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Abstract— This paper describes the UVA_ART* team entries
in the TREC 2018 workshop series Precision Medicine Track.
We submitted 5 runs for the Scientific Abstracts task. Our
approach used an exclusivity-based relatedness measure defined
on the UMLS Metathesaurus ontologies to add context to our
queries. We combined this with natural language processing
using cTAKES for concept annotation to effect a graph-based
query expansion on an enriched document corpus. We used
Elasticsearch as our ranking and query engine with different
query templates for each run. Our efforts demonstrate that
the existing medical ontologies can be leveraged to achieve
moderate results with little to no other clinical input.

I. INTRODUCTION

Successfully treating cancer is made particularly difficult
because of its high mutation rate and the many forms it can
take. A treatment that is effective against one cancer variant
may fail against another, even among cancers within the same
patient. Thus it is paramount for a physician to choose the
correct treatment for each patient [1].

At the same time, since there are a multitude of research
papers and clinical trials that each may be relevant to the
treatment of a given cancer, it is difficult for a physician to
be aware of newer and potentially more effective treatments
in each case. The TREC 2018 Precision Medicine track aims
to encourage research into precision medicine, oncology
in particular, to provide better solutions to physicians and
researchers.

The TREC 2018 PM track is a continuation of the 2017
PM track with some modifications. This track is split into two
components: the Scientific Abstracts task and the Clinical
Trials task.
• Scientific Abstracts: Participants ranked and submitted

articles from a corpus of bio-medical article abstracts,
largely from MEDLINE/PubMed. The documents were
ranked by relevance for the treatment, prevention, and
prognosis of the disease given specific genetic and
demographic information about the patient.

• Clinical Trials: Participants ranked and submitted clin-
ical trials from a set of clinical trials listed on Clini-
calTrials.gov. The trials were ranked by relevance and
eligibility for the patient given their specific genetic and
demographic information.

We chose to focus on the Scientific Abstracts task, for
which we submitted 5 runs. This task is the most directly
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relevant to potential clinical care at our institution.

II. SYSTEM OVERVIEW

We worked under the usual time constraints, and wanted
to utilize readily available tools for this task, so we chose
to use several tools already in use at the UVA Health
System: Apache cTAKES 4.0.0 and Elasticsearch 6.2.1.
Apache cTAKES [2] is a natural language processing system
designed for extraction of information from electronic med-
ical record clinical free-text. Elasticsearch is an open-source
document search and analytics engine.

A. Natural Language Parsing

We used a basic cTAKES dictionary look-up annotation
pipeline to annotate the article abstracts and titles with iden-
tified concepts from the Unified Medical Language System
(UMLS) Metathesaurus, a set of medical ontologies com-
prised of medically-relevant terms and relationships among
them. The UMLS was provided by the National Library of
Medicine [3]. This processing served two purposes:

1) Reduce noise and variation within terms by mapping
multiple variations of a single concept to the single
concept unique identifier (CUI).

2) Enable direct use of CUIs from query expansion tool to
search no need to map CUIs back to natural language.

B. Query Expansion

The small amount of information available for each topic
and the large number of articles that can be returned by
a query make it difficult to distinguish among the highest-
ranked articles. To better distinguish between more and less
relevant articles, it can be useful to use query expansion to
add terms to the query. Adding appropriate terms to the query
can help surface more relevant papers over less relevant
papers.

We used a largely hands-off approach to expand our
queries. Our primary approach used a concept graph-based
relatedness metric to find the most closely-related concepts to
those associated with each topic. We also included a handful
of terms that proved useful to distinguish queries in a similar
approach to ours in the TREC 2017 PM task [4].

C. Elasticsearch Query Boosting

We used the Elasticsearch relevance ranking engine to
score the articles in our corpus. All 5 runs used the default
relevance scoring algorithm. Inspired by the approach in [4],
we chose to create a set of templates for our 5 submissions,
which included a variety of required terms and optional



Fig. 1. System Overview

boosting terms to upweight or downweight the results. The
5 runs differed in which terms were included and what
boosting values were applied.

III. METHODS

A. Raw Data Preprocessing

For our first step we wrote a Python script using the base
Python xml package to parse the XML dataset. We extracted
the most common elements of each document and wrote the
resulting data into a database table in MS SQL Server 2016.
We chose to use fields that were most frequently available
for our analysis: PMID, Title, Abstract, and Journal. While
other data e.g. MeSH tags were available, we chose to use
only textual data for simplicity and because we already have
a text-processing infrastructure available to us.

