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Abstract. This paper describes the system designed for the TREC 2018
Precision Medicine Track by the Team Cat-Garfield from Tsinghua Uni-
versity. Our system is composed of two parts: the retrieval part aiming at
high recall metric and the re-ranking part aiming at boosting infNDCG,
P@10 and R-prec metrics via a heuristic scoring scheme. In order to
introduce more external information into our systems, we developed a
knowledge graph named TREC-KG, which plays a significant role in both
the query expansion and the re-ranking part, and we utilized the qrels
of TREC 2017 Precision Medicine Track as annotated data to train a
classifier for precision medicine-relatedness of biomedical articles, named
PM Classifier. In particular, we employed a hybrid method to score the
precision medicine-relatedness of each retrieved article, combining the
data-driven PM Classifier and a rule-based scoring scheme. The final re-
sults demonstrate that our systems are effective in both the biomedical
article retrieval task and the clinical trial retrieval task, and the usage
of the PM Classifier would bring performance improvement on R-prec
metric in the biomedical article retrieval task.
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1 Introduction

Precision medicine is a term used to describe individualized treatment that en-
compasses the use of new diagnostics and therapeutics, targeted to the needs of
a patient based on his/her own genetic, biomarker, phenotypic, or psychosocial
characteristics[7].

Same as the track in 2017, TREC 2018 Precision Medicine Track focuses on
the retrieval of biomedical articles and clinical trials which can provide useful
precision medicine-related information to clinicians treating cancer patients. Par-
ticipants are challenged with two tasks, the biomedical article retrieval task and
the clinical trial retrieval task. The participants’ retrieval systems are required
to identify the biomedical articles addressing treatments in the perspective of
precision medicine-relatedness, and the clinical trials for which the patient is
eligible.
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The track provides 50 topics consist of synthetic patient cases. A little dif-
ferent from 2017, the "other” field is removed, and the 2018 track introduces
several immunotherapy-related topics, which do not contain explicit genes and
mutations, but rather description of biomarkers for immunotherapy.

In this work, we present our systems for the two tasks. For both the biomed-
ical article retrieval task and the clinical trial retrieval task, our submitted sys-
tems share the same architecture, which consists of a retrieval part and a re-
ranking part. In the retrieval part, we index the given document collections,
and retrieve documents for each topic via Apache Lucene', mainly focusing on
the recall performance. In the re-ranking part, we employed a scoring scheme to
re-rank the retrieved documents. Different from the retrieval part, we use con-
cepts extracted via MetaMap?[1], in addition to the original text, to score the
relevance between the retrieved documents and topics, mainly focusing on the
precision performance. We hope that this manner, using different features and
focusing on different goals, would bring complementarity between the two parts
and improve the retrieval performance.

In addition, we utilized some external resources. We constructed a knowledge
graph, referred as TREC Knowledge Graph (TREC-KG), for both the biomedi-
cal article task and the clinical trial task And we trained a classifier for precision
medicine-relatedness of a article , referred as Precision Medicine Classifier (PM
Classifier). The TREC-KG and the PM Classifier are detailed in Section 2.

2 Methods

We intuitively hope to improve system performance by introducing more external
information, and we have tried two methods. We have built a knowledge graph,
referred as TREC-KG, from several knowledge sources of interest. The TREC-
KG was used for both the biomedical article task and the clinical trial task. We
also utilize the qrels of TREC 2017 Precision Medicine Track as annotated data
to train a classifier for precision medicine-relatedness of a article, referred as
PM Classifier. The PM Classifier was used to improve the system performance
of biomedical article retrieval task by evaluating the relevance of the article to
“treatment”.

Shown as Figure 1, the architecture of our systems consists of two parts, text
based document retrieval and concept based document re-ranking.

For the text based document retrieval part, we expanded the queries incor-
porating the TREC-KG, and then retrieved candidate documents by Apache
Lucene. Then for the concept based document re-ranking part, we built a re-
ranker incorporating the TREC-KG and the PM Classifier, using concepts ex-
tracted via MetaMap as additional features of documents, and finally obtained
the re-ranked candidate documents.

