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ABSTRACT
This paper describes our participation in the passage and document
ranking tasks of TREC 2019 Deep Learning Track. We propose a
two-stage cascade ranking pipeline by taking the advantages of
sequence-to-sequence generation and pre-trained language model-
ing. Firstly, we use a simple and effective index-based method to
retrieve a collection of candidate passages. To overcome the vocabu-
lary mismatch problem, we propose a query generation method for
document expansion based on the pointer-generator model, where
each passage is expanded with a set of generated queries for higher
recall in the retrieval of candidate passages. Then we pre-train a
BERT language model with a new sentence prediction objective,
and adopt a pointwise ranking strategy for re-ranking the remained
candidate passages. Our cascade ranking method achieves the best
results among all participants on both the passage ranking and
document ranking tasks, according to the official evaluation metric
NDCG@10.
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1 INTRODUCTION
The Deep Learning Track is a new track first run in TREC 2019,
which aims at studying information retrieval in a large training
data regime. It consists of two tasks: passage ranking and document
ranking. Both tasks use a large human-generated set of training
labels, from the MS-MARCO 1 dataset. The passage ranking task
focuses on ranking passages, where it contains 1,010,916 queries
on a collection of 8,841,823 passages. The document ranking task is
1http://www.msmarco.org/
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based on source documents, which contains passages in the passage
ranking task. The full corpus is 3,213,835 documents and the train-
ing set has 367,013 queries. For both tasks, there are two subtasks
related to this: full ranking and top-k re-ranking. In the full ranking
subtask, the aim is to rank passages/documents directly from the
full document collection provided, while in the re-ranking subtask
we re-rank given an initial ranking set of top-k passages/documents.
For the official evaluation, it will be using depth pooling and con-
struct separate pools for the passage ranking and document ranking
tasks. Passages/documents in these pools will then be labelled by
NIST assessors using multi-graded judgments, allowing to measure
the NDCG metric.

Our approach is mainly based on the BERT language model [2],
which is a state-of-the-art model in various natural language under-
standing tasks. Different from many other ranking methods which
directly finetune the original BERT model in downstream task, we
modify the next sentence prediction task in BERT to a 3-class sen-
tence classification as in StructBERT [9] and pre-train a new BERT
language model from scratch. Based on the new pre-trained BERT
model, we further finetune it with pointwise ranking strategy on
the labeled query-passage data for re-ranking. Moreover, for full
ranking subtask, we use a simple and effective BM25 method [6]
to retrieve a collection of candidate passages, by leveraging the
document expansion technique. Prior to indexing, we propose a
query generation method for document expansion based on the
pointer-generator model, where each document is expanded with a
set of generated queries for improved retrieval. For both the pas-
sage and document ranking tasks, we train with the passage-level
labeled data. For evaluating on document ranking, we split a doc-
ument into overlapping passages. The BERT ranker predicts the
relevance of each passage independently, and the document score
is calculated as the maximum score of all the passages within the
document. We tested and submitted runs for both the passage rank-
ing and document ranking tasks, by combining the advantages of
pre-trained language model and document expansion technique.
The results shows that our method outperforms all the submission
runs of other participants on both tasks, in terms of the official
evaluation metric NDCG@10, which validates the effectiveness of
our cascade ranking framework.

The remainder of the paper is organized as follows. Section 2
outlines our approach. The experiment results and analysis are
given in Section 3. Finally, Section 4 concludes the work.

2 OUR APPROACH
This section presents our two-stage cascade ranking pipeline. An
off-the-shelf BM25 retriever is first used to efficiently retrieve a
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collection of candidate passages/documents. To overcome the vo-
cabulary mismatch problem, prior to indexing, we generate a set
of queries for each passage/document to conduct document expan-
sion. In the second stage, we further leverage the state-of-the-art
BERT languagemodel to re-rank the candidate passages/documents.
Besides, The BERT model is pre-trained with a new sentence predic-
tion objective for better modeling the sentence structure informa-
tion. Since the passage ranking and document ranking tasks share
the same collection of text data with passage-level training labels,
we address both tasks in a passage level.

2.1 Document Expansion-based Retriever
For the retriever stage, we first expand each passage with a set of
generated queries using sequence-to-sequence generation method.
Thenwe build index on the collection of expanded passages, and use
a simple and effective BM25 method to retrieve the top-k candidate
passages.