B. Article Pre-Filtering

Since PubMed includes many documents which are not
relevant at all to cancer treatment, and to reduce the time
required to annotate the documents, we filtered the corpus
down to 2.7 million abstracts out of 15 million in our original
data set. This count of articles was prohibitively large for any
sort of meaningful processing.

To filter down the articles we used the tree-like nature of
the ISA relation in the SNOMEDCT-US ontology to expand

the concept for cancer (C0006826) to all of its descendants.
We extracted the preferred natural text label of each concept,
keeping 200 concepts that described types of cancer. Using
an exact text search we kept in the data set all articles whose
abstracts included at least 1 of these phrases or which was
published in a journal composed of at least 10% of such
articles.

C. Natural Language Processing

In order to include in our scope the search terms most
relevant to the task, we created a custom dictionary using
the cTAKES dictionary creator tool. We chose to use the
NCI, RxNorm and SNOMED-CT US ontologies from the
2016 AB UMLS Metathesaurus as the basis of this dictionary
and of the concept graph, selecting identified types (TUI)
relevant to diseases and symptoms, cancer types, genes,
demographics, medications and several other categories.

For the cTAKES dictionary look-up annotation, we used
the fast dictionary look-up annotation pipeline. For this
pipeline, cTAKES creates a set of phrase variants for each
concept in the dictionary. Then for each word token and the
tokens forming its surrounding context, phrases matching the
set of tokens are returned. We chose the ”overlap” look-up
annotator which allows for a limited number of tokens to be
skipped to capture more phrase variants as matches. The fast
look-up annotator was found to perform similarly to more
complex methods of dictionary look-up [5].

D. Query Expansion

There have been several approaches to query expansion in
the TREC 2017 precision medicine track which performed
well [8] [9]. We therefore chose to use query expansion but
chose a different method to achieve this.

By using cTAKES to annotate the likely subset of articles
and the topics themselves with identified concepts from the
UMLS, we were able to directly make use of the concepts
and their defined relationships in the UMLS ontologies to
create a query expansion engine using graph analysis.

Our goal here was to add concepts that are not only
related to the query concepts but nearly exclusively so. By
using an exclusivity-based relatedness metric [7] we aimed to
minimize the generality of the resulting expanded query. For
example, expanding the Melanoma concept to the Cancer
concept (C0006826) would return many results for other
types of cancer. Expanding Melanoma to specific closely-
related concepts, e.g. particular genes or cancer variants,
instead expands the query to find articles that are still highly
relevant to Melanoma in particular, so other more general
articles that are not specific to Melanoma should be ranked
lower.

E. UMLS Ontologies

We used the two default ontologies used by cTAKES
(SNOMED-CT US and RxNorm) as well as NCI. These are
part of the Metathesaurus:

The UMLS includes the Metathesaurus, the Se-
mantic Network, and the SPECIALIST Lexicon



and Lexical Tools. The Metathesaurus is the
biggest component of the UMLS. It is a large
biomedical thesaurus that is organized by concept,
or meaning, and it links similar names for the
same concept from nearly 200 different vocab-
ularies. The Metathesaurus also identifies useful
relationships between concepts and preserves the
meanings, concept names, and relationships from
each vocabulary. [6]

SNOMED-CT US and RxNorm are comprehensive repos-
itories of general medical information and pharmaceuticals,
respectively. The NCI ontology represents information from
the National Cancer Institute.

F. Relatedness Metric

We adapted the relatedness metric defined in [7]. The
UMLS by default has the necessary requirements for this: a
set of concepts with relationships defined between them with
types defined on the relationships. A further requirement,
symmetry in the relationships, is not present by default. To
make use of this it was necessary to alter pairs of relation-
ships where a natural inverse exists (e.g. is_part_of and
has_part) to a single relationship type. In other cases
where a relationship is not paired with a natural inverse
we pruned the relationships. We used MS SQL Server 2016
to preprocess the data and the NetworkX v1.11 library in
Python 3.6.6 to create and traverse the graph. Our graph had
451,021 nodes with 3,134,917 edges and 162 relationship
types. There were 632,634 nodes, 8,804,418 relationships
and 397 relationship types in the 3 ontologies we used from
the 2016AB UMLS Metathesaurus.

