to-end ranking performance.

Marco Wrzalik and Dirk Krechel

2 TREC 2020 DEEP LEARNING TRACK
There are two tasks associated with the TREC 2020 Deep Learning
Track: Document ranking and passage ranking. Both are based on
the MS MARCO dataset [1]. For the passage task – on which we
focus – about 530k positive connections between queries and pas-
sages are provided for training. Participants were asked to either
re-rank a given set of passages or perform a full ranking using the
MS MARCO corpus containing about 8.8M passages. 200 queries
or topics were selected for the submissions, from which 81 entered
the NIST assessment process and 54 are now contained by the final
evaluation set. The assessments involve a pooling strategy in which
first the top-10 passages from all submitted runs are judged by
human assessors. Then, based on the positively labeled passages,
additional candidates are chosen for assessment. Further informa-
tion to the TREC Deep Learning Track and the NIST assessments
can be found on the official website1.

3 APPROACH
We describe a neural representation-focused ranking model for
first-stage ranking that aims to act as a complementary ranker to
existing term-based retrieval models such as BM25. To achieve this,
we sample negative training examples from BM25 rankings and
make use of local interactions and language modeling pretraining.
The latter are introduced due to a BERT-like language model in the
core of our model.

3.1 Architecture
The architecture and training strategy of our model, illustrated in
Figure 1, follows the idea of a Siamese Neural Network [3]. Passages
and queries are encoded using the identical model with shared
weights except for one detail: The passage encoder 𝜓𝛼 and the
query encoder𝜓𝛽 use different segment embeddings [7]. Our model
computes relevance scores as angular similarity between query and
passage representations while training a pair-wise ranking objective

3.2 Encoding
Our model can incorporate any BERT-like encoder as underlying
text encoder. Here, we use a pretrained ALBERT [9] encoder for its
smaller model size, the tougher sentence coherence pretraining and
increased first-stage ranking quality throughout our early-stage
experiments compared to BERT. The tokenizer of ALBERT is a
WordPiece tokenizer [22] including the special tokens [CLS] and
[SEP] known from BERT. From the text encoder we seek a single
representation vector for the whole passage or query, which we
call context representation. From ALBERT we take the [CLS] embed-
ding of the last layer for this purpose. The context representation
obtained from the underlying encoder for an arbitrary string 𝑠 is
denoted with 𝜏 (𝑠) ∈ Rℎ where ℎ is the output representation size.

ALBERT’s language modeling approach involves sentence coher-
ence prediction for which segment embeddings are used to signal
different input segments. Although we only feed single segments to
the encoder, i.e. a query or a passage, we use segment embeddings
allowing the model to encode queries differently than passages. The
segment embeddings 𝐸𝐴 and 𝐸𝐵 (illustrated in Figure 1) are part of

1https://microsoft.github.io/TREC-2020-Deep-Learning/

Figure 1: The model architecture of our complementary
first-stage ranker and the pair-wise learning objective (sim-
plified).

the context encoder functions 𝜏𝛼 and 𝜏𝛽 for passages and queries
respectively. The context representation is further projected to the
desired representation size 𝑒 using a linear layer followed by a tanh
activation function. Thus, the complete passage encoder function
is 𝜓𝛼 (𝑠) := tanh(𝑊𝜏𝛼 (𝑠) + 𝑏) where𝑊 ∈ Rℎ×𝑒 and 𝑏 ∈ R𝑒 are
parameters of the linear layer. The query encoder 𝜓𝛽 is defined
analogous.

3.3 Training
Training our model corresponds to updating the parameters of the
encoder𝜓 towards representations that reflect relevance between
queries and documents through vector similarity. Each training
sample is a triple comprising a query 𝑞, a positive passage 𝑑+ and
a negative passage 𝑑−. While positive passages are taken from
relevance assessments, negative passages are sampled from term-
based rankings (i.e. BM25) to support the complementary property
of our model. The relevance score for a query-passage pair (𝑞, 𝑑) is
calculated using the angular cosine similarity function.2

𝑠𝑖𝑚(𝑞, 𝑑) := 1 − arccos
(

𝜓𝛽 (𝑞) ·𝜓𝛼 (𝑑)
| |𝜓𝛽 (𝑞) | | | |𝜓𝛼 (𝑑) | |

)
/𝜋 (1)

As illustrated in Figure 1, the training objective is to score the
positive example 𝑑+ by at least the margin 𝜖 higher than the nega-
tive one 𝑑−. We use the triplet margin loss function as part of our
batch-wise loss function:

𝑙 (𝑞, 𝑑+, 𝑑−) :=𝑚𝑎𝑥 (0, 𝑠𝑖𝑚(𝑞, 𝑑−) − 𝑠𝑖𝑚(𝑞, 𝑑+) + 𝜖) (2)
Inspired by Oh Song et al. [16], we aim to take full advantage of

the whole training batch. For each query, each passage in the batch
is used as a negative example except for the positive one. Thus, the
batch-wise loss function can be defined as follows:

L :=
∑

1≤𝑖≤𝑛

©«
∑

1≤ 𝑗≤𝑛
𝑙 (𝑞𝑖 , 𝑑+𝑖 , 𝑑

−
𝑗) +

∑
1≤𝑘≤𝑛, 𝑘≠𝑖

𝑙 (𝑞𝑖 , 𝑑+𝑖 , 𝑑
+
𝑘
)ª®¬ (3)

𝑞𝑖 , 𝑑+𝑖 and 𝑑−
𝑖
denote the triple of the 𝑖𝑡ℎ sample in the batch and 𝑛

the number of samples per batch. We found this technique makes
the training process more robust towards exploding gradients thus
2Similar to [4], we found angular similarity performs better than cosine similarity.

https://microsoft.github.io/TREC-2020-Deep-Learning/

HSRM-LAVIS at TREC 2020 Deep Learning Track: Neural First-stage Ranking Complementing Term-based Retrieval

Table 2: Evaluation results of our first-stage passage ranking on the Deep Learning Track of TREC 2019 and 2020.

TREC 2019 DL - Passage Task TREC 2020 DL - Passage Task

Method nDCG@1k recall@100 recall@200 recall@1k nDCG@1k recall@100 recall@200 recall@1k

BM25 0.6000 0.4976 0.5981 0.7450 0.5879 0.5669 0.6428 0.8031
CoRT 0.5129 0.4471 0.5172 0.6328 0.5413 0.5301 0.5850 0.6973
CoRT+BM25 0.6636 0.5696 0.6590 0.8308 0.6630 0.6454 0.7230 0.8496

the model can be trained without gradient clipping [26]. Also, it
positively affects first-stage ranking results3.

3.4 Indexing and Retrieval
For retrieval with our model, each passage must be encoded by
the passage encoder𝜓𝛼 . Subsequent normalization of each vector
allows us to use the dot product as a proxy score function, which is
sufficient to accurately compile the ranking. Given a query 𝑞, we
calculate its representation 𝜓𝛽 (𝑞) and the dot product with each
normalized passage vector. From those, the 𝑘 highest scores are
selected and sorted to form the ranking. This procedure can be
implemented heavily parallelized using a GPU. Alternatively, the
passage representations can be indexed in an ANN index to avoid
exhaustive similarity search. Finally, we combine the resulting rank-
ing of our model with the respective BM25 ranking by interleaving
or zipping the positions beginning with our model until a new rank-
ing of the same length has been arranged. During this process, each
passage that was already added by the other ranking is omitted. For
instance, merging two ranking lists beginning with [𝑎, 𝑏, 𝑐, 𝑑, . . .]
and [𝑒, 𝑐, 𝑓 , 𝑎, . . .] would result in [𝑎, 𝑒, 𝑏, 𝑐, �𝑐, 𝑓 , 𝑑, �𝑎, . . .]. The zip-
ping procedure stops as soon as the desired ranking size has been
reached. The result is a compound ranking of our model and BM25.

4 EXPERIMENTS
Our submitted runs comprise two experiment types: First-stage
(full) ranking for candidate retrieval and subsequent re-ranking
as an example for an end-to-end ranking pipeline. Since we could
only submit three runs, we strategically decided to neither submit
a BM25 baseline, nor a re-ranking baseline using BM25 candidates
only. We argue, BM25 rankings should already be well covered in
the pooled NIST assessments. Next to the evaluation results based
on the TREC 2020 DL Passage Task, we also add corresponding
results using the qrels from the previous year. Furthermore, we add
evaluation results for baseline measures we did not submit. There,
the evaluation results were generated using the official trec_eval
evaluation script and the "-l 2" option to prevent the label "1" (for
related) being counted as relevant.