As for document expansion, for each passage p = {x1, · · · ,xN } ∈
P, we aim to predict a set of queries Qдen = {qдen1 , · · · ,qдenL } for
which that passage will be relevant, where qдen = {q1, · · · ,qM }
andM is the total number of generated query words.We first extract
a total collection of query-relevant passage pairs from the labeled
training corpus, and use them to train an encoder-decoder network
for query generation from the passage. The proposed model is
based on the pointer-generator model [7], which is widely used in
abstractive text summarization. The tokens of the input passage
p = {x1, · · · ,xN } are fed into the passage encoder, which maps
the text into a sequence of encoder hidden states {h1, · · · ,hN }. At
decoding time, the decoder will sequentially generate query words
by attending on the passage hidden states. At each decoding step,
the attention distributions et i of encoder states and the context
vector ct are given as:

et i = v
T tanh(Whhi +Wsst ) (1)

ct =
N∑
i=1

αetihi , αet = so f tmax (et ) (2)

where v,Wh ,Ws are trainable parameters, st is the decoder hidden
state at time step t .

Traditional attention mechanism just calculates the attention
distribution of the encoder hidden states but ignores the decoder
hidden states. To better distinguish among generated words in
the query, we propose a novel Attention Over Attention (AOA)
mechanism to consider both the attention distributions of encoder
hidden states and the previous decoder hidden states. Specifically,
at each decoding time step t , we further calculate a new decoder
hidden state s̄t by attending on the previous decoder hidden states
as:

dt i = u
T tanh(Wdsi +Wcct ) (3)

s̄t =
t∑
i=1

αdtisi , αdt = so f tmax (dt ) (4)

where u,Wd ,Wc are trainable parameters.
Then, the new decoder state s̄t is concatenated with the context

vector ct , and further fed through two linear layers to produce the

vocabulary distribution Pvocab (w ) over all words in the vocabulary:

Pvocab (w ) = so f tmax ( f ([s̄t , ct ])) (5)

where f (·) is two linear layers.
Following [7], we also use a soft switch to choose between gen-

erating a word from the vocabulary or copying a word from the
input sequence, and calculate the final probability distribution over
the extended vocabulary as:

P (w ) = pдenPvocab (w ) + (1 − pдen )
∑

i :wi=w
αeti (6)

where pдen is a soft switch used in [7].
During training, we minimize a maximum-likelihood loss, which

is most widely used in generation tasks. We define q∗t as the target
word for the decoding time step t and the overall loss is:

L = −
1
T

T∑
t=0

loдP (q∗t |q
∗
1, ...,q

∗
t−1,p) (7)

After the query generation model is trained, for each passage in
P, we generate the top-L queries Qдen = {qдen1 , · · · ,qдenL } using
beam search [10], which are used for passage expansion.

Next, we append the generated top-L queries Qдen to each orig-
inal passage, respectively. The expanded passages are then indexed
and we adopt the simple and effective term-based BM25 method [6]
for retrieval by considering the termweight. For the BM25 search en-
gine, we use the off-the-shelf Anserini open-source IR toolkit [11].

2.2 BERT-based Re-ranker
With the top-k candidate passages from retriever stage, we further
take the BERT language model to re-rank the candidate passages for
final ranking. The pre-trained BERT model is expected to capture
certain semantic relevance between query and passage. Inspired
from StructBERT [9], we first modify the next sentence predic-
tion task of original BERT into a more difficult previous sentence
and next sentence prediction task, and pre-train a modified BERT
language model from scratch using the new sentence prediction
task. Then, we finetune the pre-trained BERT model on labeled
query-passage data with a point-wise ranking strategy.

BERT [2] is a self-supervised approach for pre-training a deep
transformer encoder [8], before fine-tuning it for a particular down-
stream task. Given a single text sentence or a pair of text sentences,
BERT packs them in one token sequence and learns a contextualized
vector representation for each token. The input representations
are fed into a stack of multi-layer bidirectional Transformer blocks,
which uses self-attention to compute the text representations by
considering the whole input sequence.

