
htw saar @ TREC 2018 News Track

Agra Bimantara, Michelle Blau, Kevin Engelhardt, Johannes Gerwert,
Tobias Gottschalk, Philipp Lukosz, Shenna Piri, Nima Saken Shaft,

Klaus Berberich

htw saar, Goebenstrasse 40, 66117 Saarbruecken, Germany
{klaus.berberich}@htwsaar

Abstract. This paper describes our participation in the background
linking task of the TREC 2018 News Track. We explored four different
methods to address the task. All of our methods largely rely on off-
the-shelf open-source components (e.g., Apache Lucene for indexing the
documents). The methods differ in how they analyze the given input
document to obtain a query (e.g., by keyword extraction or named entity
recognition) and to what extent the returned results are re-ranked taking
meta data of the documents (e.g., publication dates) into account.

1 Introduction

The News Track is a new track first run in TREC 2018. It considers two tasks,
namely background linking and entity retrieval. While the latter focuses on rank-
ing named entities mentioned in a given document, the former starts from a doc-
ument and seeks to retrieve other documents published earlier that can provide
background information to the user to help her understanding. The two tasks are
tested on a collection consisting of more than 590, 000 news articles published
by The Washington Post.

Saarbrücken University of Applied Sciences (htw saar) participated in the
background linking task of the TREC 2018 News Track. In this paper, we de-
scribe our approach to address this task. The proposed methods were designed
and implemented by two teams of undergraduate students, who had little prior
knowledge about Information Retrieval, as parts of a semester project and the-
sis work, respectively. We tested and submitted runs for four different methods,
which were implemented largely relying on off-the-shelf open-source components
such as Apache Lucene for indexing the document collection.

In the rest of the paper, we provide details on how the provided document
collection was preprocessed in Section 2. Details about our methods are described
in Section 3. Following that, in Section 4 we discuss the results as reported back
by TREC. Finally, we draw conclusions in Section 5.

2 Dataset and Preprocessing

In this section, we describe the document collection provided by TREC and
preprocessing steps that we applied to it prior to indexing.

2 A. Bimantara et al.

The document collection provided by TREC consists of more than 590, 000
news articles published by The Washington Post either in print or as blog posts.
After its initial release, the document collection was revised to remove docu-
ments having the same identifier. Even after this revision, we observed duplicate
documents, with different identifiers but identical content, in our results. As dis-
cussed below, our methods eliminate such duplicates either in a preprocessing
step, when indexing the document collection, or in a result filtering step, i.e.
post retrieval.

3 Methods

We next describe the four methods that produced our submitted runs (htwsaar1-4).

3.1 Method 1 (htwsaar1)

Methods 1 and 2 rely on Elasticsearch [1] as an indexing platforms. The revised
document collection provided by TREC was indexed, treating all fields from
the JSON documents separately. Elasticsearch builds on-top of Lucene and we
used the default settings for tokenization and normalization, i.e., words were
lowercased but not stemmed. Also for the retrieval model, we rely on the default
setting, which is a variation of the vector space model [3].

Our first method analyzes the input document by performing a simple key-
word extraction. More precisely, terms contained in the input document are
ranked according to their value

tf (v, d) · log

(
1 +

|D|
df (v)

)
with tf (v, d) as the frequency of term v in the input document d, |D| as the size
of the document collection, and df (v) as the document frequency of term v. The
twenty terms achieving the highest value are selected and used as a query. In
addition, a date filter is applied to allow only documents published on or before
the publication date of the input document.

The result returned by Elasticsearch are re-ranked taking their publication
dates into account. The score attached to every result document is modified by
a factor of

e−λ(|tq−t|)

with tq as the publication date of the input document and t as the publication
date of the considered result document. Here, publication dates are represented
as UNIX timestamps in milliseconds and λ = 10−12 was employed as a parameter
setting. As an additional post-filtering step, duplicate documents having the
same title, the same authors, and published on the same date are removed.
Moreover, based on the task instructions, all documents published in the sections
“Opinion”, “Letters to the Editor”, and “The Post’s View” are also filtered out.

htw saar @ TREC 2018 News Track 3

3.2 Method 2 (htwsaar2)

Our second method operating on the index built using Elasticsearch relies on
named entity recognition to construct a query for the given input document.
Stanford CoreNLP [5] is used to analyze the title of the document and spot
mentions of named entities. Terms belonging to such a mentioned of a named
entity are concatenated to yield the query that is issued. If the title of the
document does not contain any mention of a named entity, the method falls
back to using the entire title as a query. The returned results undergo the same
temporal re-ranking and post-filtering as described above for Method 1.