! https://lucene.apache.org/
% https://metamap.nlm.nih.gov/
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Fig. 1. Architecture of our system developed for TREC 2018 PM track. The yellow
blocks indicate external resources or input. The green block indicates output. The blue
blocks indicate intermediate operation or documents.

2.1 Construction of the TREC-KG

Knowledge Graph Design In order to construct a knowledge graph, the
life cycle of the knowledge graph must be clearly defined. The life cycle of a
knowledge graph can be roughly divided into the following three distinct stages:

1. Domain Knowledge Modelling
2. Knowledge Acquisition
3. Knowledge Integration and Identifier Normalization

Figure 2 depicts the construction of the TREC Knowledge Graph(TREC-
KG). The medical knowledge bases in the leftmost part contain a variety of
medical knowledge. The Downloading box in the Extraction Box corresponds to
Knowledge Acquisition, the Parsing and Knowledge Extraction boxes correspond
to Knowledge Integration.

Knowledge Modeling For the modelling of medical knowledge, different in-
stitutions have built a variety of knowledge bases for different purposes , such
as Unified Medical System(UMLS) developed and maintained by the US Na-
tional Library of Medicine[2], the Drug Gene Interaction Database developed
by Kelsy C Cotto[5], the Catalogue of Somatic Mutations in Cancer(COSMIC)
developed by the Sanger Institute[4] and so on. Each knowledge base makes use



4 X. Zhou et al.

The TREC-KG

cosmic

PharmGKB

Fig. 2. Construction of the TREC-KG

of distinct methods to depict and model knowledge in the medical domain. The
leftmost knowledge bases in the Figure 2 are the main sources of knowledge for
the TREC-KG that we desired to build. In addition to these knowledge bases,
we also incorporated Cancer Genome Interpreter(CGI)[9], CIViC[6], OncoKB|3]

etc.

Knowledge Acquisition Knowledge acquisition is to extract desired knowl-
edge which is relevant to the TREC 2018 Precision Medicine Track from vast
amount of information contained in these medical knowledge bases. This phase
corresponds to the Downloading in the Extraction Box of Figure 2.

Knowledge Integration and Normalization Medical knowledge from Knowl-
edge Acquisition Phase contains massive amount of heterogeneous data due to
dis-connectivity of various knowledge bases we used for the development of the
TREC-KG. Therefore, Knowledge Integration is required to cope with the chal-
lenge of data heterogeneity induced by dis-connectivity of different knowledge
bases. During the process of Knowledge Integration, triples in the format of
(head, relation, tail) are utilized to represent medical knowledge, or rather, re-
lationships between different entities including drugs, cancers and genes. Tak-
ing the diversity of formats adopted by individual medical knowledge resource
into consideration, a variety of triple extraction interfaces should be designed
specifically and carefully, respectively for each medical knowledge resource. The
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interface design phase corresponds to the Parsing in the Extraction Box. Af-
ter the parsing interface design is completed, the design process will enter the
Knowledge Extraction. During the Knowledge Extraction, triples of interest are
extracted in accordance with the entity types.

Figure 3 gives an overview of the TREC-KG. This highly customized knowl-
edge graph contains three kinds of entities: gene, cancer and drug.

The three kinds of entities contain different attributes. The attributes of a
gene entity include gene name, synonyms, full name, authoritative name, and
entrez id etc. The attributes of a cancer entity include synonyms, hypernyms,
hyponyms, DOID, and ICD10 Code. And the attributes of a drug entity include
synonyms, chembl id, generic name and brand name.

Different kinds of entities are related to each other through different rela-
tionships. For instance, the relationship between a gene entity and a drug entity
involves a variety of interactions, such as inhibitors, blockers and so on. After the
extraction of triples, MetaMap is applied for entity linking, or rather, mapping
the literal form of entities to Concept Unique Identifier(CUT). This is exactly
what Identifier Normalization does.

