
UTD HLTRI at TREC 2018: Complex Answer Retrieval Track

Ramon Maldonado and Sanda M. Harabagiu
Department of Computer Science

Human Language Technology Research Institute
University of Texas at Dallas

U.S.A
{ramon,sanda}@hlt.utdallas.edu

Abstract

Finding answers to complex questions
within a corpus of Wikipedia paragraphs
needs to account for (a) the similarity be-
tween questions and paragraphs as well
as (b) their shared semantics. In our par-
ticipation in the 2018 TREC CAR track,
we focused on developing a novel neu-
ral paragraph ranking model in our ex-
isting CAPAR system, developed for the
2017 TREC CAR track. The new system
TRANS-CAPAR, takes advantage of the
recently introduced Transformer architec-
ture to encode information from the ques-
tion and to semantically decode it in each
paragraph. The results obtained during the
official evaluations indicate that TRANS-
CAPAR makes good use of both discourse
context and similarity when ranking para-
graphs.

1 Introduction

In our second year of participation in the Text
REtrieval Conference Complex Answer Retrieval
(TREC CAR) track we have focused only on the
paragraph retrieval task, which enabled us to bene-
fit from our Complex Answer PAragraph Retrieval
(CAPAR) system designed for our participation
in last year’s TREC CAR track. Finding rele-
vant paragraphs that answer a complex question
is essential for satisfying the information need ex-
pressed by the complex question (CQ). Complex
questions, as illustrated in Figure1, have the for-
mat of a title and a table of contents, with en-
tries having a path using the words from the title,
section and corresponding subsection. For exam-
ple, the entry for subsection 2.5 in the complex
question from Figure1 is represented by the path
Analytics/Applications of analytics/Digital analyt-
ics. When complex questions are processed, de-

Title:
Analytics

Table of Contents:
1. Analytics vs. analysis
2. Application of analytics

2.1 Marketing optimization
2.2 People analytics
2.3 Portfolio analytics
2.4 Risk analytics
2.5 Digital analytics
2.6 Security analytics
2.7 Software analytics

3. Challenges
4. Risks

Figure 1: Example of complex question as the
topic “Analytics”. Each complex question is rep-
resented by (1) the title of an article and (2) its
table of contents.

ciding which paragraph is relevant for each en-
try of the CQ’s Table of Contents (TOC) needs
to take into account not only the path of the TOC
entry, but also additional relevance and discourse
signals. We believe that discourse cohesion and
coherence contributes to the relevance of a para-
graph to a CQ’s TOC entry. For example, corefer-
ence, as a form of discourse cohesion, holds mul-
tiple paragraph ”together” in answering an entry
of the TOC. Moreover, coherence relations, such
as elaboration, also account for the ability to in-
form the answer, and thus decide on the ranking
of paragraphs.

As any possible cues to inter-paragraph cohe-
sion and coherence are removed when an enor-
mous ”bag of paragraphs” are presented for se-
lection and ranking for each entry of a complex
question’s TOC, we asked ourselves if discourse

Complex
Question

Wikipedia
Article
Title

(Topic)

Paragraph
Ranking

Query
Processing

Paragraph
Search

Feature
Extraction

Ranked List of
Paragraphs for
Each Section of
the Wikipedia
Article Outline

Paragraphs

Paragraphs

Q

Section 1

Section kParagraph
• Text
• Entities

Paragraph
Indexing

Title
Section

Subsection

Section

Article Outline

P

Paragraph
Index

Paragraph Corpus

Relevant
Paragraphs for

each section of the
Wikipedia Article

Queries for each
section of the

Wikipedia article

Siamese
Transformer

Network

Figure 2: The Architecture of the TRANS-CAPAR system.

semantics alone could be used and thus use a more
sophisticated neural pairwise ranker, operating be-
tween pairs of Wikipedia paragraphs would be ca-
pable of learning a ranking function that can ac-
count for similarity but also ”pay attention” to pat-
terns signaled from the discourse context of each
paragraph. While many neural attention mecha-
nisms are available, we chose to use the recently
introduced Transformer architecture (Vaswani et
al., 2017) as we believed that its multi-headed at-
tention could capture the complex context patterns
within paragraphs.