There are two training objectives in the original BERT model –
masked language modeling (MLM) and next sentence prediction
(NSP), where one is at token level and the other at sentence level.
One of the key points of BERT lies in how to design more appropri-
ate pre-training objectives with the unlabeled text. Recently, some
variants [4, 12] of BERT language model found that the NSP task
may be harmful to learn a effective language model compared with
MLM task. They remove the NSP task when pre-training the lan-
guage model. Some others found it beneficial to modify the NSP task
and design a more difficult NSP task for pre-training the language
model [3, 9]. In our search scenario which involves modeling the



relevance between the query and passage, we think it is beneficial
to keep the NSP task and design a more difficult one to capture
certain sentence structure information. Therefore, we follow the
line of StructBERT and adopt the more difficult previous sentence
and next sentence prediction task. Specifically, given a segment S1
from the unlabeled corpus as segment 1, 1

3 of the time we choose
the actual next text span S2 as segment 2, 1

3 of the time we switch
the positions of S1 and S2 as input, and the final 1

3 of the time we
randomly sample a segment Srand from the other documents as
segment 2. The new task is to distinguish among the three situations
with a three-class classification problem. The MLM task is kept the
same as in the original BERT. We jointly train the token-level MLM
task and new NSP task on the unlabeled data, which is the same
data as in the original BERT pre-training.

After the new BERT language model is pre-trained from scratch,
we follow the method in [5] and treat the re-ranking task as a binary
classification problem and use the [CLS] vector in the final layer
of new BERT to compute a score si for each passage. The final
list of passages are ranked by the score si . In both the BERT pre-
training and fine-tuning, we use the 12-layer BERT base architecture
(L = 12,H = 768,A = 12), the max sequence length is set at 384.

We start training from the pre-trained BERT base model, and
fine-tune it with the pointwise objective as:

L = −

N∑
i=1

yi · loд(si ) + (1 − yi ) · loд(1 − si ) (8)

where si = siдmoid (w · hLCLS ), yi ∈ {0, 1} is the ground-truth label
of the query-passage pair, w is a trainable parameter and hCLS is
the hidden state of [CLS] token in the final layer of BERT.

2.3 Re-ranker Ensemble
Since the test set is rather small which contains no more than 200
examples, we train multiple BERT re-rankers for ensemble learning.
For each BERT re-ranker, we output a probability score si for each
query-candidate passage pair. The probability score is accumulated
with different BERT re-rankers, and the sum of the probability
scores is used to calculate the final rankings. For the ensemble
method, we just use a simple ensemble of the same model training
with 4∼8 different random seeds.

2.4 Document Ranking
Applying BERT to long documents causes increasing memory us-
age and run time due to the complexity in interacting every pair
of tokens. Therefore, we adopt a simple passage-level approach
for document retrieval. Since the document ranking and passage
ranking tasks share the same text corpus, we directly use the model
trained on the passage ranking task for document retrieval. When
evaluating and predicting, we split the document into overlapping
passages with the same maximum length of 384 and doc stride of
192. The BERT re-ranker predicts the relevance of each passage
with respect to the query independently, and the document score is
calculated as the maximum relevance of all the passages within the
document. Besides, the title information is important in document
retrieval. Therefore, during the retriever and re-ranker stages, we
both add the title to the beginning of every splitted passage to
provide context.

3 EXPERIMENT
This section we presents the results of our runs in both the passage
ranking and document ranking tasks. In total, there are 37 passage
task runs and 38 document task runs from all the 15 teams. In each
task, there are two subtasks: full ranking and re-ranking. The main
official metric in both tasks is NDCG@10, since it makes use of the
4-level judgments and focuses on the first results that users will
see. The details of task construction, evaluation methods and result
analysis can be found in the overview paper of the TREC 2019 Deep
Learning Track [1]. From the statistics, we can see that in most of
our runs, our results can obtain the best performance among all
the runs, especially for passage ranking task.

3.1 Passage Ranking Task Performance
Table 1 presents the results of our submitted runs and several other
top competitive runs in passage ranking task. The last four runs
listed are top performing runs of other groups and the two runs
without run tags are single model ones which are self-evaluated
with official tools without submitting. We can see that:
• Our submitted runs can obtain superior performance compared
with other competitive runs, which shows the effectiveness
of our deep cascade ranking framework by leveraging BERT
pre-trained language model.
• Our results of full ranking style are much higher than the re-

ranking style on all metrics, which demonstrates the effective-
ness of our document expansion-based retriever by leveraging
sequence-to-sequence modeling.
• Model ensembling can help improve the ranking performance,
but not that significant.