4.1 First-stage Ranking
We trained our model as described in Section 3.3 while using a rep-
resentation size of 𝑒 = 768 to avoid a possible bottleneck. However,
our previous experiments indicate that 𝑒 can be reduced to 256with-
out significantly hurting the ranking quality, which substantially
decreases computational effort and resource cost [21]. Any passage

3We achieve 2.0 p.p. higher MRR@10 compared to the plain triplet margin loss on
sparse labels from the MS MARCO dev dataset.

or query is cropped to a sequence length of 512 tokens. The rankings
are compiled using exhaustive search on a GPU. Since the initial
ordering of a certain set of candidates for re-ranking is not relevant
to the final results, we identify recall to be the most adequate mea-
sure to summarize the quality of candidate selections. Various recall
cuts are taken into account to represent situations, where smaller
numbers of candidates are favorable. We report nDCG@1000 as an
additional summary of the overall first-stage ranking quality.
Results. As shown in Table 2, mixing candidates from our model
with those from BM25 significantly increases recall at all consid-
ered cuts, which demonstrates the complementary behavior of our
model. It is worth noting, that BM25 achieves much higher re-
call@1k on this year’s judgments compared to last year. We hypoth-
esize this translates to the significantly smaller gain we observe
on this metric: While the judgments from 2019 show +0.086 re-
call@1k due to candidate mixing, the increase only amounts +0.046
recall@1k on this year’s judgments. However, the increases on the
other considered metrics are quite robust.

4.2 ELECTRA Re-ranking
As an example for an end-to-end ranking pipeline based on our can-
didates, we trained a neural re-ranker using a point-wise learning
objective. Inspired by Nogueira and Cho [14], we fine-tune a pre-
trained language model on binary relevance classification. Instead
of BERT, however, we use a pretrained ELECTRA discriminator [5].
An input query-passage pair (𝑞, 𝑝) is concatenated to one token se-
quence with two segments. This sequence is processed by the ELEC-
TRA discriminator while the embedding for the classification token
in the last layer, which we denote with 𝜙 (𝑞, 𝑝), is projected to a bi-
nary classification logit. We then apply the sigmoid activation func-
tion 𝜎 to obtain the relevance confidence for query 𝑞 and passage
𝑝 . This procedure can be formalized as 𝜁 (𝑞, 𝑝) = 𝜎 (𝑊 ′𝜙 (𝑞, 𝑝) + 𝑏 ′)
where𝑊 ′ ∈ Rℎ×1 and 𝑏 ′ ∈ R are the parameters of a linear layer
with a single output activation. To form a ranking at inference time,
we sort the candidates by the model’s confidence. During train-
ing, we sample query-passage pairs, each associated with a binary
relevance label 𝑦 ∈ {0, 1} and minimize the binary cross-entropy
loss:

𝑙 ′(𝑞, 𝑝,𝑦) = 𝑦 · 𝑙𝑜𝑔 𝜁 (𝑞, 𝑝) + (1 − 𝑦) · 𝑙𝑜𝑔 (1 − 𝜁 (𝑞, 𝑝)) (4)

Results. Table 3 shows the results of our exemplary end-to-end
ranking pipeline. For the first stage of our pipeline we use 1000
candidates mixed from BM25 and our complementary model as
described in Section 3.4. As a baseline, we conduct the same ex-
periment using 1000 candidates from BM25 only. Decent gains in
MAP and nDCG@1000 are achieved due to our complementary
first-stage ranking. However, in this setting of 1000 candidates,

Marco Wrzalik and Dirk Krechel

Table 3: End-to-end passage ranking results

TREC 2019 DL - Passage Task TREC 2020 DL - Passage Task

Ranking Pipeline MRR MAP nDCG@10 nDCG@1k MRR MAP nDCG@10 nDCG@1k

BM25→ELECTRA 0.9109 0.4664 0.7306 0.6962 0.8721 0.5210 0.7587 0.7107
CoRT+BM25→ELECTRA 0.9128 0.5101 0.7471 0.7336 0.8703 0.5399 0.7566 0.7438

16 32 64 128 256 512 1000
Number of Candidates

0.60
0.63
0.66
0.69
0.72
0.75

nD
CG

@
10

BM25→ELECTRA
CoRT+BM25→ELECTRA

16 32 64 128 256 512 1000
Number of Candidates

0.32
0.40
0.48
0.56
0.64
0.72
0.80

RE
CA

LL

BM25
CoRT + BM25

Figure 2: Based on the TREC 2020 DL Passage Task, ranking quality in terms of nDCG@10 vs number of candidates (left) and
corresponding candidate recall (right).

where satisfactory numbers of relevant passages are already re-
trieved by BM25, further increasing recall seems not to translate
into improved top-rank-focused metrics, i.e. MRR and nDCG@10.