The remainder of the paper is organized as fol-
lows: Section 2 presents the new architecture of
our system, Section 3 provides results, which are
analyzed in Section 4 while Section 5 summarizes
the conclusions.

2 The Approach

The paragraph retrieval task of TREC CAR re-
quires teams to retrieve a ranked list of paragraphs
for each section of an article outline representing
aspects of a complex topic. To address this task,
we developed the TRANSformer Complex An-
swer PAragraph Retrieval (TRANS-CAPAR) sys-
tem having the architecture illustrated in Figure 2.
TRANS-CAPAR is an extension of our com-
plex answer retrieval system from last year, CA-
PAR (Maldonado et al., 2017) that leverages the
Transformer architecture (Vaswani et al., 2017) to
improve paragraph ranking. The TRANS-CAPAR
architecture consists of the same five modules as
CAPAR:

1. Query Processing Module. Given a com-
plex question (CQ), corresponding to an arti-

cle title, either from the training or the test-
ing set, the article outline is provided to the
Query Processing Module in order to produce
a set of queries for each section of the outline,
used for searching relevant paragraphs at test-
ing time.

2. Paragraph Indexing Module creates
a searchable index of paragraphs from
Wikipedia articles using Lucene 1 version
5.2.1.

3. Paragraph Search Module searches a query
against the paragraph index using BM25 re-
sulting in a list of relevant paragraphs for
each section in an article outline.

4. Feature Extraction Module extracts dy-
namic word- and entity-level features from
each query/paragraph pair.

5. Paragraph Ranking Module produces a
separate ranking of the retrieved paragraphs
for each section using a novel deep neural
relevance model: The Siamese Transformer
Network.

Modules 1-4 operate exactly as in the CA-
PAR system (Maldonado et al., 2017), however
the Paragraph Ranking Module has been replaced
with a novel neural relevance model that combines
strategies that were shown to be successful last
year with improved semantic relevance matching
via the Transformer model. Therefore, we de-
scribe next only the new paragraph ranking mod-
ule.

1http://lucene.apache.org/

Paragraph Ranking
To create our new paragraph rankings, we trained
The Siamese Transformer Network (STNet) for
Pairwise Ranking, within a neural Learning-to-
Rank (L2R) system. Given a section s and a set of
paragraphs P , STNet produces a relevance score
for each paragraph p ∈ P and the final rank-
ings are produced by sorting P by relevance score.
Since the L2R system is the same as in our CA-
PAR system (Maldonado et al., 2017), we detail
next only the Siamese Transformer Network.

2.1 Siamese Transformer Network for
Pairwise Ranking

The Siamese Transformer Network (STNet) for
Pairwise Ranking is a deep neural network that
learns to rank pairs of paragraphs according to
their relevance to a Wikipedia article section. In
order to produce a paragraph ranking, STNet
learns to calculate a relevance score for a query
expressed as a section heading path against para-
graphs that are relevant to it.

STNet is a neural architecture using in a novel
way an encoder, a decoder and an attention mech-
anism. Typically, encoder-decoder architectures
using attention are used in sequence-to-sequence
models to translate an input sequence into an out-
put sequence. Instead of translating an input se-
quence into an output sequence, we cast the en-
coder as having the role of capturing a represen-
tation of the words used in the section heading
path while the decoder generates a semantic rep-
resentation of how well a paragraph matches the
query. The encoder-decoder architecture is imple-
mented as a Transformer (Vaswani et al., 2017),
which uses both self-attention and traditional at-
tention to (a) generate contextualized representa-
tions of both the query and paragraph and (b) se-
mantically match words from the query to words
from the paragraph.