G. Relatedness Algorithm

Steps 1, 2, and 3 are quoted from the definition in [7]:
Definition Given an edge e of type t between two adjacent

nodes x and y, directed from x to y, we define the exclusivity
of edge e as the probability that, if we randomly select an
edge e′ out of the set of all edges of type t that exit node x
and all edges of type t entering node y, that edge e′ is edge
e. Formally,

exclusivity(x
τ→ y) =

1

| τ
x→ ∗ |+ |∗ τ→ y| − 1

(1)

where |x τ→ ∗| denotes the number of relations of type
τ ∈ T that exit node x, and |∗ τ→ y| denotes the number of
relations of type τ ∈ T that enter node y.

Given a path through G, P = n1
τ1→ n2

τ2→, ..., nK , with
τi ∈ T∓ its weight can be computed by Formula 2.

weight(P ) =
1∑

i 1/exclusivity(ni
τ→ ni+1)

(2)

Then, given a node x and the set yi ∈ N of nodes
connected to x by paths of length k or less, we compute their
relatedness as the sum of the path weights of all paths of
length k or less between x and y. In order to give preference

to shorter paths, we factor in a constant length decay factor,
a.

rel
(k)
Excl(x, y) =

∑
Pi∈P (k)

x,y

αlength(Pi)weight(Pi) (3)

Finally we keep the top m nodes yi ∈ N defined for a
constant c by:

{yi | rel(k)Excl(x, yi) > c} (4)

We chose α = 0.5 and c ∈ [0.1, 0.2], with c chosen
separately for each data type (Diagnosis, Gene) to return
5-10 CUIs on average.

IV. RESULTS

A. Overview of Runs

1) UVAEXPBOOST: Topic data were input in natural text
and CUI-encoded form into a query for Elasticsearch
that boosted exact CUI matches (especially disease and
gene) and boosted results including terms that refer to
treatment and prognosis, and negatively boosted some
terms that refer to non-cancer or non-human entities.

2) UVAEXPBSTSHD: This was similar to UVAEXP-
BOOST but differs in that it left gene as a ”should”
field rather than a ”must” field as with UVAEXP-
BOOST. It also included boosted results including
CUIs that refer to treatment and clinical trial concepts
and that refer to treatment and clinical trial concepts.

3) UVAEXPBSTEXT: This was similar to UVAEXP-
BOOST but included extra CUI terms for clinical trials
and related to apoptosis and remission, which were
boosted, and terms for screening and detection which
were negatively boosted. It also included boosted re-
sults including CUIs that refer to treatment and clinical
trial concepts.

4) UVAEXPBSTNEG: This run included the boost
weighting from UVAEXPBOOST and the extra CUIs
from runs 2 amd 3, but differed in that it negatively
boosted some CUIs that refer to cancer screening and
detection.

5) UVAEXPBSTDIF: This run was similar to UVA-
EXPBSTSHD but used different boosting ratios.

V. DISCUSSION

Overall all 5 runs had decidedly mixed results. All were
below the mean of TREC participant median topic perfor-
mance in infNDCG and R-Prec, but above mean median in
the P10 measure. We saw a sharp drop-off in article count
during 2014-2015 which could possibly explain some of
the issues we faced with prediction accuracy. However we
discovered this too late to correct it. We also observed that
the journals with the highest number of articles pre-and-post
filtering were significantly different. This was to be expected
given that we selected specifically for cancer-related articles.



(a) All Topics infNDCG: UVA_ART vs Median

(b) All Topics P10: UVA_ART vs Median

(c) All Topics R-Prec: UVA_ART vs Median

Fig. 2. UVA_ART overall results

The UVAEXPBSTEXT run performed best of the 5 runs.
The boosting of results including CUIs that refer to treatment
and clinical trial concepts and that refer to treatment and
clinical trial concepts caused an improvement in infNDCG
and particularly P10 precision over the more basic UVAEXP-
BOOST. We note that the requirement that the Gene CUI
match caused an improvement over the UVAEXPBSTSHD
run, which was similar except for Gene being optional.

Interestingly the addition of extra negation terms in the
UVAEXPBSTNEG run did not improve precision. Based on

Fig. 3. Article count by year

results from other teams in TREC 2017 PM, we believe that
tuning the boosting terms with clinical judgment of article
relevance would provide a significant improvement.

The moderate overall performance of this method demon-
strates that even an untuned method that makes no direct use
of clinical judgment can perform adequately on this task.