Finally, there are 211,743 gene-drug triples, 71,388 gene-cancer triples, 4,062
cancer-drug triples, 211,743 drug-gene triples, 7,275 cancer-gene triples and 3,824
drug-cancer triples in our TREC-KG.

relation

relation

Fig. 3. Overview of the TREC-KG

2.2 Implementation of the PM Classifier

Due to the requirement that we should pay more attention to the precision
medicine-relatedness of the retrieved documents, we have to consider whether
a retrieved document focuses on precision medicine. Because the standards to
determine whether a document is precision medicine-related is implicit, fuzzy and
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hard to express via human language, it is reasonable to introduce data-driven
methods to tackle it. We cast the problem as a text classification problem—given
a retrieved document, determine whether it focuses on precision medicine. The
training corpus is the qrels of TREC 2017 Precision Medicine Track, about
20,000 retrieved biomedical articles were annotated with "PM” for ”Precision
Medicine” and "Not PM” for "Not Precision Medicine”.

Different from the typical form of text classification where the sentence to
be classified is in literal form, we converted original sentences into sequences
of CUIs (Unique Concept Identifier) in UMLS via MetaMap and conducted
classification on the converted "sentence”, or rather, sequence of CUIs. During
the preprocessing of text, we only focus on the 1500 most frequently CUIs.

In order to conduct the text classification task, we employed the simple Con-
volutional Neural Network (TextCNN)[11] proposed by Ye Zhang and Byron
Wallace in 2015, as well as the model, that is a little more complex, Text Re-
current Neural Network (TextRCNN)[8], which constructs the representation of
text using a convolutional neural network and captures contextual information
with the recurrent structure.

In the light of the intuition that the CNN-based model TextCNN and the
RNN-based model Text RCNN may capture different aspects of semantics in text,
which are essential to determine the true class of a sentence or CUI sequence, we
combined the two models by concatenating the feature representations obtained
after max-pooling in TextCNN and TextRCNN. The concatenated representa-
tions were then passed into a fully-connected softmax layer to determine the
final class. We called the combined model as "Text RCNN-CNN” model.

The word embeddings used in these two models were randomly initialized at
the beginning of the training process. We tried different size of word embeddings,
including 50, 100 and 200. The experiments showed that the word embeddings
of size 50 were the best option.

For TextCNN and TextRCNN, we implemented our models using convolution
kernels of 2, 3, 5, 7 with 15 feature maps each. For TextRCNN, we set the state
size of the BiLSTM to 50, the same as the word embedding size. The number
of hidden units of the full-connected softmax layer layer is 32. We trained our
models with Adam optimizer using the learning rate of 0.001.

In order to alleviate the effect of overfitting, we divided the grels into five
groups with respect to different topics, referred as blue, yellow, green, red and
black. During the training process, we trained different models using each group
as test set and the other groups as training set to avoid over-fitting for specific
diseases. The groups are detailed in Table 1.

Table 2 shows the performance of the PM Classifier implemented by Text CNN
, TextRCNN and TextCNN-CNN respectively.

According to Table 2, the PM Classifier implemented by Text RCNN-CNN
achieved the best performance on the groups of yellow, green, black, and best av-
erage performance over the five groups. We finally ensembled these Text RCNN-
CNN models with majority voting strategy as our PM Classifier.



Team Cat-Garfield at TREC 2018 Precision Medicine Track 7

Table 1. Description of the qrels groups used to train the PM Classifier.

Group|Num. of Articles Topics
Blue 4,298 1,9, 10, 20, 21, 25, 27 and 30
Yellow 3,931 4,13, 14, 23, 26 and 29
Green 3,856 2, 3,11, 12, 15 and 19
Red 3,731 5,6, 7,8, 22 and 24
Black 2,873 16, 17, 18 and 28

Table 2. Performances of the PM Classifier implemented by different models on dif-
ferent test set (In terms of AUROC).