In addition to the Transformer, we have used (1)
a feature encoder to capture dynamic features be-
tween the query and paragraph and (2) a neural
similarity module that implements PACRR (Hui
et al., 2017) based on the top-performing system
from the 2017 TREC CAR evaluation (MacA-
vaney et al., 2018). We hypothesized that com-
bining a similarity-matrix-based approach with
the sophisticated representation provided by a the
Transformer Seq2seq model should improve re-
sults as the two approaches should encode com-

plimentary information from the input text.
Given the text and features of two paragraphs

along with the text of a section heading path,
STNet determines which of the two paragraphs is
more relevant to the section using the following
five main components illustrated in Figure 3(a):

1. The Transformer Encoder, detailed in Fig-
ure 3(b), encodes the sequence of words in a
section heading path into a sequence of vec-
tor encodings that can be used to perform se-
mantic soft-matching against the words of the
two paragraphs;

2. The Transformer Decoder, detailed in Fig-
ure 3(c), determines which pairs of paragraph
and section words indicate a relevance match
and produces a vector representing this soft-
matching;

3. The Neural Similarity Module, detailed in
Figure 3(d), computes a cosine similarity ma-
trix between a section path and a paragraph,
uses CNN layers to extract n-gram similarity
patterns, and produces a vector representa-
tion representing the strongest similarity sig-
nals using a RNN;

4. The Feature Encoder encodes the raw fea-
tures for each section-paragraph pair into a
single vector encoding;

5. The Scorer combines the feature encoding,
the similarity encoding, and the attention vec-
tor into a single real valued score φ(s, p) rep-
resenting the relevance of paragraph p to sec-
tion s.

STNet is a Siamese network that shares weights
among the Feature Encoders, Neural Similarity
Modules, Transformer Encoders and Decoders,
and Scorers for both input paragraphs.

We trained the network by optimizing the pair-
wise hinge loss between the scores from the two
halves of the Siamese network:

l(s, p1, p2) = [1+τ(p1, p2) (φ (s, p1)− φ (s, p2))]+
(1)

where [·]+ is the hinge loss and

τ(p1, p2) =

{
1 if p1 is more relevant than p2
−1 otherwise.

(2)

Max Pooling

Transformer Encoder

(a)

(b)

Neural Similarity Module

(d)

Transformer Decoder

(c)

𝑾𝑠

Positional
Encoding +

Section Path
Encoding

Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

𝑾𝑝

Positional
Encoding +

Section Path
Encoding

6x 6x

Add & Norm

Multi-Head Attention

Add & Norm Feed Forward

Add & Norm

Multi-Head Attention

𝑎(𝑠, 𝑝)

Transformer Encoders

Section Path Wordsp1 wordss-p1 Features p2 words s-p2 Features

Section Path Encoding

Scorer

Pairwise Loss

Scorer

Feature EncodingFeature Encoding

Transformer Decoder

𝜙(𝑠, 𝑝1) 𝜙(𝑠, 𝑝2)

𝑓(𝑠, 𝑝2)

𝑎(𝑠, 𝑝2)𝑎(𝑠, 𝑝1)

𝑓(𝑠, 𝑝1)

Siamese Transformer Network for Pairwise Ranking

Transformer Decoder

𝑠𝑖𝑚

𝑤1
𝑠

𝑤2
𝑠

𝑤𝑁
𝑠

𝑤1
𝑝
𝑤2
𝑝

𝑤𝑁
𝑝

C
o

n
vo

lu
tio

n
s

P
o

o
lin

g

Contextual
Vectors

𝐶𝑃

LSTM

LSTM

LSTM

𝜓(𝑠, 𝑝)

Neural
Similarity

Neural
Similarity

ψ(𝑠, 𝑝1) ψ(𝑠, 𝑝2)

Figure 3: The Siamese Attention Network for Pairwise Ranking. The full network is illustrated in (a), the
Transformer Encoder and Decoder are depicted in (b) and (c) respectively, the Neural Similarity module
is shown in (d) and the Feature Encoder is shown in (e).

