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1 Introduction

The fundamental philosophy behind precision medicine is that for many complex diseases, there is no “one
size fits all” solutions for patients with a particular diagnosis. The proper treatment for a patient depends
upon genetic, environmental, and lifestyle choices. The ability to personalize treatment in a scientifically
rigorous manner based on these factors is thus the hallmark of the emerging precision medicine paradigm.
Nowhere is the potential impact of precision medicine more closely focused at the moment than in cancer,
where lifesaving treatments for particular patients could prove ineffective or even deadly for other patients
based entirely upon the particular genetic mutations in the patient’s tumor(s). Significant effort, therefore,
has been devoted to deepening the scientific research surrounding precision medicine. This includes the
Precision Medicine Initiative (Collins and Varmus, 2015) launched by former President Barack Obama in
2015, now known as the All of Us Research Program.

A fundamental difficulty with putting the findings of precision medicine into practice is that–by its very
nature–precision medicine creates a huge space of treatment options (Frey et al., 2016). These can easily
overwhelm clinicians attempting to stay up-to-date with the latest findings, and can easily inhibit a clinician’s
attempts to determine the best possible treatment for a particular patient. However, the ability to quickly
locate relevant evidence is the hallmark of information retrieval (IR).

For three consecutive years the TREC Clinical Decision Support (CDS) track sought to evaluate IR
systems that provide medical evidence at the point-of-care. The TREC Precision Medicine track, then, was
launched to specialize the CDS track to the needs of precision medicine so IR systems can focus on this
important issue. The Precision Medicine track has focused on a single field, oncology, for a specific use
case, genetic mutations of cancer. This started with the TREC 2017 Precision Medicine track and continued
with the 2018 track described here. As described above, the main idea behind precision medicine is to use
detailed patient information (largely genomic information in most current research) to identify the most
effective treatments. Improving patient care in precision oncology then requires both (a) a mechanism to
locate the latest research relevant to a patient, and (b) a fallback mechanism to locate the most relevant
clinical trials when the latest techniques prove ineffective for a patient. In the first part, the track continues
the previous Clinical Decision Support track (with a more focused use case), while in the second part expands
the task to cover a new type of data (clinical trial descriptions). No substantial changes to the 2017 track
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Disease: melanoma
Variant: BRAF (V600E)
Demographic: 64-year-old male
Disease: melanoma
Variant: high serum LDH levels
Demographic: 69-year-old female
Disease: medullary thyroid carcinoma
Variant: RET
Demographic: 45-year-old female
Disease: anaplastic large cell lymphoma
Variant: ALK
Demographic: 18-year-old male

Table 1: Example topics from the 2018 track.

were made for 2018 (with the exception of new, and an increased number of, topics). Since 2017 was the
first year of the track, keeping minimal changes was an intentional choice to allow participants to develop
new methods using the results of the prior year as a guide (2017 participants had no gold standard to utilize
for system development).

The remainder of this overview is organized as follows: Section 2 describes the historical context of medical
IR evaluation that led to the Precision Medicine track; Section 3 describes the structure of the topics and the
process of creating them; Section 4 outlines the retrieval tasks; Section 5 describes the evaluation method;
finally, Section 6 details the results of the participant systems.

2 Background

The TREC Precision Medicine track continues a long tradition of biomedical retrieval evaluations within
TREC. This started with the 2003-2007 TREC Genomics (Hersh and Voorhees, 2009) tracks, intended to
connect genomics researchers to relevant biomedical literature. This was followed by the 2011 and 2012
TREC Medical Records tracks (Voorhees and Hersh, 2012), focusing on retreiving cohorts of patients from
electronic health records. The 2014-2016 TREC Clinical Decision Support (CDS) (Roberts et al., 2016) track
targeted giving clinicians access to evidence-based literature. Then, starting in 2017, the TREC Precision
Medicine (Roberts et al., 2017) track grew from the CDS track, focusing on a more narrow problem domain
(precision oncology). The 2018 Precision Medicine track continues this effort.