4.3 Limiting Candidate Numbers
Since most re-ranking methods score each candidate individually,
it is reasonable to assume that the corresponding computational
cost relates linearly to the number of candidates. Thus, decreasing
the candidates is an effective measure to reduce end-to-end ranking
time and resource cost. However, this is likely to negatively influ-
ence ranking quality. We investigate the effect of limited numbers
of candidates on the final ranking quality, while using candidates
from a) BM25 and b) CoRT+BM25. As Figure 2 (left) illustrates,
the ranking quality in terms of nDCG@10 of the run that uses
candidates from CoRT+BM25 suffers much less from the decreas-
ing number of candidates: 128 candidates from CoRT+BM25 result
in a higher ranking quality than 512 candidates from BM25 only.
This effect becomes heavier for lower candidate numbers: Only
32 candidates from CoRT+BM25 are needed outperform 256 BM25
candidates. However, this behavior is not reflected by the recall on
the right side of Figure 2. There, the margin between the approaches
is rather constant. Furthermore, we observe that recall is not a good
predictor for end-to-end ranking quality with our state-of-the-art
re-ranker. For instance, 32 candidates from CoRT+BM25 comprise
an approximately equal recall value to 64 candidates from BM25.
Contrarily, the resulting ranking quality in terms of nDCG@10 is
much higher for the 32 candidates from CoRT+BM25. We hypoth-
esize, it is not only the recall of the candidates that matters, but
rather the coverage regarding different types of relevance signals.

5 CONCLUSION
We submitted three passage ranking runs to the TREC 2020 Deep
Learning Track. Two of them are dedicated to our first-stage rank-
ing approach, which aims to complement BM25 rankings with
candidates from a representation-focused neural ranking model.
This model incorporates ALBERT to exploit local interactions and
language modeling pretraining. Our third run demonstrates exem-
plary end-to-end results using our candidate selection. We have
shown that mixing BM25 ranking with those from our comple-
mentary model results in significantly increased recall. According
to MAP and nDCG this translates into small increases to overall
ranking quality after re-ranking. However, the nDCG@10 and MRR
measures indicate, this does not apply to the top positions of our
end-to-end rankings when using 1000 candidates, since the BM25
ranking already contains satisfactory numbers of relevant passages.
However, this changes if less candidates are used during re-ranking.
There, we find the top ranks are positively impacted by the in-
creased recall our proposed first-stage ranker offers. Furthermore,
we find this effect increases as the number of candidates decreases.

REFERENCES
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,

Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016.
Ms marco: A human generated machine reading comprehension dataset. arXiv
preprint arXiv:1611.09268 (2016).

[2] Leonid Boytsov, David Novak, YuryMalkov, and Eric Nyberg. 2016. Off the beaten
path: Let’s replace term-based retrieval with k-nn search. In Proceedings of the
25th ACM international on conference on information and knowledge management.
1099–1108.

[3] Jane Bromley, JW Bentz, L Bottou, I Guyon, Y LeCun, C Moore, E Sackinger,
and R Shah. 1993. Signature Verification using a “Siamese” Time Delay Neural
Network. Int.]. Pattern Recognit. Artzf Intell 7 (1993).

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[5] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2019.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In International Conference on Learning Representations.

HSRM-LAVIS at TREC 2020 Deep Learning Track: Neural First-stage Ranking Complementing Term-based Retrieval

[6] Zhuyun Dai and Jamie Callan. [n.d.]. Context-Aware Passage Term Weighting
For First Stage Retrieval. ([n. d.]).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Christophe Van Gysel, Maarten De Rijke, and Evangelos Kanoulas. 2018. Neural
vector spaces for unsupervised information retrieval. ACM Transactions on
Information Systems (TOIS) 36, 4 (2018), 1–25.

[9] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[10] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[11] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized embeddings for document ranking. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1101–1104.

[12] Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell. 2020.
Conformer-Kernel with Query Term Independence for Document Retrieval. arXiv
preprint arXiv:2007.10434 (2020).

[13] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. 2016. A Dual
Embedding Space Model for Document Ranking. arXiv (2016), arXiv–1602.

[14] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[15] Rodrigo Nogueira and Jimmy Lin. [n.d.]. From doc2query to docTTTTTquery.
([n. d.]).

[16] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. 2016. Deep
metric learning via lifted structured feature embedding. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4004–4012.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[18] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding
the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[20] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
AnthonyMoi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. ArXiv abs/1910.03771 (2019).

[21] Marco Wrzalik and Dirk Krechel. 2020. CoRT: Complementary Rankings from
Transformers. arXiv preprint arXiv:2010.10252 (2020).