STNet was trained on the train-v2.0 dataset, using
the test200.v2.0 dataset for validation. We used

the same training regime as described in our previ-
ous work (Maldonado et al., 2017) to create pair-

wise training data from train-v2.0 using pairs of
articles with differing relevance values. To train
the model we used the Adam Optimizer (Kingma
and Ba, 2014) with default parameters.

2.2 Details of the STNet

The Transformer Encoder. In order to facilitate
the semantic soft-matching between words from
a section heading path and words from a para-
graph, the Transformer Encoder, depicted in Fig-
ure 3.b produces a sequence of vector encodings,
o1, . . . , oN representing the sequence of words in
a section heading path, ws1, . . . w

s
N . Each word

wsi in a section heading path has an associated n-
dimensional word embedding (n = 300 in this
work), e(wsi) ∈ Rn, learned by GloVe (Penning-
ton et al., 2014) on the full text of Wikipedia that
captures fine-grained semantic and syntactic infor-
mation about the word wsi .

However, it is not sufficient to use the GloVe
embedding as a representation for the words in
a section heading path since the same word may
have a completely different meaning depending on
its context (e.g. the word “turtle” in the Wikipedia
articles “Sea Turtle” and “Turtle Ship”). More-
over, if a word is from the article title of a sec-
tion heading path, it plays a different role when
determining relevance than if it were from a sec-
tion heading. To capture this sort of context in-
formation in our section path encoding, we use
three separate Transformer Encoders (Vaswani et
al., 2017) to produce an encoding of each section
heading word that takes context information into
account using self-attention. We train three sep-
arate Transformer Encoders to learn separate en-
codings of words from (1) a section heading; (2)
an intermediate heading; and (3) an article title.

Each Transformer Encoder learns a contextu-
alized encoding, osi , for each word, wsi using a
stack of 6 Transformer Encoder Blocks, TEk for
k ∈ [1, . . . , 6]. The output of the kth block for the
ith word, denoted as eblki , is given by:

eblki = eblk−1i + TEk(ebl
k−1)i (3)

TEK(eblk−1) = LN(FFN(Ô) + Ô) (4)

Ô = LN(MHS(eblk−1) + eblk−1)
(5)

where LN(·) is the Layer Normalization func-
tion (Ba et al., 2016), FFN(·) is a feed-forward
network andMHS(·) is MultiHead self-attention.

The feed-forward network, FFN , is a simple two-
layer network comprised of ReLU and linear units:

FFN(x) =W f
1 ReLU(W f

2 x+ bf2) + bf1 (6)

where W f
1 ,W

f
2 ∈ Rn×n are weight matrices and

bf1 , b
f
2 ,∈ Rn are bias vectors. The MultiHead self-

attention function, MHS(·), allows the model to
jointly attend to information from different repre-
sentation subspaces at different positions of a sec-
tion heading path. This is accomplished by com-
puting, in parallel, h different self-attention func-
tions – referred to as attention heads – and com-
bining the results of each head as follows:

MHS(X) = [head1, . . . , headh]W
M (7)

headi = Attn(XWQ
i ,XW

K
i ,XW

V
i) (8)

Attn(Q,K, V) = softmax
(
QKᵀ

√
n

)
V (9)

where WM ∈ Rn×n,WQ
i ,W

K
i ,W

V
i ∈ Rn×

n
h for

i ∈ [1, . . . , h] are weight matrices, [·] is the con-
catenation operation, and n is hidden size of the
model. In this work, we use h = 10 attention
heads.