Blue |Yellow |Green |Red |Black |Avg.
TextCNN 0.700 [0.764 |0.697 |0.669 |0.710 |0.708
TextRCNN  |0.727 |0.766 |0.676 [0.656 |0.756 |0.716
TextRCNN-CNN|0.691 |0.803 |0.709 |0.653 [0.796 [0.730

2.3 Text Based Document Retrieval

Indexing of Biomedical Articles We indexed both MEDLINE articles and
articles published in AACR/ASCO Proceedings via Lucene. The indexing strat-
egy varies for each article collection because the articles in the latter are only
available in text format.
For MEDLINE articles in xml format, we indexed five fields, including "PMID”,

7 ArticleTitle”, ”AbstractText”, "MeshHeadingList” and ”"ChemicalList”. And in
particular, the gender and age information in the "MeshHeadingList” was in-
dexed separately according to Table 3.

Table 3. Age description in biomedical articles.

Age(years)| Description

0-1 Infant

2-6 Child, Preschool
7-12 Child
13-18 Adolescent
19-24 Young Adult
25-44 Adult
45-64 Middle Aged
65-79 Aged

>80 Aged, 80 and over

In addition, we indexed the annotations of Disease, Gene and Mutation sub-
ject to each article, which are provided by PubTator[10].

For the AACR/ASCO Proceedings articles, we were only able to index a
subset of the fields for MEDLINE articles, including Article ID, ArticleTitle and
AbstractText, because these articles were only available in text format.
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Indexing of Clinical Trials Similar to the indexing of biomedical articles, we
indexed several fields of clinical trials in xml format via Lucene. We did a pre-
processing for each trial because there were many fields which are not related to
the retrieval task. In the pre-processing, we extracted useful fields and separated
the Inclusion Criteria and Exclusion Criteria from the Eligibility field. Finally,
we indexed the fields NCT ID, Title, Brief Title, Brief Summary, Detailed De-
scription, Study Type, Intervention Type, Inclusion Criteria, Exclusion Criteria,
Healthy Volunteers, Keywords and MeSH Terms. And in particular, the gender
and age information in the fields of "Gender” and "Min/Max Age” was indexed
separately according to Table 4.

Table 4. Description subject to age in Scientific Abstracts.

Age(years)|Description
0-24 Young
25-44 Adult
45-64 Middle
65-80 Aged
>80 Old

Query Expansion Figure 4 presents the framework of our query expansion
strategy. We paid more attention to the fields of disease and gene of the topic
to conduct query expansion.

For the disease field, we expanded the disease name with its synonyms, hy-
pernyms and hyponyms via the TREC-KG. While for the gene field, it contains
two aspects of information, gene name and amino acids related to the variant.
For gene name, the literal form of gene name provided in the topic is not suffi-
cient enough to retrieve relevant articles or trials due to the diversity of the
gene name representations. We expanded the gene name with its synonyms, full
names, related drugs which interact with the focused gene, together with corre-
sponding interaction. For each amino acid (20 in total), we expanded it with its
three-letter abbreviation coupling with single-letter abbreviation.

In particular, as for the immunotherapy-related topics, we simply expand the
biomarker appearing in the gene field with their synonyms and relevant keywords
representing descriptions in the topic.

Biomedical Article Retrieval We completed this part by 1) retrieval based
on TF-IDF feature via Lucene and 2) post-processing.

For each topic, we retrieve biomedical articles according to the following three
steps:

1. Topic Expansion: We expanded each topic by using our query expansion re-
sults. We expanded the disease with its synonyms, hyponyms and MeSH__ 1D,
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Fig. 4. Framework of Query Expansion

expanded the gene with its full name, synonyms and Entrez ID, and ex-
panded the variant with its synonyms and PubTator_ID. In particular, for
the immunotherapy-related topics, we expanded the biomarker with its syn-
onyms and several keywords.

2. Generate Query: We encoded the disease, gene and variant as three addi-
tive disjunctive Boolean query with a clause, noted as Q4 ,Q4 and @,. We
combined Qg4 ,Q4 and @, into a Boolean query @, according to Table 5.
In addition, we generated a boost query Q2 subject to precision medicine-
relatedness by using words in Table 6.

