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Abstract. In this paper, we describe our submissions to the TREC Incident Stream
(TREC-IS) challenge 2018. We investigated different machine learning approaches
to classify crisis-related tweets into different information types. We incorporated
knowledge graphs as features into this social media analysis, in addition to bag of
words, word embeddings, time data, and event-types. Further, we evaluate state-
of-the-art classification models on 31 generated features sets. Our TREC-IS re-
sults indicate that a model based on combining knowledge graphs (i.e., Babelfy),
word embeddings and textual features outperformes classical machine learning
models.

1 Introduction

Today, social media is playing a significant role in disaster management and communi-
cation [8]. During emergencies, the availability of real-time information is critical for
effective disaster relief and preparedness. Recent studies leverage shared information on
social media in mitigating disasters impact and delivering faster responses [3, 5]. For
an instance, Sakaki et al. [7] built an earthquake-detection system for Japan using the
real-time situational tweets posted by the twitter users. Recently, deep learning models
have been successfully applied in this domain. For example, Burel et al. [1] developed
a semantic-deep model to classify information categories in crisis-related social media.
Their results showed an increased accuracy by incorporating semantic features (e.g.,
entity representation) compared to statistical and non-semantic features.

However, existing tools to effectively monitor social media are not sufficient due
to large volume of information and the need to categorize, cross-refer and verify them.
The TREC-IS task aims to classify social media posts, i.e. Twitter tweets, into informa-
tion types. These information types are modeled as multi-layer (hierarchical) ontologies
(Top→ High→ Low) based on existing crisis management ontologies such as MOAC 1.
For instance, a tweet could be categorized in top-level as report information type. Fur-
ther, tweets at high-level might include information about emerging threats, significant
event change or available services. This year, TREC-IS was centered around classifying
tweets based on information types only at high-level. More details about TREC datasets
including events, tweets and information types are discussed in section 4.2.

In this paper, we followed the intuition that combining Knowledge Graph data with
novel statistical information retrieval and novel machine learning techniques can out-
perform more simplistic models [9]. To solve the TREC-IS task, we extracted different

1http://observedchange.com/moac/ns/



features from the tweets and their meta-data including textual features (bag of words),
knowledge graph features (bag of concept) from external sources as Babelfy [6], sen-
timents polarities, date-time and word-embedding features from pretrained models.
Then, we combined all possible sets of features (31 features, in total) and investigated
various classical machine learning models (e.g., Logistic Regression, Support Vector
Machine, etc) and deep learning techniques.

To obtain the best training results, we built a feature pyramid (all vs all) to evaluate
and compare the performance of all feature sets against all classifiers. Our experimental
results showed that features trained by deep learning model achieved the highest class
accuracy compared to the classical machine learning models which in turn achieved
higher micro f-measure.

The rest of this paper is organized as follows: we first explore the analysis of TREC
training dataset in section 2. Then we describe the details of our approach and official
results in sections 3, 4 respectively. In section 5, we conclude the paper with some
discussion about future work.

2 Exploratory Data Analysis

TREC-IS provided us with a training data comprising 1335 tweets spread over 23 infor-
mation types. There were no tweets for two categories - GoodsServices and SearchAn-
dRescue. Furthermore, the data was unevenly distributed among the 23 given classes
with majority of tweets belonging to Continuing News, Sentiment, Irrelevant, Factoid,
Multimedia Share and knownAlready information types. The dataset was largely unbal-
anced and hence, posed a challenge in efficient classification of the tweets. Figure 1
shows the (partly skewed) distribution of tweets over 23 information types in the train-
ing data and 25 information types in the test data. In addition, we present some statistics
about datasets in Table 1.

Table 1: TREC-IS Dataset.
# Train Test

Total No. of events 6 15
Total No. of tweets 1335 19784
No. of Information Types 23 25
Average No. of tweets/event 267 1318
Average No. tweets/Information Type 53 1736

For this year’s challenge, we regarded this task as a timeless classification task and
aimed to distinguish patterns in the tweet to information-type mapping. For this pur-
pose, we generated features based on tweet time, event-type, sentiment and underlying
semantics of tweets. Although, the training data was insufficient to train sophisticated
models using classical machine learning or deep learning techniques, we were inter-
ested in uncovering the capabilities of these classification approaches by enriching them
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Fig. 1: Percentages of Information Types per Tweets in Training and Test Dataset.

with 31 different features sets generated from the tweets and their meta-data. Our in-
tention was to perform classification with minimal human effort.