The final encoding of word wsi is given by osi =
ebl6i and the input to the encoder blocks is given by
the word embeddings combined with a positional
mask, ebl0i = e(wsi) + PEi, where:

PEij =

sin
(

i
10000j/n

)
if j is even

cos
(

i
10000j/n

)
if j is odd

(10)

The final section path encoding is produced
by concatenating the encodings of (1) the section
heading, os1 , (2) the intermediate headings, os2 ,
and (3) the article title, os3 : os = [os1 , os2 , os3].
The Transformer Decoder. The role of the Trans-
former Decoder, illustrated in Figure 3.c is to per-
form a semantic soft-matching between each word
from the paragraph text, p, and each word from
the section heading path, s, using attention and to
represent this soft matching into a single vector,
a(s, p). The Transformer Decoder makes use of
attention to determine which pairs of words help
indicate relevance between a section heading path
and a paragraph, even if the words are not the same
(i.e. a hard match). Moreover, self-attention over
the paragraph words can be used to contextualize
the representations of each word, as in the Trans-
former Encoder.

Like the Transformer Encoder, the Transformer
Decoder is comprised of a stack of 6 identical
blocks, TDk for k ∈ [1, ldots, 6], where the out-
put of the kth block for the ith paragraph word,
denoted as dblki , is given by:

dblki = dblk−1i + TDk(dbl
k)i (11)

TDk(dbl
k−1) = LN(FFN(Ô2) + Ô2) (12)

Ô2 = LN(MHA(Ô1,Os) + Ô1) (13)

Ô1 = LN(MHS(dblk−1) + dblk−1) (14)

where LN(·), FFN(·), and MHS(·) correspond
to Layer Normalization, feed-forward network,
and MultiHead Self-attention as defined in the
Transformer Encoder section, MHA(·, ·) is Mul-
tiHead Attention, and Os = os: is a matrix com-
prised of the full section heading path encod-
ing. MultiHead Attention computes an h attention
weights over each pair of words from the section
heading path and paragraph, one for each attention
head. Like MultiHead Self-attention, MHA uses
multiple attention heads to capture different as-
pects of the semantic matching in parallel. MHA
is computed similarly to MHS, however it incor-
porates the section heading path encoding, Os:

MHA(X,Os) = [head1, . . . , headh]W
M (15)

headi = Attn(XWQ
i ,XW

K
i ,O

sW V
i) (16)

where where WM ∈ Rn×n,WQ
i ,W

K
i ,W

V
i ∈

Rn×
n
h for i ∈ [1, . . . , h] are weight matrices and

Attn(·) is defined in Equation (9). Again, as in the
Transformer Encoder, the input to the first Trans-
former Decoder block is given by the word em-
beddings of the paragraph words combined with a
positional mask: dbl0i = e(wpi) + PEi where PE
is defined in Equation 10.

In order to create the semantic matching vector,
a(s, p), we combine the vectors produced by the
final block of the Transformer Decoder using max
pooling over the paragraph dimension and pass the
pooled vector through a ReLU layer:

P = maxpool0(dbl
6
:) (17)

a(s, p) = ReLU(W aP + ba) (18)

where W a ∈ Rn×n is a weight matrix, ba ∈ Rn is
a bias vector, and maxpool0(·) denotes max pool-
ing over the 0 dimension. The intuition behind
max pooling over the paragraph dimension is to
select the strongest relevance signals among every

paragraph word.
The Neural Similarity Module. The Neural
Similarity module is based on the deep neu-
ral relevance model of the top-performing sys-
tem from the 2017 TREC-CAR track which uses
PACRR (Hui et al., 2017). PACRR operates in 4
steps: (1) it constructs a similarity matrix given a
section path and a paragraph; (2) passes the sim-
ilarity matrix through several convolutional lay-
ers and max-pooling layers, constructing a vec-
tor for each word in the section path representing
the strongest similarity signals that word had with
the entire paragraph; (3) concatenates each section
path word vector with a contextual vector; and (4)
combines each section path word vector into a sin-
gle vector using a LSTM.