3. Retrieval via Lucene: We used the combination of @1 and Q5 for the retrieval.

We reserved the top 150,000 results for each topic, noted this list as Cj.

Table 5. Generating ()1 for biomedical article retrieval task.

Additive disjunctive query|Weight
QaV Qg V Qyu 4.5
QaV Qq 4.0
QiNQgV Qu 5.0
Qa N (QgV Qu) 6.0
QaNQgAQy 9.0

However, the TF-IDF features can not reveal the topics of the articles well.
We address this problem by post-processing including the following three aspects:

1. Matching Age & Gender: For each result in C, we attempted to match the
age and gender between the topic and the article, and the award weights for
age and gender were 1.2 and 1.5 respectively.
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Table 6. Treatment-related Keyword list.

prevent prophylaxis prophylactic prognosis prognoses
prognostic outcome survival survive treatment
therapy therapeutic personalized efficacy

2. Punishment for Cell Line: For each result in Cy, we penalized it if there is a
MeSH term including ”"Cell Line, Tumor”. The punishment weight was 0.91.
3. Award for the AACR/ASCO Proceeding articles. The award weight was 2.2.

All weights above were set by grid searching on the qrels of the TREC 2017
PM Track. Finally, we ranked Cy by the new scores, and reserved the top 20,000
results for each topic.

Clinical Trial Retrieval Similarly, we completed this part by 1) retrieval based
on TF-IDF feature via Lucene and 2) post-processing.
We retrieve clinical trials according to the following three steps:

1. Topic Expansion: Mainly the same as the retrieval for biomedical articles.
In particular, we used ”solid tumor” as a expansion for all diseases.

2. Generate Query: We generated ()1 and Q2 according to Table 7 and 6, just
the same as the retrieval for biomedical articles.
3. Retrieval via Lucene: We used the combination of @); and Qs for the retrieval

We reserved the top 20,000 results for each topic, noted as Cy.

Table 7. Generating 1 for clinical trial retrieval task.

Additive disjunctive query|Weight
QaVQyVQu 7.5
QaV Qy 6.0
Qd A Qg Vv Qv 3.5
Qd A (Qg V Qu) 4.0
Qa N Qg AQu 12.0

Our post-processing includes two aspects:

1. Matching Age & Gender: The same as the retrieval for biomedical articles
and the weights for age and gender are 7.5 and 5 respectively.

2. Punishment for EXCLUSION CRITERIA: We retrieved in the field of EX-
CLUSION__CRITERIA with @4 and reserved a ranked list C.. And then we

penalized the score of articles both in C, and Cy with punishment weight of
0.01.

All weights above were set by grid searching on the qrels of the TREC 2017
PM Track. Finally, we ranked Cy by the new scores, and reserved the top 20,000
results for each topic.
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2.4 Concept Based Document Re-ranking

Re-ranking of Biomedical Articles For the biomedical article retrieval task,
we built our re-ranker based on the concepts extracted via MetaMap in addition
to the original text. Along with the evaluation method, we implemented our re-
ranker in a heuristic way, respectively scoring each candidate document in three
dimensions — disease, gene(and variant) and PM.

Our main idea to improve the retrieval performance is introducing more ex-
ternal information, specifically more features and more annotated data. In addi-
tion to the text features used in the text based document retrieval part, we used
the concepts extracted via MetaMap from each document as additional features.
We treated the qrels of the TREC 2017 PM Track as additional annotated data,
and the PM Classifier results can be seen as a supplement to the PM dimension.

Our re-ranker, shown as Figure 5, consists of four parts, namely Not PM
Filter and three matchers corresponding to the three dimensions of disease,
gene(and variant) and PM.

—
Re-ranker

Gene & Variant
Matcher

Reranked
(15

Disease Matcher

A

K Annotated grels of
ledge Graph TREC 2017 PM

Fig. 5. Architecture of our re-ranker. The yellow blocks indicate external resources or
input. The green block indicates output. The blue blocks indicate the re-ranker.