3 Topics

The 2018 Precision Medicine track provided 50 topics created by oncologists from and resources provided
by the University of Texas MD Anderson Cancer Center. Due to the difficulty in obtaining actual patient
data, the topics were synthetically created, though often inspired by actual patients, with modification.1

The topics contain three key elements in a semi-structured format to reduce the need to perform natural
language processing to identify the key elements. The three key elements are: (1) disease (e.g., type of cancer),
(2) genetic variants (primarily the genetic variants in the tumors themselves as opposed to the patient’s
DNA), and (3) demographic information (e.g., age, sex), Four topics from the track are shown in Table 1.
The first two topics are additionally shown in their corresponding XML format (i.e., what was provided to
the participants) in Table 2. Note that the second example in Table 1 is actually an immunotherapy marker,
not a tumor genetic variant. Six of the 50 topics for 2018 were focused on immunotherapy.

1Note that while clinical data is frequently de-identified for research purposes without the need for patient permission,
genomic data is fundamentally difficult to de-identify. So to be safe, synthetic data was used.
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<topic number="1">
<disease>melanoma<disease>
<gene>BRAF (V600E)<gene>
<demographic>64-year-old male<demographic>

<topic>
<topic number="2">

<disease>anaplastic large cell lymphoma<disease>
<gene>ALK<gene>
<demographic>18-year-old male<demographic>

</topic>

Table 2: XML format for two topics from Table 1.

4 Tasks

The two tasks in the Precision Medicine track correspond to two different corpora, each with different goals
(underlined):

1. Literature Articles. Because precision medicine is a fast-moving field, keeping up-to-date with
the latest literature can be challenging due to both the volume and velocity of scientific advances.
Therefore, when treating patients, it would be helpful to present the most relevant scientific articles for
an individual patient. The primary literature corpus is therefore a snapshot of MEDLINE abstracts
(i.e., what is searchable through the PubMed interface). Relevant literature articles can guide precision
oncologists to the best-known treatment options for the patient’s condition. The treatment options
are represented simply as the article abstract, participants do not need to provide a specific treatment
name, simply an article describing a potential treatment. The same corpus as the 2017 track was
utilized. Specifically, this corpus is composed of approximately 26.8 million MEDLINE abstracts and
is supplemented with two additional sets of abstracts: (i) 37,007 abstracts from recent proceedings of the
American Society of Clinical Oncology (ASCO), and (ii) 33,018 abstracts from recent proceedings of the
American Association for Cancer Research (AACR). These additional datasets were added to increase
the set of potentially relevant treatment information. Notably, the latest research is often presented
at conferences such as ASCO and AACR prior to submission to journals (thus these proceedings may
represent a more up-to-date snapshot of scientific knowledge than MEDLINE).

2. Clinical Trials. In many oncology patients, no approved treatment is available (or, commonly, none
of the available treatments have proven effective). The common recourse in this case is to determine
if any potential treatments are undergoing evaluation in a clinical trial. Therefore, in such situations,
it would be helpful to automatically identify the most relevant clinical trials for an individual patient.
Precision oncology trials typically use a certain treatment (e.g., a form of chemotherapy or radiation)
for a certain disease with a specific genetic variant (or set of variants). Such trials can have complex
inclusion and/or exclusion criteria that are challenging to match with automated systems (Weng et al.,
2011). The corpus is derived from ClinicalTrials.gov, a repository of past, present, and future clinical
trials in the U.S. and abroad. A total of 241,006 clinical trial descriptions compose the corpus provided
to participants. Note that for the purposes of this track, the state of the trial (e.g., recruiting, active,
completed) and geographic location constraints are not considered.

5 Evaluation

The evaluation followed standard TREC evaluation procedures for ad hoc retrieval tasks. Participants
submitted (in trec eval format) a maximum of five automatic or manual runs per task, each consisting of
a ranked list of up to 1,000 literature article identifiers (PMIDs) and 1,000 ClinicalTrials.gov Identifiers per
topic. That is, up to 10 total runs: a maximum of 5 literature runs and 5 clinical trial runs per topic.