Given a section heading path, s, and a para-
graph, p, the Neural Similarity Module will cal-
culate a vector ψ(s, p) representing the similarity
between s and p. First, we construct a similarity
matrix, sim ∈ [−1, 1]|s|×|p|, where simij is the
cosine similarity between the word embeddings of
the ith word of the section heading path and the
jth word of the paragraph. We use g − 1 differ-
ent convolutional layers with square kernel sizes
2× 2, 3× 3, . . . , g × g corresponding to bi-gram,
tri-gram, . . . , g-gram matching. All convolutional
layers use fc filters and have a stride size of (1, 1),
resulting in g − 1 tensors, Cg ∈ R|s|×|p|×fc . Two
pooling layers are used to highlight the strongest
signals for each query term: max pooling over
the filter dimension, and k-max pooling over the
paragraph-word dimension, resulting in a single
tensor Cp ∈ R|s|×g−1×k. This tensor is flattened
into a series of (k + g − 1)-dimensional vectors,
one for each word in the section heading path, s.
Each of these vectors is concatenated with a con-
textual vector consisting of a three dimensional 1-
hot encoding of what kind of heading a section
path word belonged to (section heading, interme-
diate heading, or article title) along with the nor-
malized IDF of the word. Finally, the vectors are
passed through a LSTM with hidden size n. The
similarity encoding between section heading path
s and paragraph p is given by the final hidden state
of the LSTM, ψ(s, p) ∈ Rn.

The Feature Encoder. To incorporate features
extracted between a section s and a paragraph p,
STNet encodes a set of features into a single vec-
tor, f(s, p), called the feature encoding using the
same module as SANet from the CAPAR sys-

Manual Lenient
Paragraph Ranker MAP R-Prec NDCG MAP R-Prec NDCG
STNet 0.2545 0.2789 0.4280 0.3125 0.3404 0.5293
STNet(−TRANS) 0.2152 0.2644 0.3774 0.2625 0.3321 0.4565
STNet(−SIM) 0.2150 0.2604 0.3780 0.2697 0.3398 0.4626

Table 1: Results for TRANS-CAPAR using Mean Average Precision (MAP), R-Precision (R-Prec), and
Normalized Discounted Cumulative Gain (NDCG). Highest scores in bold.

tem (Maldonado et al., 2017). The Feature En-
coder module, fully defined in Maldonado et al.
(2017), composes the feature encoding, f(s, p) by
using a series of 1-dimensional convolutional lay-
ers to combine a set of feature vectors for each
word and entity in section heading path and the
paragraph.
The Scorer. The Scorer learns a function that
combines the feature encoding, f(s, p), similar-
ity encoding, ψ(s, p), and the semantic matching
vector, a(s, p) to produce a real valued score rep-
resenting how relevant a paragraph, p is to the sec-
tion, s. Formally, the score φ(s, p) for a section s
and a paragraph p is given by the following equa-
tion:

φ(s, p) = elu
(
vTs [a(s, p), f(s, p), ψ(s, p)]

)
(19)

where elu(·) is the Exponential Linear Unit acti-
vation function (Clevert et al., 2015) and vTs ∈
R|a(s,p)|+|f(s,p)|+|ψ(s,p)| is a learned weight vector.

3 Results

The results for TRANS-CAPAR in the 2018
TREC CAR evaluation are summarized in Table 1.
Two evaluation protocols are used to evaluate the
paragraph retrieval task: (1) Manual Evaluation,
and (2) Lenient Evaluation. The top 100 results for
participant systems were pooled, and judgments
were created by National Institute for Standards
and Technology (NIST) judges assigning each
paragraph a score of 3 (MUST BE MENTIONED), 2
(SHOULD BE MENTIONED), 1 (COULD BE MEN-
TIONED), 0 (ROUGHLY ON TOPIC), -1 (NON-
RELEVANT), or -2 (TRASH). In the lenient eval-
uation a paragraph is considered relevant if it is
determined to be at least ROUGHLY ON TOPIC.
However, in the manual evaluation paragraphs are
only relevant if their relevance is at least COULD

BE MENTIONED. For both the manual and lenient
evaluations a paragraph is considered irrelevant if
it has not been manually assessed for relevance.