We first filtered out the articles which are definitely not precision medicine-
related by a simple Not PM Filter. The Not PM Filter first filtered out articles
without any concepts of cancer, and required the remaining articles to contain
concepts of gene or treatment-related keywords indicated in Table 6.

We built three matchers, corresponding to three dimensions of disease, gene(and
variant) and PM, to score the relevance between the given topic and the retrieved
articles. We heuristically set the weights for the matching of disease, gene, variant
and precision medicine-relatedness.

For a given topic, we used the query expansion results of disease and gene(and
variant) as text features, and the concepts extracted via MetaMap as concept
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features. In addition, for the gene field in the immunotherapy-related topics,
we use the expanded biomarkers and keywords instead of original text as text
features, and the corresponding concepts as concept features. These keywords
were divided into 1-3 groups, representing different kinds of information of the
description in the topic. Taking the gene field of topic 25 as an example, the
original text, the biomarkers and the keywords are shown as Table 8.

Table 8. The text features of gene dimension for topic 25. Keywords were divided into
two groups.

Original text Biomarkers Keywords
high serum LDH levels|LDH, lactate dehydrogenase|[high], [serum]

For the dimension of disease, we scored the relevance by matching the text
feature and concept feature of disease field between the given topic and the re-
trieved articles. The matching results were divided into three categories, "match”,
"more general” and "mismatch”. The "more general” basically indicated that
the disease in the topic is malignant whereas the article uses a more general
description that does not distinguish between benign and malignant. We gave
a penalty for the "more general” results, and an extra bonus when the text or
concept matches the topic in the article title.

For the dimension of gene(and variant), we adopt different strategies depend-
ing on whether the topic is immunotherapy-related.

For the non immunotherapy-related topics, we scored each gene(and vari-
ant) given in the topic separately. The matching results were only divided into
"match” and "mismatch”. The "match” for variant required that the matching
result for the corresponding gene is also "match”. And similar to the Disease
Matcher, we gave an extra bonus when the text or concept matches the topic
in the article title. Finally, we selected the highest score among the genes(and
variants) as the score of gene dimension of the article.

For the immunotherapy-related topics, we scored each article by matching
the biomarkers and keywords in the article title or abstract. The matching rules
are:

1. If each keywords group has at least one keyword matched in a single sentence,
we treat the sentence "keyword matched”.

2. If at least one biomarker matches in the sentence, we treat the sentence
"biomarker matched”.

3. If there is one sentence in the article both "keyword matched” and "biomarker
matched”, we treat the article "exact matched”.

4. If there is no sentence both "keyword matched” and ”biomarker matched”,
while there are sentences "keyword matched”, we treat the article "partial
matched”.

5. If there is no sentence "keyword matched”, we treat the article "mismatched”.
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We finally score the gene dimension of the article according to the matching
result.

For the dimension of PM, we built a ruled-based PM Matcher which mainly
depends on matching the retrieved articles with manually summarized keywords
and information obtained from the TREC-KG, such as cancer-related drugs. We
tried to determine whether a retrieved biomedical article focuses on precision

medicine in a hybrid manner, combining the data-driven PM Classifier and the
rule-based PM Matcher.

We manually summarized several keywords lists, shown as Table 9. In addi-
tion, we extracted a related drug list for each topic via the TREC-KG. For each
retrieved article, we first divided it into several parts, including title, MeshHead-
ing List, Chemical List, background, objective, conclusion, and unspecified, by
the xml structure or simply matching the corresponding part name. The PM
Matcher then tried to match each category of keywords with each part of the
article, and match the related drug list with the parts of title, MeshHeading List,
Chemical List and conclusion of the article. And then the PM Matcher scored
the article in the PM dimension based on these matching results. Note that,
the PM Matcher would severely penalize the article if the Negative Keywords
matched.