The highest ranked articles and trials for each topic were pooled and judged at OHSU by physicians and
other biomedical subject matter experts.
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Figure 1: Two-step result assessment process

As in the 2017 Precision Medicine track, the assessment process was two-tiered: first a manual assessment
was made by the human assessors based on several categories for each result (referred to here as Result
Assessment), then a relevance score was assigned to the result based on its categorization (referred to here
as Relevance Assessment).

5.1 Result Assessment

Result assessment can be viewed as a set of multi-class annotations. Judging an individual result, whether
an article or trial, proceeds in a cascaded manner with two steps: an initial pass ensures the article/trial is
broadly relevant to precision medicine, after which the assessor categorizes the article/trial according to the
three fields above.

See Figure 1 for a flow chart style overview of this process. The first step is designed to save assessor time
by filtering out unrelated articles/trials, since the second step can be more time-consuming (possibly requiring
a more detailed reading of the article/trial). The assessors were free to quickly skim the article/trial in order
to make the initial decision. Then, if the article/trial is relevant to precision medicine (by the standard
outlined below), a more detailed reading may be necessary in order to accurately assess all fields.

Step 1 is to determine whether the article/trial is related to precision medicine. There are three options:

• Human PM: The article/trial (1) relates to humans, (2) involves some form of cancer, (3) focuses on
treatment, prevention, or prognosis of cancer, and (4) relates in some way to at least one of the genes
in the topic.

• Animal PM: Identical to Human PM requirements (2)-(4), except for animal research.

• Not PM: Everything else. This includes “basic science” that focuses on understanding underlying
genomic principles (e.g., pathways), but provides no evidence for treatment.
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Step 2 is to determine the appropriate categorization for each of the three fields:

1. Disease:

• Exact: The form of cancer in the article/trial is identical to the one in the topic.

• More General: The form of cancer in the article/trial is more general than the one in the topic
(e.g., blood cancer vs. leukemia).

• More Specific: The form of cancer in the article/trial is more specific than the one in the topic
(e.g., squamous cell lung carcinoma vs. lung cancer).

• Not Disease: The article/trial is not about a disease, or is about a different disease (or type of
cancer) than the one in the topic.

2. Gene [for each particular gene in the topic]

• Exact: The article/trial focuses on the exact gene and variant as the one in the topic. If the topic
does not contain a specific variant, then this holds as long as the gene is included. By “focus”
this means the gene/variant needs to be part of the scientific experiment of the article/trial, as
opposed to discussing related work.

• Missing Gene: The article/trial does not focus the particular gene in the topic. If the gene is
referenced but not part of the study, then it is considered missing.

• Missing Variant: The article/trial focuses on the particular gene in the topic, but not the
particular variant in the topic. If no variant is provided in the topic, this category should not be
assigned.

• Different Variant: The article/trial focuses on the particular gene in the topic, but on a different
variant than the one in the topic.

3. Demographic

• Matches: The article/trial demographic population matches the one in the topic.

• Excludes: The article/trial demographic population specifically excludes the one in the topic.

• Not Discussed: The article/trial does not discuss a particular demographic population.

Note that in the 2017 track, an “Other” field was used as well. This was dropped for 2018 because several
oncology experts felt it is not a major part of precision medicine decision-making. Additionally, the same
assessment tool was used in 2018 as in 2017, which included the Other field. Unfortunately, some assessors
on the rare occasion marked Excludes for some results despite the lack of a criteria in the Other field to
exclude. This resulted in a small number of downstream results being considered Not Relevant in the official
results, but the impact of this issue was fairly minor on the overall scores.

5.2 Relevance Assessment

Relevance assessment is defined here as the process of mapping the multi-class result assessments described
above onto a single numeric relevance scale. This allows for the computation of evaluation metrics (e.g., P@10,
infNDCG) as well as the tuning of IR systems to improve their search ranking. As already demonstrated
by the need for result assessment above, for the Precision Medicine track the notion of relevance assessment
becomes more complex than previous tracks.