In order to test our hypothesis that the Trans-
former and Neural Similarity module capture se-

mantic and similarity information from the ques-
tion and paragraph, we evaluated the STNet rele-
vance model against two alternate configurations
in which we omit either the Transformer Encoder
and Decoder (−TRANS) or the Neural Similar-
ity module (−SIM). The three STNet configura-
tions are evaluated using three standard IR met-
rics: Mean Average Precision (MAP), R-Precision
(R-Prec), and Normalized Discounted Cumula-
tive Gain (NDCG). Clearly, the STNet relevance
model performs best on all metrics for both man-
ual and lenient evaluations. Interestingly, the two
alternate configurations of STNet perform remark-
ably similar to one another, with absolute differ-
ences of 0.0002, 0.004, and 0.006 in MAP, R-
Precision, and NDCG, respectively, on the manual
evaluation.

4 Discussion

Complex answer retrieval is a challenging task and
it is clear from these results that further research
is necessary to address its complexities. However,
with a 26.6% relative increase in MAP over the top
performing system in TREC CAR 2017, TRANS-
CAPAR shows promise.

The fact that STNet that uses both the Trans-
former Encoder/Decoder and the Neural Similar-
ity module outperforms both alternate configura-
tions that use one or the other suggests that the
two approaches are indeed complimentary. We
believe this is because, when used together, the
Neural Similarity module is able to capture sim-
ilarity signals while the Transformer captures se-
mantic information and discourse context. For ex-
ample, consider the test topic “Air pollution/The
Clean Air Act”. For this query, the top result
of the STNet−TRANS configuration which uses
the Neural Similarity module, but not the Trans-
former, is a paragraph about ‘New Source Per-
formance Standards’ because that paragraph con-
tains the n-gram “Clean Air Act” several times. In
contrast, the top ranked result of the STNet−SIM
configuration which uses the Transformer, but not

the Neural Similarity module is a relevant para-
graph that contains the n-gram “Clean Air Act”
only once, but it is clear from the discourse context
that it is the subject of the paragraph. Conversely,
for the test topic “Relative ages of rocks/Law of
Lateral Continuity”, the top ranked result returned
by STNet−SIM about the continuation of Roman
law through the ages, but STNet−TRANS is able
to correctly rank a relevant paragraph by identify-
ing the similarity between the word ‘rocks’ from
the question and the words ‘geologic’ and ‘out-
crop’ in the paragraph. For both of these ques-
tions, STNet using both the Transformer and Neu-
ral Similarity module is able to correctly rank the
better paragraph in both cases.

5 Conclusion

The TRANS-CAPAR system used in the official
evaluation of the 2018 TREC CAR track consid-
ered that answering complex questions by provid-
ing a ranked list of paragraphs performs best when
taking into account both the similarity between the
question paths and the paragraphs as well as the
semantics that they share. However, capturing se-
mantics between questions and paragraphs is noto-
riously difficult. We developed a neural architec-
ture that encodes the semantics of the question and
decodes it against the paragraph while also taking
into account their similarity. The neural architec-
ture used the encoder and decoder implemented by
the Transformer (Vaswani et al., 2017) architec-
ture to account for “deep” semantics. The results
demonstrate that both similarity and deep seman-
tics are useful in ranking.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289.

Kai Hui, Andrew Yates, Klaus Berberich, and Ger-
ard de Melo. 2017. Pacrr: A position-aware neu-
ral ir model for relevance matching. arXiv preprint
arXiv:1704.03940.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sean MacAvaney, Andrew Yates, Arman Cohan, Luca
Soldaini, Kai Hui, Nazli Goharian, and Ophir
Frieder. 2018. Characterizing question facets
for complex answer retrieval. arXiv preprint
arXiv:1805.00791.

Ramon Maldonado, Stuart Taylor, and
Harabagiu Sanda M. 2017. Utd hltri at trec
2017: Complex answer retrieval track. In Text
REtrieval Conference 2017.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

