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Abstract. In microblog retrieval, a system’s ability to detect silent days and ”shut up” during
these days have an huge impact on its performance [1]. Therefore, in this year’s Real-Time Sum-
marization Track, we focus on detecting silent days. More specifically, we propose two silent day
detectors phrase-based weighted information gain and local query term coherence, both
of which focus on using query terms collectively instead of individually. Track results suggest that
our methods can effectively detect silent days, which subsequently results in promising performances
for both scenarios.

1 Introduction

Real-Time Summarization Track aims to build systems to retrieve tweets for interest profiles in two
scenarios: 1.tweets are posted to the evaluation broker as soon as detected relevant; 2. relevant tweets
are identified at the end of each day, simulating an email digest summaries for interest profiles. In both
scenarios, the retrieved tweets should be both relevant and novel.

According to a previous study about the evaluation of microblog retrieval [1], as well as our experi-
ments on last year’s Real-Time Summarization Track, it is clear that a system’s ability to detect silent
days, meaning days that contain no relevant information, and ”shut up” for these days are critical to the
performance of the system. Therefore, in this year’s RTS track, we focused on detecting silent days. It
is important to note that both redundant and irrelevant tweets are treated as irrelevant tweets in the
RTS track, but we chose to treat redundant tweets as relevant tweets in silent day detection phrase since
finding silent days with only redundant tweets or silent days with no relevant tweets may require different
techniques.

The problem of silent day detection is related to query performance prediction. However, we did
not simply use the existing query performance prediction techniques since some core differences between
these two tasks might significantly weaken the effectiveness of query performance predictors on silent day
detection. First, the problem setting is fundamentally different because in query performance prediction,
relevant documents are always assumed to be exist, which is clearly not always the case for silent day
detection. Moreover, the majority of the predictors assign scores to individual terms and aggregate the
scores to calculate the final score of a corpus or a result list. As a result, containing high inverse collection
frequency terms would be enough for a silent day to receive a high score. Given these differences, new
methods specifically for silent day detection might certainly be required.

In this year’s Real-Time Summarization Track, we handled the silent day detection as a classification
problem and proposed two silent day detectors phrase-based weighted information gain and local
query term coherence, both of which focus on using query terms collectively instead of individually.
As shown in the final TREC results, the proposed predictors can effectively detect silent days, which
subsequently results in promising performances for both scenarios.

2 Silent Day Detection

The problem of silent day detection is naturally addressed as a classification problem since a binary
decision of whether a day is silent or not should be made. In this year’s track we focused on proposing
new features for silent day detection.



2.1 Collectively Using Query Terms

Despite the high similarity between query performance prediction and silent day detection, the state-
of-the-art query performance predictors could mistakenly assign high scores to silent days because of
two reasons. First, in traditional performance prediction tasks, it is usually assumed, if not ensured 1,
that there are at least some relevant documents in the corpus. The assumption leads to the fact that
existing performance predictors aim to predict the performance in the realm of possible. When also taking
impossible query-day pairs into account, the theoretical basis and intuitions of the existing predictors
might not always hold. Some existing performance predictors are built based on this assumption [3, 4].
Even those that are not, the difference between a non-silent day and a silent day may not reflect on them.
For instance, given some of the state-of-the-art predictors which are based on the standard deviation of
the scores of the top ranked documents [5, 6, 2], a retrieved list of all irrelevant documents could have
very high variance as well, just as that of an easy query.

The other problem is that the majority of the query performance predictors assign scores to individual
terms and aggregate the scores to calculate the final score of a corpus or a result list. The score of a
term is usually related to its inverse collection frequency [3]. Therefore, only containing terms with high
inverse collection frequencies is sufficient for a day to receive a high score that would likely result in the
day being labeled as a non-silent day. For instance, for query MB254 : cancer and depression in last year’s
RTS track, since cancer and depression both have high high inverse collection frequencies values, a day
containing only one of them could have a high score.

Therefore, we make no assumption about whether there are any relevant information, and hypothesize
that using query terms collectively instead of individually might be more suitable and propose two sets
of silent day predictors: phrase-based weighted information gain (PWIG), and local query term
coherence (LQC), which we discuss below.