One of the factors that makes precision medicine a difficult domain for IR is that different patient cases
require different types of flexibility on the above categories. For some patients, the exact type of cancer is
not relevant. Other times, the patient’s demographic factors might weigh more heavily. Most notably, the
very concept of precision medicine acknowledges the uniqueness of the patient, and so it is to be expected
that no perfect match is found. Not only do the topics provided to the participants not contain the necessary
information to decide what factors are more/less relevant (e.g., the patient’s previous treatments), in many
ways it isn’t realistic to assign the IR system this responsibility. Precision medicine requires a significant
amount of oversight by clinicians, including the ability to consider multiple treatment options. So it might
ultimately make the most sense to allow the relevance assessment to be, at least in part, designed by the
clinician to allow the IR system to adjust its rankings to suit. Given the constraints of an IR shared task,
however, it is necessary to define a fixed relevance assessment process. As such, a fairly broad notion of
relevance based on the above categories was used:

5



Literature Articles Clinical Trials
Type Class Total Mean Median Min Max Total Mean Median Min Max

PM
Human PM 8,634 173 151 45 492 5,809 116 114 8 446
Animal PM 590 12 7 0 102 5 0 0 0 1
Not PM 13,205 264 269 38 546 8,374 167 152 0 437

Disease

Exact 5,158 103 75 10 338 2,189 44 20 0 226
More Specific 1,915 38 26 0 192 1,233 25 9 0 131
More General 686 14 7 1 80 896 18 9 0 127
Not Disease 1,455 29 21 0 108 1,496 30 21 0 106

1st Gene

Exact 4,927 99 85 1 370 2,150 43 28 0 173
Missing Variant 1,278 26 0 0 165 595 12 0 0 103
Different Variant 917 18 2 0 197 524 10 1 0 110
Missing Gene 2,102 42 20 0 230 2,545 51 21 0 354

2nd Gene

Exact 125 3 0 0 89 24 0 0 0 204
Missing Variant 88 2 0 0 87 39 1 0 0 38
Different Variant 16 0 0 0 14 0 0 0 0 0
Missing Gene 482 10 0 0 252 357 7 0 0 204

Demographics
Matches 855 17 5 0 104 5,142 103 91 0 437
Not Discussed 7,691 154 119 19 428 296 6 0 0 111
Excludes 678 14 8 0 63 376 8 1 0 114

Relevance
Definitely Relevant 3,442 69 45 1 305 873 17 12 1 131
Partially Relevant 2,146 43 20 1 277 1,174 23 14 1 118
Not Relevant 16,841 337 341 119 566 12,141 243 219 73 441

Table 3: Descriptive statistics (per-topic) of manual judgments (both results assessment and relevance as-
sessment) for both literature articles and clinical trials. Note: only 3 topics had a 2nd Gene, but means are
still provided across 50 topics.

1. Definitely Relevant: The result should: be either Human PM or Animal PM; have a Disease assign-
ment of Exact or More Specific; have at least one Gene is Exact; the Demographic is either Exact or
Not Discussed.

2. Partially Relevant: Largely the same as Definitely Relevant, but with the exception that Disease
can also be More General and Gene can also be Missing Variant or Different Variant.

3. Not Relevant: Neither of the above.

The primary evaluation metrics are precision at rank 10 (P@10), inferred normalized discounted cumula-
tive gain (infNDCG), and R-precision (R-prec). For infNDCG, Definitely Relevant has a score of 2, Partially
Relevant is 1, and Not Relevant is 0. In 2017, clinical trials were pooled using a different sampling strategy
than literature articles, and therefore had different primary evaluation metrics (P@5, P@10, P@15). How-
ever, for the 2018 track the same sampling strategy was used for both tasks and therefore the same primary
evaluation metrics apply.

6 Results

In total, there were 22,429 judgments for the literature articles and 14,188 judgments for the clinical trials.
Table 3 shows basic statistics of the results and relevance assessments. Table 4 shows the number of Definitely
Relevant, Partially Relevant, and Not Relevant judgments for each topic. Since each result was judged only
once, no inter-rater agreement is available for the judgments.