3 Approach

To account for the two missing classes, we manually augmented the dataset by adding
28 labelled tweets and their meta-data to the training set. We then preprocessed the
dataset by normalizing the tweets to contain only the keywords. The normalization pro-
cess involved lower-casing and lemmatization of text, decryption of emojis to natural
language text. Moreover, we removed usernames, numbers, special symbols, urls, extra
whitespaces, stopwords and punctuation from tweets. Also, we expanded the contracted
words in tweets, for efficient removal of unimportant words (e.g., “how’d’y” to “how do
you”, ”that’d” to ”that would”). Table2 shows an example of tweet-preprocessing. We
then extracted five features from tweets and their meta-data, and generated all combi-
nations of them. The process of feature-generation has been described in the following
section.



3.1 Feature Engineering

In the following, we describe the features used to train the different models:

– Bag of Words - We generated a bag-of-words feature from tweets by training
scikit-learn’s2 CountVectorizer on the keywords generated from the preprocess-
ing of tweets in addition to the indicator terms that were given in the dataset. This
trained model was then used to extract bag-of-words from tweets in the test dataset.

– Bag of Concepts - For representing the underlying semantics of each tweet, we
used a knowledge graph-based semantic framework, Babelfy3 which uses entity
linking and word sense disambiguation to detect all potential meanings of the rec-
ognized text fragments. It selects the best candidate meaning for each fragment and
returns its corresponding ‘synset’ by creating a dense sub-graph from the candidate
meanings of the linkable tokens.
For example, given an input text - “Shots fired, airport evacuated at LAX is what im
seeing all over my timeline.”, Babelfy returns the following as output: {’Shots’:
’bn:00071206n’,’fired’:’bn:00088225v’,’airport’:’bn:00001676n’,

’evacuated’:’bn:00087757v’,’seeing’: bn:00082813v’,’timeline’:

’bn:00077308n’} For each tweet, we used one-hot encoding for the concepts
(synsets) that were retrieved from Babelfy. The tweets were sent to Babelfy’s API
only after expanding word-contractions, removing ‘#’ and ‘RT’ and substituting
emojis with text using the python library Emojipedia4.

– Word Embeddings - Here, we used the pretrained Glove word-embeddings5 and
computed a weighted average of word2vec vectors for each tweet.

– Sentiment - By performing sentiment analysis on each tweet, a polarity score
S ∈ [−1,+1] was computed using TextBlob text processing library 6. We did
not performed any preprocessing on the tweet text to keep its context for sentiment
analysis.

– Event Type and Date Time - Since the challenge was aimed at categorizing the
tweets based on information type of events, we used the event-type of the tweets as
a feature and grouped it together with a date-time attribute from tweets meta-data

Table 2: An Example of Preprocessed Tweets.
Input text Preprocessed text

RT @indigojourney: You dont have 2
ask permission, U see problem &amp;
solution...encourage ‘leaderhsip’ roles
#occupy #floodrelief #coflood ht?

rt ask permission u prob-
lem amp solution encourage
leaderhsip role floodrelief
coflood ht

Praying for West Texasr pray west texas red heart

2http://scikit-learn.org/
3http://babelfy.org/
4https://github.com/bcongdon/python-emojipedia
5https://nlp.stanford.edu/projects/glove/
6https://textblob.readthedocs.io/en/dev/



to create this feature. We first sorted the dataset on event-type and then on time to
get an event-wise and time-based representation of the information-types. Finally,
we normalized it into range [0, 1].

Feature Pyramid - Finally, from the above-mentioned single features, we generated
all possible combination of features (in total, 31 sets of features) and trained our models
for each of them.

3.2 Classifiers

For the actual classification task, we employed both classical machine learning as well
as deep-learning models. For classical machine learning models, we used the python
library scikit-learn7 and performed hyper-parameter optimization using an automated
machine learning library called tpot8.

On the other hand, for the deep learning approach, we trained a deep neural network
model with two dense layers. The first layer has 32 units with ReLU activation and the
second layer computed the output probabilities using the standard Softmax function.
To estimate the prediction error of the deep learning model, we used the loss function,
categorical cross entropy [2] The learning parameters were then optimized using ADAM
gradient optimizer [4].