3.3 Method 3 (htwsaar3)

Methods 3 and 4 were implemented in a separate system, relying on Apache
Lucene [2] as an indexing platform. As a pre-processing step, based on our ob-
servation that duplicate documents were still present in the collection, we ap-
plied a simple heuristic to remove suspected duplicates. More precisely, when
processing input files in lexicographic order of their file name, we check for every
document whether a document with the same title, written by the same author,
and published on the same date has already been seen. If this is the case for a
document, it is ignored and not added to our index. Moreover, based on task
instructions, all documents published in the sections “Opinion”, “Letters to the
Editor”, and “The Post’s View” are also filtered out. This leaves us with a total
of 480, 627 documents. From the JSON documents provided by TREC we ex-
tracted the author, publication date, URL, title, and contents and indexed them
as separate fields. For the title and content fields we relied on Lucene’s default
tokenization and normalization, i.e., words were lowercased but not stemmed.
The other fields were indexed as-is, in the case of publication date as a numerical
value to allow filtering based on date ranges.

Our first method operating on the thus created index relies on a two-step
approach. In a first step, the given input document is analyzed to construct a
query that can be issued against Lucene. The returned results, in a second step,
are then re-ranked taking into account meta data of the input documents. In the
following, we describe these two steps in more detail.

Query Construction by Document Analysis Not all words contained in
an input document are equally useful as query terms – at least that was our ini-
tial intuition. To identify salient words contained in the input document, more
specifically its title and content, our third method relies on key-phrase extrac-
tion and named entity recognition. We make use of TextRank [4] to identify
key phrases contained in the title or content of the input document, relying on
the implementation1 provided by one of the original authors. Likewise, to spot
mentions of named entities (specifically persons, organization, and locations),
we again use Stanford CoreNLP [5] with its default models for English.

1 https://github.com/boudinfl/pke

4 A. Bimantara et al.

Having extracted key phrases and named entities, we next determine how of-
ten each of them is mentioned in the input document and rank them accordingly.
Thus we obtain four ranked lists of key phrases, persons, organizations, and loca-
tions in descending order of their frequency in the document. Let 〈m1, . . . ,mn 〉
denote one such ranked list, we boost the terms contained in the mention mi at
rank i as

max(1.1, CT − 0.1 · i)
with CT as a constant that is chosen for each of the four types of mentions that
we consider. For key phrases CK = 3.0, for persons CP = 3.0, for organizations
CO = 2.1, and locations CL = 1.8. These choices reflect our initial expectation
regarding the importance of the different types of mentions. To illustrate this
with an example, assume that michael jordan was found to be the second most
frequent named entity mentioned in the input document. In this case, the terms
michael and jordan will be assigned a boost of 2.8. If a term is found in different
types of mentions in the document (e.g., as a person and in a key phrase), the
largest boost determined is used. Boosting query terms in Lucene effectively
inflates their term frequency in any document by a factor corresponding to the
specified boost. As a result, these terms end up having a stronger influence on
the result, which is determined using a variation of the vector space model [3]
in Lucene. The query that is issued against Lucene then consists of all terms
that we found in any key phrase or named entity boosted as described above. In
addition, a date filter is applied, allowing only such documents into the result
that were published on or before the publication date of the input document.

Re-Ranking based on Meta Data Once result documents have been ob-
tained for the query constructed in the first step, we re-rank them taking into
account their author and publication date. For the publication date, we reckon
that documents published at a time closer to the publication date of the input
document are preferable. Thus, we determine how many weeks w a document
has been published before the input document and boost its score as returned
by Lucene by a factor of

1 +
0.7√
1 + w

.

A document published in the same week as the input article thus obtains a boost
of 1.7, whereas a document published three weeks before the input article only
obtains a boost of 1.35. As a second criterion for re-ranking we check whether
a document was written by the same author as the input document. If this is
the case, its score is boosted by a factor of 1.2 and remains unaltered otherwise.
The idea here is that authors tend to specialize on certain topics or events, so
that documents by the same author should be more likely to be related.

3.4 Method 4 (htwsaar4)

Our last method relies on the same approach for indexing documents and re-
moving duplicates as Method 2. In contrast, it uses a much simpler approach

htw saar @ TREC 2018 News Track 5

to derive a query from the input document and does not apply any re-ranking
based on content or meta data. It simply forms a verbose query by concatenat-
ing the title and the body of the input document and issues it against Lucene.
Again, a date filter is applied to allow only documents published on or before
the publication date of the input document. This was the first method developed
and served as a baseline for internal testing. Quite surprisingly, it turned out to
be the best performing among our methods.

4 Results

We now discuss our findings regarding the performance of our four methods
based on the results provided by TREC. Since, at the time of writing, runs for
other participants are not yet available, we compare our methods against a hy-
pothetical competitor (median) that achieves median performance for all topics.
For our discussion, we focus on nDCG@5 as a primary effectiveness measure, in
line with the task description.

