
ICTNET at TREC 2019 Complex Answer Retrieval Track

Hongfei Ren1,2, Ruibin Xiong1,2, Yutao Zeng1,2, Jiangui Chen1,2, Yinqiong Cai1,2, Haoquan Jiang1,2
1University of Chinese Academy of Sciences, Beijing, China

2CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology
{renhongfei18s, xiongruibin18s, zengyutao18s}@ict.ac.cn

{chenjiangui18z, caiyinqiong18s, jianghaoquan18g}@ict.ac.cn

Abstract 2 Model Description

2.1 Overview

We participate in the Complex Answer Re-
trieval(CAR) track at TREC 2019. We ap-
plied several useful models in this work. In
the rough ranking, we applied doc2query
model to predict queries and retrieve using
BM25. In the re-ranking, we submitted 5
different runs which use 5 different models,
include BM25, DRMMTKS, Bert-
DRMMTKS, Bert-ConvKNRM and Bert-
ConvKNRM-50, to try to get the best result.

1 Introduction

The goal of the TREC 2019 Complex Answer Re-
trieval is decribed as following: given a outline of a
page (may be the title or hierarchical section
headings), then we retrieve a ranking paragraphs
for each section so that we can give a smooth pas-
sage. The complex query have many aspects, so
we should give all related paragraph. For exam-ple,
when we give a query ‘Effects of Water Pol-lution’,
we should give the paragraph about fertil-izers,
ocean acidification, and aquatic debris and the
effects. In terms of dataset, it is based on the
assumption that each Wikipedia page represents a
complex topic, with further details under each sec-
tions. Over time, many different types of retrieval
models have been proposed and tested. For rough
sort, We have read many retrieval model, such as
BM25-like method and the recently proposed lan-
guage modeling approach. But the ”vocabulary
mismatch” problem has not been solved very well.
So we used doc2query model. For precise sort,we
hope to find the best model to solve this problem,
so we used 4 model which are bert+convknrm,
bert+drmmtks, bm25, drmmtks and gave 5 runs.

In regard to rough sort, we used the doc2query
model to predict the 5 most likely queries. we
concate the predicted queries and the paragraph so
that we can raise the recall. In the respect of pre-
cise sort, there are several different attempts. We
give 5 runs which used different models. We want
to select a best model from them. The first run used
only bert, the second run used drmmts, the third run
used bert+drmmtks, the forth run used
bert+convknrm, the fifth run is a contradistinction to
forth one. The last run set the return number of
paragraphs of a section to 50.

2.2 Rough Ranking
For each document, our task is to predict several
queries and then concate them. We use a Trans-
former model to produce the queries. For the op-
timizer, we choose Adam. The input is documents
and target queries. The document and target query
are tokenized with tokenizer and to avoid exces-
sive memory usage, we truncate each document to
400 tokens and queries to 100 tokens. Our imple-
mentation use the OpenNMT framework. After the
training, we use model to predict 5 most rele-vant
query and concate them together. At the last, we
use BM25 to retrieval a ranked list document for
queries.

2.3 Re-ranking
After rough ranking, we obtains a list documents
that may be relevant to the given query. We ap-
plied three main strategies to re-rank the docu-
ments.

2.3.1 DRMMTKS
DRMM was proposed by (Guo et al., 2016). It em-
ploys a joint deep architecture at the query term

h
h


level for relevance matching. Its contains three
main parts, which are matching histogram map-
ping, a feed forward matching network, and a term
gating network. By utilizing those networks, DRMM
can effectively deal with the exact match-ing
signals, query term importance, and diverse
matching requirements.

DRMMTKS(Yang et al., 2018) is an variant
ver-sion of DRMM. In DRMMTKS, the matching
his-togram layer is replaced by a sorted top-k pool-
ing layer. Hence each query term is able to in-
teracted with all the document terms to produce the
query term-level interaction vector. Then, the model
picks out the top-k signals by a sorted top-k pooling
layer.

2.3.2 BERT

Because the effectiveness of BERT (Devlin et al.,
2018), we use it to re-rank the documents. We first
regards query and document as sentence A and
sentence B, respectively. And then the con-
catentated representation is fed into BERT model.
A learning-to-rank layer is added on the the rep-
resentation of ‘[CLS]’ in last layer to generate the
finally matching score.

For every query and document pair in the
dataset, we can gain a score that stands for the
matching information between them. The docu-
ment which has highest score is selected as the
best relevant document to the query.

2.3.3 Conv-KNRM

Convolutional Kernel-based Neural Ranking Model
(Conv-KNRM) was proposed by (Dai et al., 2018).
Conv-KNRM outperformed prior neural IR methods
and feature-based methods because of its precise
design. Conv-KNRM first embed words into
continuous vectors. Then a convolutional neural
network is applied to compose embeddings of
adjacent word. to n-gram embeddings. Soft-
matching n-gram is subsequently utilized by the
kernel pooling and learning-to-rank layers to
genearte the final score.

Conv-KNRM is an end-to-end model and can
be optimized from user feedback.

Same to Section 2.3.2, Conv-KNRM generates
a list of ranking scores. And the scores are sorted
by descent order to pick out the most relevant doc-
ument.