VI. FOLLOW-UP ANALYSIS

After the results had been published, we looked further
into the reasons for the performance of our model. We were
interested to determine the effect of several factors to the
performance across the three main TREC metrics. New runs
included the full set of 1000 documents per topic, instead of
top 20 we submitted for the conference. Further, we decided
not to add missing abstracts for 2014 and 2015 in order
to isolate effects of changes to the model, and to compare
results to the original runs.

We wanted to evaluate key aspects of our approach to
compare the relative gain in performance from each: concept
embedding of query terms, relatedness graph-based expan-
sion of query terms, Elasticsearch custom query boosting,
and extended general text terms and CUIs. To do this we
ran a series of additional queries using different combinations
of query elements with the best-performing query from the
original submission for comparison.

1) must diseasegene should extracuis (UVAEXPB-
STEXT): This run was our best performing run
originally submitted to TREC and it included full
abstract text, exact CUIs, and extended general CUIs
as ”should” field in Elasticsearch query.

2) new basic noCUIs: As an input, uses only natural text
of abstracts.

3) new basic exactCUIs: Includes the text and exact
CUIs, but does not utilize any type of query expansion
or boosting

4) new basic extCUI: Includes text, and extended gen-
eral CUIs in ”should” query clause.

5) new must exactCUIs expCUIs extCUIs: This run in-
cludes previous terms and adds exact CUIs and ex-
panded CUIs for diagnosis and gene as ”must”.

6) new must exactCUIs expCUIs extCUIs boost: In
addition to previous run, this boosted exact CUIs for
diagnosis and gene.



Fig. 4. Updated UVAHS ART vs TREC median:: P10

7) new should exactCUIs expCUIs extCUIs: This run
includes text, extended general CUIs as ”should”, exact
CUIs and expanded CUIs for diagnoses and gene in a
”should” clause.

8) new should exactCUIs expCUIs extCUIs boost:
Similar to the previous run, this run adds exact CUI
boosting.

9) new noText exactCUIs expCUIs extCUIs: This run
excludes diagnosis and gene text query terms, but
includes expanded general text terms; it uses exact
CUIs, extended general CUIs in ”should” field, and
expanded CUIs for diagnosis and gene in a ”should”
clause.

10) new noText noExtText exactCUIs expCUIs extCUIs:
In this run, text is not included at all, and instead uses
exact CUIs, extended general CUIs as ”should”, and
expanded CUIs for diagnosis and gene in a ”should”
clause.

Fig. 5. Updated UVAHS ART vs TREC median: infNDCG

Overall, new runs show improved results compared to
the original submission in the metrics where additional
documents are beneficial. P10 remains our strongest metric
category, with 6 out 0f 10 runs beating the TREC median
performance, as shown in Figure 4. We have seen the most
significant improvement, with inclusion of all 1000 articles
per topic, in infNDCG metric, with 2 runs beating the
median, Figure 5. In R-prec metrics, we have seen some
significant increase, Figure 6, with several runs coming close
to the median, but none surpassing it. We believe that missing
articles had the most significant impact on the performance
under this metric, given the high probability that a number
of relevant articles have been published in the time frame
where we missed documents.

Using ”must” vs ”should” section in Elasticsearch query
did not significantly affect results. cTakes CUI embbeding
provided the highest precision gain, while relatedness helps
long tail cumulative gain, but doesn’t improve precision.



Fig. 6. Updated UVAHS ART vs TREC median: R-prec

Similarly, Elasticsearch boosting helps total cumulative gain,
without significant increase of precision. However, pure
embedding doesn’t perform as well as a combined approach
with inclusion of full abstract text. Also, at some point,
additional expanded CUIs show a decline in gain, most likely
due to widening the search scope to include less relevant
articles.

Overall best performance across the
metrics was achieved in a run named
new should exactCUIs expCUIs extCUIs boost. This
run uses the most complete query with inclusion of full
text, extended general CUIs as ”should”, exact CUIs,
expanded CUIs for diagnoses and gene in ”extrashould”
field, and Elasticsearch boosting. While some components
of the approach affected performance in certain metrics
more than others, the most complete combination of
concept embedding of query terms, relatedness graph-based
expansion of query terms, Elasticsearch custom query

boosting, and expanded general text terms and CUIs, has
proven to be the best performing overall.

We believe that with further refinement of CUIs and ad-
ditional expert knowledge we can improve the performance
of this approach. The relative simplicity of the system lends
itself well to practical use in health care institutions, and for
the wide variety of topics.
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