We then tried to integrate the PM Classifier results into the score for the
PM dimension in two ways. One is giving an additional score to the articles
classified as "PM” in addition to the score given by the PM Matcher. The other
is that 1) if the PM Classifier classifies the article as "PM”, we give a score to
the article for the PM dimension, not considering the PM Matcher results any
more, 2) if the PM Classifier classifies the article as "Not PM”, we score the
article according to the scoring strategy of the PM Matcher.

Table 9. Keywords lists used in the PM Matcher

Category Keywords

Intervention Keywords [|treatment, therapy, therapeutic, prevent, theranostic, pro-
phylaxis, prophylactic, prognosis, prognoses, prognostic

Final Indicator Keywords|complete response, partial response, stable disease, progres-
sive disease, overall survival, progression-free survival, dis-
ease control rate, objective response rate

Supplementary Keywords|patient-specific, response, personalized, personalization, in-
dividual, survival, survive, outcome, efficacy

Negative Keywords pathophysiological, database, detect, identification, identify,
pathway, diagnostic, diagnosis, cell line

Finally, for each article, if it contains MeshHeading List field with age or
gender information, we would filter it out if it doesn’t match the "demographic”
of the topic. And for other cases, we didn’t consider the "demographic”.
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Re-ranking of Clinical Trials The re-ranker for the clinical trial retrieval task
was similar to that for the biomedical article retrieval task, we also constructed
a scoring scheme for the dimensions of disease, gene(and variant) and PM. The
main difference is that the PM classifier is no longer used in the clinical trial
retrieval task and we did some field mapping due to the different xml structure
of the clinical trials, as shown in Table 10.

Table 10. Mapping of xml fields from clinical trials to biomedical articles.

Clinical Trial fields|Scientific Abstract fields
official title . .
brief title ArticleTitle
mesh term list .
keyword _list MeshHeadings
det allledidescrlptlon Abstract
brief _summary

» o

We also considered the fields of ”study_ type”, ”intervention_ type” and "pri-
mary_purpose”. For example, if the field of ”study_ type” contains "interven-
tion”, the field of ”intervention_ type” contains "drug” or the fields of ”genetic”
and ”primary_ purpose” contain "treatment”, we would give a bonus score.

3 Results

3.1 Evaluation Results of Biomedical Article Retrieval Task

We submitted 5 runs for the biomedical article retrieval task. The difference
between these runs is mainly the ways of using the PM Classifier and the corre-
sponding weight. Table 11 shows a description of the 5 runs, and Table 12 shows
our evaluation results, with the best and median results for the biomedical arti-
cles retrieval task.

The BASE run achieved the best performance on the metrics of infNDCG
and P@10, while the PBPK run achieved the best performance on the metric
of R-prec. These results indicate that the usage of the PM Classifier leads to
performance loss on the metrics related to precision, but may bring gains on the
metrics related to recall.

Figure 6 (a)-(d) demonstrate the impact of different ways of using the PM
Classifier on R-prec metric for the biomedical article retrieval task. The strategies
behaved differently across 50 topics. It appears that the PM Classifier trained
on the grels is not capable of capturing the implicit and fuzzy standards to
determine whether a retrieved biomedical article is precision medicine-related
across all the 50 topics.

It is evident that the former three strategies, PBAH, PBH and PBL, have
a similar impact on R-prec metric of the retrieval system. In Figure 6 (a)-(c),
there are more dark grey columns representing the decline of R-prec metric
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Table 11. Our submitted runs for the biomedical article retrieval task.

BASE Baseline, not using the PM Classifier

PBAH Using the PM Classifier results with an additional high weight for all
the re-ranked articles

PBH Using the PM Classifier results with an additional high weight, but
not affecting the top10 articles of the BASE

PBL Using the PM Classifier results with an additional low weight, but
not affecting the topl0 articles of the BASE

PBPK Incorporating the PM Classifier results with the PM Matcher, giving
a boost score if the PM Classifier classifies the article as "PM” or
according to the scoring strategy of the PM Matcher

Table 12. Evaluation results from our systems with the best and median results for
the biomedical article retrieval task. Bold is our best.