Table 1. nDCG@5 for a hypothetical competitor that achieves median performance
for all topics (median) and our four runs (htwsaar1-4)

median htwsaar1 htwsaar2 htwsaar3 htwsaar4

nDCG@5 0.3448 0.4150 0.1957 0.4609 0.4619

Overall Performance Table 1 lists nDCG@5 across all topics. As can be seen
from the figures, our second method htwsaar2, which relies on extracting named
entities from the title of the input document, can not outperform the hypothet-
ical competitor. This can be explained by the fact that, if the title contains
only few named entities, the method ends up generating a very short query, ar-
guably loosing the gist of the input document. All of our other methods (i.e.,
htwsaar1, htwsaar3, and htwsaar4) do outperform the hypothetical competitor
by a reasonable margin. Among them, quite surprisingly, the simplest method
htwsaar4, which uses the entire input document as a query, achieves the best
performance. The two methods htwsaar1 and htwsaar3 relying on an analysis
of the input document and re-ranking based on meta data follow closely. Our
take home from these results is that verbose queries, retaining many or all of
the terms from the input document, seem favorable for the task. Whether our
simple baseline (htwsaar4) with its very verbose queries would be viable in a
production setting is questionable. The two methods (htwsaar1 and htwsaar3)
conducting an analysis of the entire document, yielding shorter queries, may be
more appropriate, even though they sacrifice a bit of retrieval effectiveness.

6 A. Bimantara et al.

Table 2. Topics for which our methods achieved the highest gain (+) or loss (-) relative
to the hypothetical competitor.

htwsaar1

Gain/Loss Topic Title of Input Document

+ 811 ‘Car hacking’ just got real: In experiment, hackers disable
SUV on busy highway

- 433 Defining cool, from Walt Whitman and James Dean to
Steve Jobs and Tony Hawk

htwsaar2

Gain/Loss Topic Title of Input Document

+ 378 Germans would rather send humanitarian aid than for-
give Greece’s debts

- 805 Apparently, the once-feared snakehead is just another fish
in the Potomac

htwsaar3

Gain/Loss Topic Title of Input Document

+ 646 The astonishing state-by-state rise in food stamp reliance
- 341 How major U.S. cities and transit systems are reacting

to the Brussels attacks

htwsaar4

Gain/Loss Topic Title of Input Document

+ 811 ‘Car hacking’ just got real: In experiment, hackers disable
SUV on busy highway

- 818 Eggs are okay again

htw saar @ TREC 2018 News Track 7

Gains and Losses To shed some light on in which cases our methods work and
in which cases they don’t, we conduct a gains and losses analysis. For each of
our four methods, we identify the topic for which it achieves the highest absolute
gain or loss in terms of nDCG@5 relative to the hypothetical competitor. Table 2
lists the identified topics.

Interestingly, two of our methods (htwsaar1 and htwsaar4) achieve their
biggest gains for the same topic 811. Inspecting the document, we observe that
it mentions a fair amount of named entities and technical terms, which can be
picked up by our methods when constructing the query. Our method htwsaar2

achieves its biggest gain for the topic 378, for which it manages to recognize
the two key named entities Germans and Greece from the title. Topic 646, for
which our method htwsaar3 achieves its biggest gain, mentions a fair amount
of locations and our method is able to pick up key phrases such as food stamps
and SNAP benefits.

Looking at biggest losses, we observe that our methods suffer them for dif-
ferent topics. Topic 455, which our method htwsaar1 looses on, corresponds to
a relatively short document, which makes it harder for the method to extract
meaningful key words. Our method htwsaar2 looses on topic 805, a document
for which only Potomac is recognized as a named entity in the title, resulting
in a very unspecific query. Topic 341 is the one for which our method htwsaar3

suffers its biggest loss. Inspecting the document, we observe that many of the
named entities therein are related to the U.S., shifting the focus of the generated
query away from the terror attacks in Brussels. Finally, our method htwsaar4

looses on topic 818. The document about dietary recommendations related to
cholesterol contains many general terms, leading to a diluted query.

5 Conclusion

In this paper, we described our methods that participated in the TREC 2018
News Track. Based on the results available at this time, we conducted an initial
analysis. Interestingly, the simplest method that we considered achieved the best
results in terms of nDCG@5 among our methods. More sophisticated methods,
relying on an analysis of the input document, got close in terms of nDCG@5
and may be more viable in practice than using the entire input document as a
query. We also observed that relying only on the title of the input document
is insufficient, our method based on this strategy performed worst among our
methods.

8 A. Bimantara et al.

References

1. Elasticsearch,
https://www.elastic.co/products/elasticsearch (last accessed: 2018/10/26)

2. Apache Lucene,
http://lucene.apache.org (last accessed: 2018/10/26)

3. Apache Lucene - Scoring,
https://lucene.apache.org/core/3 5 0/scoring.html (last accessed: 2018/10/26)

4. Bougouin, A., Boudin, F., Daille, B.: Topicrank: Graph-based topic ranking
for keyphrase extraction. In: Sixth International Joint Conference on Natu-
ral Language Processing, IJCNLP 2013, Nagoya, Japan, October 14-18, 2013.
pp. 543–551. Asian Federation of Natural Language Processing / ACL (2013),
http://aclweb.org/anthology/I/I13/I13-1062.pdf

5. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky,
D.: The Stanford CoreNLP natural language processing toolkit. In: Association
for Computational Linguistics (ACL) System Demonstrations. pp. 55–60 (2014),
http://www.aclweb.org/anthology/P/P14/P14-5010