Table 3: ML Classifiers with Their Hyper-parameters.
Model name Hyper-parameters

Logistic Regression solver=’newton-cg’
KNeighborsClassifier n neighbors=5, weights=’distance’
Linear SVM kernel=”linear”, C=0.025
RBF SVM gamma=2, C=1
Linear SVM (squared loss) C=0.1,dual=True,loss=’squared hinge’,

penalty=’l2’,tol=0.0001
DecisionTreeClassifier max depth=7,criterion=’gini’,

min samples leaf=2,min samples split=12
RandomForestClassifier max depth=5, n estimators=10
MLPClassifier alpha=1
GradientBoostingClassifier learning rate=0.01,max depth=10,

max features=0.35,min samples leaf=10,
min samples split=6,n estimators=100,
subsample=0.75

Deep Model (DNN) epochs=100,batch size=100,activation=’relu’,
optimizer=’adam’,loss=’categorical crossentropy’

7http://scikit-learn.org/
8http://epistasislab.github.io/tpot/



4 Evaluation

4.1 Evaluating the Feature Pyramids

In order to evaluate the performance of the classical and deep-learning approaches,
we estimated our models based on two evaluation metrics: categorical accuracy and
micro F1-measure. For classical models, we performed a Stratified K-fold cross
validation, with K = 10. For the deep model, we performed a train-test split on
the dataset, keeping 90% of the dataset for training and 10% to benchmark the model
performance.

We, then investigated and compared the performance of models by trying different
settings of the preprocessing module and training dataset (original and augmented ver-
sion with 28 tweets related to the missing information types). The results showed that
the models that were trained on the original dataset had a better classification accu-
racy than the ones trained on the augmented dataset. Hence, while training the models
for final submission we used the original training dataset from TREC and re-ran our
evaluation. Figure2 depicts a detailed comparison of all the classifiers against all the
feature-sets based on the micro F1-measure.

Based on the classification accuracy, we shortlisted the top four performing models
for final TREC submission and generated the submission files using the corresponding
feature-sets, namely, {embedding},{embedding, bag-of-words, bag-of-concepts}, {bag-
of-words, bag-of-concepts} and {bag-of-words}.

4.2 Dataset

The TREC-IS dataset contains 1335 tweets for training and 19,784 for testing, which
has been curated from different types of events. For each event, the tweets were col-
lected using hashtags and keywords. Human annotators have labeled tweets into the
multi-layer ontology of information types. In our experiments, we combined tweets
from all the events provided for training, into one dataset.

4.3 Results

The official results are evaluated based on the micro-averaged performance metrics
of (Accuracy, Precision, Recall, F1-score). Table 4 shows the results of our four sub-
missions (runs) and the median scores. The run, UPB DICE2, generated from training
the deep model with {embedding, bag-of-words, bag-of-concepts} feature-set performed
better than our other submitted runs, with an F1-score of 0.369 which is somewhat close
to the median (0.477) overall participants. In particular, it achieved a higher recall score
(0.868) than the median (0.616).

Figure 3a shows the performance of our submissions against all information types.
It depicts that we got a higher precision and recall for categories (ContinuingNews, Sen-
timent, MultimediaShare, Factoid) that were better represented in the training dataset
than the ones with fewer examples (GoodServices, SearchAndRescue, CleanUp, Volun-
teer, etc). This clearly shows that our models learned the more prominent information
types better and could not generalize well over others.
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Fig. 2: F1 Scores of classifiers for All Feature-sets.

Table 4: Overall Performance (Micro Average) in All Submissions.
RUN ID Precision Recall F1 Accuracy Priority Est. Err.

UPB DICE1 0.271 0.569 0.367 0.228 0.091
UPB DICE2 (Best) 0.234 0.868 0.369 0.229 0.092
UPB DICE3 0.194 0.415 0.265 0.180 0.094
UPB DICE4 0.215 0.62 0.319 0.203 0.087
Median Scores 0.397 0.616 0.477 0.338 0.093

5 Conclusion and Future Work

In this paper, we described our four submissions to the TREC-IS 2018 track. Our ap-
proach extracts textual features from tweets (e.g., bag of words) and incorporates con-



(a) F1 Scores per Information Type for our run
UPB DICE2.
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ceptual features from knowledge graphs (i.e., Babelfy) to enrich social media analysis.
In addition, we also extracted word embedding features from tweets using pretrained
Glove embedding model and also took into account the sentiment, time and event-type
of the tweets. We then evaluated all the possible combinations of these features against
classical machine learning and deep learning models in terms of categorical accuracy
and micro-F1 measure. In the future, we plan to re-evaluate our approach with more
training data from the TREC-IS challenge as well as on other relevant datasets. Also,
we will investigate more deep models with different architectures (e.g. Recurrent Neural
Model) and semi-supervised classification approaches.
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