There were a total of 27 participants in the track. For the literature articles, 24 participants submitted
103 runs. For the clinical trials, 21 participants submitted 90 runs. See Table 5 for a list of the participants
and numbers of runs. Table 6 shows the top 10 runs (top run per participant) for each metric on each corpus.
Figures 2 and 3 show box-and-whisker plots for the top 10 runs.
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Figure 2: Top-performing runs (showing only best run per participant) on literature articles.
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Figure 3: Top-performing runs (showing only best run per participant) on clinical trials.
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literature articles clinical trials
Topic DR PR NR DR PR NR

1 108 61 252 50 60 97
2 75 180 119 19 107 73
3 41 168 188 45 78 95
4 6 277 153 1 46 189
5 216 25 192 96 24 104
6 163 83 127 46 73 86
7 10 134 358 0 118 118
8 43 89 227 14 13 160
9 10 99 259 2 14 175
10 9 82 240 0 25 206
11 23 31 245 5 18 187
12 2 61 300 0 24 201
13 0 96 277 2 25 207
14 30 101 250 9 21 201
15 5 22 374 0 15 299
16 3 3 433 1 0 288
17 177 9 341 10 16 364
18 7 40 489 0 33 368
19 94 15 410 27 5 373
20 14 30 538 0 4 441
21 128 138 326 2 64 285
22 21 45 566 16 27 323
23 9 113 266 0 26 294
24 1 1 565 0 1 385
25 19 7 461 2 2 351

literature articles clinical trials
Topic DR PR NR DR PR NR

26 31 2 366 37 0 183
27 163 11 296 12 13 129
28 111 1 227 6 3 188
29 88 23 353 40 51 252
30 98 3 247 19 3 214
31 61 2 450 7 4 358
32 155 3 406 48 7 288
33 151 25 421 38 36 294
34 61 8 378 3 2 281
35 20 9 492 2 2 368
36 57 5 482 27 10 331
37 119 16 438 51 14 381
38 33 21 291 2 9 162
39 83 12 337 6 11 171
40 305 6 317 131 6 173
41 6 0 372 2 12 203
42 15 15 348 4 1 375
43 74 1 325 8 2 241
44 24 39 355 0 106 224
45
46 103 3 398 12 11 217
47 226 1 259 32 15 219
48 58 20 292 4 12 208
49 32 2 316 2 0 286
50 109 7 368 20 0 214

Table 4: Counts of Definitely Relevant (DR), Partially Relevant (PR), and Not Relevant (NR) results for
each topic.

7 Conclusion

The goal of the Precison Medicine track is to inform the creation of information retrieval systems to support
clinicians working in precision medicine (specifically oncologists in this track) in making better treatment
decisions for individual patients. Participants were provided with synthetic patient data consisting of a type
of cancer, one or more genetic variants, and patient demographics. Given this, participants were challenged
with retrieving relevant treatments (in the form of literature articles) and relevant trials (in the form of
clinical trial descriptions) for the specific patient. The 2018 track was the second year for the track. This
year saw continued high participation numbers, as well as enabling participants to build on systems and
results from 2017.
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# Runs
Team ID Affiliation Articles Trials
ASU Biomedical Arizona State University 3 0
Brown Brown University 5 5
Cat Garfield Tsinghua-iFlytek Joint Laboratory 5 5
cbnu Chonbuk National University 3 3
CSIROmed Commonwealth Scientific and Industrial Research Organisation 3 3
ECNUica East China Normal University 5 5
FDUDMIIP School of Computer Science, Fudan University 5 5
hpi-dhc Hasso Plattner Institute 5 5
IKMLAB Institute of Medical Informatics of National Cheng Kung Univ. 5 5
imi mug Medical University of Graz 5 5
ims unipd Information Management Systems (IMS) Group 0 3
InfoLabPM InfoLab, Faculty of Engineering, University of Porto 4 3
IRIT Institut de Recherche en Informatique de Toulouse 0 1
KlickLabs Klick Inc. 4 5
MayoNLPTeam Mayo Clinic 4 3
MedIER University of Michigan 5 0
NOVASearch Universidade NOVA Lisboa 0 5
PM IBI Integrative Biomedical Informatics Group, Barcelona 3 0
Poznan Poznan University of Technology 1 5
RSA DSC Research Studios Austria / Studio Data Science 5 5
SIBTextMining SIB Text Mining Group (HES-SO) 5 4
SINAI Universidad de Jaen 3 0
UCAS University of Chinese Academy of Sciences 5 5
udel fang InfoLab at University of Delaware 5 5
UNTIIA University of North Texas 5 0
UTDHLTRI The University of Texas at Dallas 5 5
UVA ART University of Virginia Medical Center 5 0
Total 103 90