3 Experiment
We conducted a series of experiments on TREC-
Deep Complex Answer Retrieval datasets.
Data. The query is the concatenation of a

Wikipedia article title with the title of one of its
sections. The ground-truth documents are the
paragraphs in that section. We removed repeated
queries. For the dataset, we use “benchmarkY1-
train.v2.0” to expand queries and retrieval.
Evaluate Metrics. We adopt two evaluation

measures, i.e. MRR and NDCG, to evluate the
performance of our proposed system.
Experimental Details. We first expand the doc-

uments using the proposed Doc2query method.
Then we index the expanded documents. At the last,
we use BM25 to retrieve top 1000 relevant
passages for each query in train dataset. At train-
ing time, we construct the training set in the fol-
lowing way. The passages from qrels file are pos-
itive samples and negative samples are sampled
from results of BM25. Concretely, each query has
100 negative samples, which are consisted of top
50 relevant passages of BM25 and 50 passages
randomly sampled from the remaining 950 rele-vant
passages. Because each query has 1.04 pos-itive
samples on average, we will duplicate each positive
sample twice for making full use of neg-ative
samples. All our experiments are carried out using

MatchZoo-py (Fan et al., 2017; Guo et al., 2019)1.
With MatchZoo-py, we can easily use pairwise
method for model training. A training pair is
consisted of a query, a positive sample and four
negative samples. For each training epoch, we will
set to resample four negative samples for each
positive sample. At prediction time, for im-proving
performance, we only use top 50 or 100 relevant
passages of BM25 to rerank.

We conducted five experiments on required
dataset, named BM25, DRMMTKS, Bert-
DRMMTKS, Bert-ConvKNRM and Bert-
ConvKNRM-50 respectively.
BM25 directly uses the top 1000 relevant pas-

sages retrieved for each query in test dataset. The
parameter of BM25 is set to b1=0.8, k=0.6.
DRMMTKS uses Glove (Pennington et al., 2014)

as word embedding, and set to trainable during
training time. We set top-k is 10, layers of MLP is 1,
and hidden size is 6. The model is trained using
Adadelta optimizer on a typical GPU, and batch
size is 32. Initial learning rate is set to 1e-3.

1https://github.com/NTMC-Community/MatchZoo-py

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h


The lr will decay with factor 0.9 after every three
epoches.
Bert-DRMMTKS uses the sequence output of

last layer in BERT as input. BERT will be fine-tuned
with DRMMTKS end-to-end. The setting of
DRMMTKS part is same as DRMMTKS run.
Bert-ConvKNRM uses the sequence output of

last layer in BERT as input. BERT will be fine-tuned
with Conv-KNRM end-to-end. For Conv-KNRM, we
set max n-gram is 3, the number of Gaussian
kernels is 11 and use 128 filters in each convolution
layer. The model is trained using Adam optimizer
on a typical GPU, and batch size is 64. Initial
learning rate is set to 1e-3. The lr will decay with
factor 0.9 after every three epoches.
Bert-ConvKNRM-50 uses the same model as

Bert-ConvKNRM, but only use top 50 relevant
passages of BM25 at prediction time.

4 Conclusion

In this work, we presented a query expansion
approach, the expansion approach is better than
baseline. Then we tried five approaches to im-
prove Re-rank results.We did five comparison ex-
periments and five results were submitted. The next
step is to make further improvements based on the
results returned.

References
[1] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and
Zhiyuan Liu. 2018. Convolutional neural
networks for soft-matching n-grams in ad-hoc
search. In Pro-ceedings of the eleventh ACM
international confer-ence on web search and
data mining, pages 126– 134. ACM.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understand-ing. arXiv preprint arXiv:1810.04805.

[3] Yixing Fan, Liang Pang, JianPeng Hou, Jiafeng
Guo, Yanyan Lan, and Xueqi Cheng. 2017.
Matchzoo: A toolkit for deep text matching.

[4] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W
Bruce Croft. 2016. A deep relevance matching
model for ad-hoc retrieval. In Proceedings of the
25th ACM International on Conference on
Information and Knowledge Management, pages
55–64. ACM.

[5] Jiafeng Guo, Yixing Fan, Xiang Ji, and Xueqi
Cheng. 2019. Matchzoo: A learning, practicing,
and devel-oping system for neural text matching.
In Proceed-ings of the 42Nd International ACM
SIGIR Confer-ence on Research and
Development in Information

Retrieval, SIGIR’19, pages 1297–1300, New
York, NY, USA. ACM.

[6] Jeffrey Pennington, Richard Socher,and
Christopher Manning. 2014. Glove: Global
vectors for word representation. In Proceedings
of the 2014 confer-ence on empirical methods in
natural language pro-cessing (EMNLP), pages
1532–1543.

[7] Zhou Yang, Qingfeng Lan, Jiafeng Guo, Yixing
Fan, Xiaofei Zhu, Yanyan Lan, Yue Wang, and
Xueqi Cheng. 2018. A deep top-k relevance
matching model for ad-hoc retrieval. In China
Conference on Information Retrieval, pages 16–
27. Springer.

https://doi.org/10.1145/3331184.3331403
https://doi.org/10.1145/3331184.3331403
https://doi.org/10.1145/3331184.3331403