3.2 Document Ranking Task Performance
Table 2 presents the results of our submitted runs and several
other top competitive runs in document ranking task. To test the
effectiveness of different components in our method, we submit
the first three full ranking runs with different settings, i.e. 1) the
method without adding generation-based document expansion, 2)
the method with generation-based document expansion, and 3) the
method with generation-based document expansion, but only re-
call half amount of passages in the first document expansion-based
retriever stage. For comparison, the last four runs listed are top
performing runs of other groups and the two runs without run tags
are single model ones which are self-evaluated with official tools
without submitting. We can see that:
• By directly adopting a passage-level approach for document
retrieval, our method can still obtain superior performance
compared with other competitive runs, which also shows the
effectiveness of our method to deal with the ranking of long
documents.
• Our full ranking method can largely improve the results of
metrics AP and Recall@100 than the re-ranking method, but
can bring little improvement in terms of metric NDCG@10. It
may be due to that NDCG@10 focuses on the top-ranked results,
but the revised retriever (passage-level) in full ranking method
of document ranking task mainly helps to improve the recall
of “wider" document candidates. Besides, the generation-based



Table 1: Overall ranking performance of submitted runs of our group and other top competitive runs in passage ranking task.

Run Tag Group Run Description Subtask NDCG@10 AP R@1000
idst_bert_p1 IDST Ensemble 6 models Full Ranking 0.764 0.503 0.835
idst_bert_p2 IDST Ensemble 4 models Full Ranking 0.763 0.504 0.844
idst_bert_p3 IDST Ensemble 8 models Full Ranking 0.759 0.505 0.844
idst_bert_pr1 IDST Ensemble 6 models Re-Ranking 0.738 0.457 0.694
idst_bert_pr2 IDST Ensemble 8 models Re-Ranking 0.738 0.457 0.694

- IDST Single model Full Ranking 0.750 0.501 0.838
- IDST Single model Re-Ranking 0.725 0.453 0.690

p_exp_rm3_bert h2oloo - Full Ranking 0.742 0.505 0.806
test1 Brown - Re-Ranking 0.731 0.457 0.694

TUA1-1 TUA1 - Re-Ranking 0.731 0.457 0.694
TUW19-p3-f TU-Vienna - Full Ranking 0.688 0.420 0.739

Table 2: Overall ranking performance of submitted runs of our group and other top competitive runs in document ranking
task.

Run Tag Group Run Description Subtask NDCG@10 AP R@100
idst_bert_v1 IDST No document expansion (8 ensemble) Full Ranking 0.718 0.383 0.419
idst_bert_v2 IDST With document expansion (8 ensemble) Full Ranking 0.718 0.385 0.430
idst_bert_v3 IDST Only recall half amount (8 ensemble) Full Ranking 0.726 0.368 0.422
idst_bert_r1 IDST Ensemble 8 models Re-Ranking 0.719 0.291 0.387
idst_bert_r2 IDST Ensemble 4 models Re-Ranking 0.714 0.291 0.387

- IDST Single model (w/ document expansion) Full Ranking 0.706 0.378 0.423
- IDST Single model (w/ document expansion) Re-Ranking 0.704 0.284 0.382

bm25exp_marcomb h2oloo - Full Ranking 0.646 0.424 0.467
TUW19-d3-re TU-Vienna - Re-Ranking 0.644 0.271 0.387
ucas_runid1 UCAS - Re-Ranking 0.644 0.264 0.387
ms_ensemble Microsoft - Full Ranking 0.578 0.237 0.368

document expansion makes not that much difference compared
with passage task (idst_bert_v1 v.s. idst_bert_v2).
• Recalling less passages/documents in retriever stage gives the
best result in terms of NDCG@10, but decreases the AP and
Recall@100 metrics slightly. In this setting, more possible pos-
itive candidates are discarded with less passages/documents
remained in retriever stage.

4 CONCLUSION
In this paper, we propose an effective cascade ranking framework
for ad-hoc passage and document retrieval. Firstly, we propose to
leverage a sequence-to-sequence generation method to conduct
document expansion, which helps to retain a higher recall of the
candidate passages from the whole passage collection. Then, we
design a new pre-trained BERT language model for re-ranking, by
enriched with more fine-grained sentence structure information.
The experiment results show that our method can obtain superior
performance compared with other competitive submission runs on
both the passage ranking and document ranking tasks.
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