Table 5: Participating teams and submitted runs.
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Literature Articles Clinical Trials

infNDCG infNDCG
Team Run Score Team Run Score
Cat Garfield MSIIP BASE 0.5621 hpi-dhc hpictall 0.5545
hpi-dhc hpipubnone 0.5605 Cat Garfield MSIIP TRIAL1 0.5503
UCAS UCASSA5 0.5580 ims unipd IMS TERM 0.5395
MedIER MedIER sa13 0.5515 UCAS UCASCT4 0.5347
SIBTextMining SIBTMlit4 0.5410 udel fang UDInfoPMCT1 0.5057
imi mug imi mug abs2 0.5391 NOVASearch NS PM 5 0.4992
udel fang UDInfoPMSA2 0.5081 Poznan BB2 vq noprf 0.4894
RSA DSC RSA DSC LA 5 0.4855 UTDHLTRI UTDHLTRI NLT 0.4794
UTDHLTRI UTDHLTRI NL 0.4797 RSA DSC RSA DSC CT 5 0.4743
IKMLAB IKMLAB 3 0.4710 IRIT irit prf cli 0.4736

R-prec R-prec
Team Run Score Team Run Score
MedIER MedIER sa13 0.3684 Cat Garfield MSIIP TRIAL1 0.4294
hpi-dhc hpipubcommon 0.3658 ims unipd IMS TERM 0.4128
UCAS UCASSA2 0.3654 Poznan BB2 vq noprf 0.4101
imi mug imi mug abs1 0.3630 hpi-dhc hpictphrase 0.4081
SIBTextMining SIBTMlit3 0.3574 UCAS UCASCT4 0.4005
udel fang UDInfoPMSA1 0.3289 udel fang UDInfoPMCT3 0.3967
Cat Garfield MSIIP PBPK 0.3257 NOVASearch NS PM 5 0.3931
SINAI SINAI Base 0.3082 UTDHLTRI UTDHLTRI SST 0.3920
FDUDMIIP raw medline 0.3072 RSA DSC RSA DSC CT 5 0.3721
cbnu cbnuSA1 0.2992 IRIT irit prf cli 0.3658

P @ 10 P @ 10
Team Run Score Team Run Score
hpi-dhc hpipubnone 0.7060 Cat Garfield MSIIP TRIAL1 0.6260
Cat Garfield MSIIP BASE 0.6680 ims unipd IMS TERM 0.5660
SIBTextMining SIBTMlit5 0.6320 Poznan BB2 vq noprf 0.5580
UVA ART UVAEXPBSTEXT 0.6260 NOVASearch NS PM 5 0.5520
MedIER MedIER sa11 0.6220 RSA DSC RSA DSC CT 3 0.5480
UTDHLTRI UTDHLTRI NL 0.6160 UCAS UCASCT1 0.5460
imi mug imi mug abs2 0.6000 hpi-dhc hpictphrase 0.5400
UCAS UCASSA5 0.5980 UTDHLTRI UTDHLTRI NLT 0.5380
IKMLAB IKMLAB 3 0.5960 udel fang UDInfoPMCT5 0.5240
udel fang UDInfoPMSA2 0.5800 InfoLabPM tinfolabBF 0.5240

Table 6: Top overall systems (best run per participant).

12