infNDCG| P@10 | R-prec
Best 0.7135 |0.8660 | 0.4461
Median 0.4291 |0.5460 | 0.2672
MSIIP__BASE| 0.5621 [0.6704]| 0.3216
MSIIP_PBAH | 0.5297 |0.6540 | 0.2979
MSIIP_PBH | 0.5459 |0.6680 |0.2999
MSIIP__PBL 0.5462 | 0.6680 | 0.3008
MSITP_PBPK | 0.5577 |0.6360 [0.3257

than green columns representing the improvement of R-prec metric, which indi-
cates that these strategies deteriorate R-prec metric on average. However, the
PBPK strategy, incorporating the PM Classifier results with the rule based PM
Matcher, achieved an opposite result that the number of green columns is greater
than that of dark grey columns, which indicates that the PBPK strategy can
boost performance on R-prec metric.

3.2 Evaluation Results of Clinical Trial Retrieval Task

We submitted 5 runs for the clinical trials retrieval task. Table 13 compares the
different methods we used, and Table 14 shows our evaluation results, with the
best and median results for the clinical trials retrieval task.

Our best system is MSITP_ TRIALI, indicating that the query expansion re-
sults and the modified matching methods for the immunotherapy-related topics
were helpful. However, for the bonus score in the fields of "study_ type”, "inter-
vention_type” and "primary_purpose”, we didn’t find any contribution to the

evaluation results.

4 Conclusion

In this paper, we described our retrieval system for the TREC 2018 Precision
Medicine Track. The track consists of two tasks, the biomedical article retrieval
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Fig. 6. Impact of the PM Classifier on R-prec metric for the biomedical article retrieval
task. The dark grey columns indicate performance loss and the green columns indicate
performance improvement.
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Table 13. Our submitted runs for the clinical trial retrieval task.

MSIIP_ TRIAL1 |Mainly the same as MSIIP_ TRIAL3, but not considering the fields
of ”study_ type”, ”intervention_ type” and ”primary_ purpose”
MSIIP_ TRIAL2 |Mainly the same as MSITP_ TRIALS5, but not using the query expan-
sion results, not considering ”study__type”, ”intervention_ type” and
7primary__purpose” fields.

MSIIP__TRIAL3 |Baseline, containing all our methods

MSIIP_ TRIAL4 |Mainly the same as MSIIP__ TRIALS5, but not using the query expan-

sion results.

MSITP_ TRIAL5 |Mainly the same as MSIIP_ TRIAL3, but for the immunotherapy-
related topics, employing the same matching strategy as other topics

Table 14. Evaluation results from our runs with the best and median results for the
clinical trials retrieval task. Bold is our best.

infNDCG| P@10 | R-prec
Best 0.7559 |0.7620 | 0.5767
Median 0.4297 |0.4680 | 0.3268
MSIIP__TRIAL1| 0.5504 |0.6260(0.4294
MSIIP__TRIAL2 | 0.5304 |0.5700 | 0.4066
MSIIP__TRIAL3 | 0.5428 |0.6160 | 0.4272
MSIIP__TRIAL4 | 0.5317 |0.5980 | 0.4076
MSITP__ TRIALS 0.5500 |0.6220 | 0.4294

task and the clinical trial retrieval task. We submitted five runs for each task.
In the light of the intuition that introducing external information would bring
performance improvement, we constructed the TREC-KG to integrate knowledge
of interest from several external knowledge sources, and trained the PM Classifier
for precision medicine-relatedness using the grels of the TREC 2017 PM Track
as training corpus. Our system architecture consists of a text-based retrieval
part and a concept-based re-ranking part, incorporating the TREC-KG and
the PM Classifier. In particular, to score the precision medicine-relatedness of
a biomedical article, we employed a hybrid method, combining our proposed
data-driven PM Classifier with the rule-based PM Matcher.

Our experiments verify the effectiveness of our system on both the two tasks,
and that the usage of the PM Classifier would boost R-prec metric on the biomed-
ical article retrieval task.
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