[22] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[23] Ming Yan, Chenliang Li, Chen Wu, Bin Bi, Wei Wang, Jiangnan Xia, and Luo Si.
2019. IDST at TREC 2019 Deep Learning Track: Deep Cascade Ranking with
Generation-based Document Expansion and Pre-trained Language Modeling. In
Proceedings of the Twenty-Eighth Text REtrieval Conference, TREC 2019, Gaithers-
burg, Maryland, USA, November 13-15, 2019 (NIST Special Publication, Vol. 1250),
Ellen M. Voorhees and Angela Ellis (Eds.). National Institute of Standards and
Technology (NIST). https://trec.nist.gov/pubs/trec28/papers/IDST.DL.pdf

[24] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of
Lucene for information retrieval research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1253–1256.

[25] George Zerveas, Ruochen Zhang, Leila Kim, and Carsten Eickhoff. 2019. Brown
University at TREC Deep Learning 2019. In Proceedings of the Twenty-Eighth Text
REtrieval Conference, TREC 2019, Gaithersburg, Maryland, USA, November 13-15,
2019 (NIST Special Publication, Vol. 1250), Ellen M. Voorhees and Angela Ellis
(Eds.). National Institute of Standards and Technology (NIST). https://trec.nist.
gov/pubs/trec28/papers/Brown.DL.pdf

[26] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2019. Why Gradient
Clipping Accelerates Training: A Theoretical Justification for Adaptivity. In
International Conference on Learning Representations.

A TRAINING DETAILS
Software. All our implementations are made with Python 3.7. We
used PyTorch[17] and HuggingFace’s Transformers[20] as deep learn-
ing libraries. Any BM25 ranking were generated by the Anserini
toolkit[24]. Anserini ensures reproducibility by providing optimized
parameter sets and ranking scripts based on Apache Lucene for sev-
eral datasets including MS MARCO.
First-stage Ranking. We trained our model based on the pre-
trained ALBERT model "albert-base-v2", which is the lightest
available version in HuggingFace’s repository4 [20]. Our model has
been trained on MS MARCO for 10 epochs. Each epoch includes
all queries that are associated to at least one relevant passage. For
each query we randomly sample one positive and one negative
passage. Most queries are only associated to one relevant passage,
however. Negative examples are sampled from the corresponding
top-100 BM25 ranking to support the complementary property of
our model. There, we filter any positively labeled passage as well as
any passage above rank 𝑛 = 8 for their high probability of actually
being relevant. With this we aim to reduce the number of false
negatives and thus generated contradictory signals. Due to high
computational effort, this parameter was not tuned systematically.
However, we achieved 0.7 p.p. higher MRR@10 and 1.2 p.p. higher
RECALL@100 on our sparse validation set when training with
𝑛 = 8 compared to 𝑛 = 0. As usual for BERT-based models we use
the ADAM optimizer with weight decay fix [10] and the default
parameters 𝛽1 = 0.9, 𝛽2 = 0.999, 𝑒𝑝𝑠 = 10−6. We have empirically
chosen a weight decay rate of 𝜆 = 0.1 and a linearly decreasing
learning rate schedule starting with 𝑙𝑟 = 2×10−6 after 20.000 warm-
up batches. We train mini-batches of size 𝑏 = 6 samples (triples)
while accumulating the gradients of 100 mini-batches before per-
forming one update step. The triplet margin (eq. 2 in Section 3.3)
has been set to 𝜖 = 0.1, which has been coarsely tuned in the range
of [0.01, 0.2].
Re-ranker. The pretrained ELECTRA discriminator [5] we used
for our re-ranking experiment was accessed through HuggingFace’s
repository [20], namely google/electra-large-discriminator.
The optimizer settings have been adopted from our first-stage rank-
ing experiment except for the learning rate, which we empirically
set to 5 × 10−5. We trained the model for 8 epochs on the MS
MARCO training set, with batches of 𝑏 = 6 samples and 100 steps
of gradient accumulation. The negative examples for the point-
wise learning objective has been taken from our top-1000 mixed
candidates (CoRT-bm25).

4https://huggingface.co/transformers/pretrained_models.html

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://trec.nist.gov/pubs/trec28/papers/IDST.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/Brown.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/Brown.DL.pdf
https://huggingface.co/transformers/pretrained_models.html

	Abstract
	1 Introduction
	2 TREC 2020 Deep Learning Track
	3 Approach
	3.1 Architecture
	3.2 Encoding
	3.3 Training
	3.4 Indexing and Retrieval

	4 Experiments
	4.1 First-stage Ranking
	4.2 ELECTRA Re-ranking
	4.3 Limiting Candidate Numbers

	5 Conclusion
	References
	A Training Details