.

Phrase-Based Weighted Information Gain (PWIG). This predictor is inspired by the use of term
proximity features, which are ordered or unordered groups of terms, in the query performance predictor
weighted information gain (WIG) [7]. In WIG, both single term and term proximity features are used
to predict the performance of a query over a collection, and the query term features would dominate
the final scores of WIG, which is the second problem discussed above. Therefore, phrase-based weighted
information gain (PWIG) is proposed so that single term features are removed and different weights for
sequential dependence (considering order) and full dependence (without considering order) features are
introduced.

More specifically, a query, its sequential dependence feature set as well as full dependence feature
set are noted as Q, S(Q), and F (Q), respectively. R(Q) is the union of S(Q) and F (Q). Given a
term proximity feature ξ, the probability that it appears in a document D or a day C are denoted
as P (ξ|D) and P (ξ|C). Finally, given a query which has a retrieved list LK containing K documents
Di ∈ {D1, D2, ..., DK}, we define PWIG as follow:

PWIG =
1

K

∑
Di∈LK

∑
ξ∈R(Q)

λξlog
P (ξ|Di)

P (ξ|C)
, if |R(Q)| > 0 (1)

where

λξ =


λ√
|R(Q)|

, ξ ∈ F (Q)

1−λ√
|R(Q)|

, ξ ∈ S(Q)
(2)

In PWIG, we estimate the relevance of the retrieved list only using query terms’ collective occurrences.
WIG is computed for single-term queries.

1 In fact for the track collection disk4&5, the query 672, for which no relevant documents were found in the
original TREC 2004, is often excluded for performance predictor evaluation by previous work [2].



Local Query Term Coherence (LQC). Local query term coherence (LQC) is the other set of features
we propose, which infers the difficulty of a query by estimating how coherent the query is. If, in a collection
with respect to a day, the query terms are closely associated, the query is easy to the collection. Therefore,
the day is not a silent day. The coherence between query terms are calculated as the coherences of groups
of query terms with sizes range from 2 to the size of the original query, and the sub-coherences are
aggregated to the final coherence of the query. This way of computing is chosen since the associations
between query terms can vary significantly and it is not necessary for a query term to be closely related
to all other terms. Moreover, we hope that by computing coherences for all possible query term groups,
we cover all association conditions of a query. Another important computational detail about LQC is
that these sub-coherences are computed locally. In other words, only top K tweets of the retrieved list are
used instead of the whole collection. The reason behind it is that there can be more than one meaning
of a query term, and the meaning of it in top ranked tweets are more likely to be the same as its original
meaning in the query. The calculation details are as follow: the set of all possible multi-query-term groups
of query Q is noted as F (Q). The occurrence of ξ where ξ ∈ F (Q) indicates a certain degree of coherence
of terms in ξ. As a result, more tweets in top K contain ξ means higher degree of coherence between
these terms:

C(ξ) =
# of documents containing ξ

K
(3)

Intuitively, longer multi-query-term groups tend to be more important. Therefore, ξ are grouped by
their sizes i through function A():

Ci(Q) = A({C(ξ) : |ξ| = i}) (4)

We employed three implementations of A(): Max, Average, and Binary. Binary means that if there is
at least one occurrence of ξ, the final value would be 1. The function Binary is employed so that even in
the extreme case where there is only one appearance of a multi-query-term group, LQC is still able to
detect it. This scenario could be the result of only one relevant tweet of a day. Ci(Q) are then aggregated
further by using a weighted sum of them to calculate the raw LQC (rLQC):

rLQC =

|Q|∑
i=2

log(i)× Ci(Q) (5)

LQC =
rLQC

iLQC
(6)

The weight is implemented as the logarithm of the size. This weighting scheme is used to favor longer
query-term collection while not overly penalizing the weight of short ones when the query is long. rLQC
is then divided by the ideal LQC to obtain the final value of LQC.

2.2 Training the Silent Day Classifiers

The proposed two sets of predictors were then used as the features of Naive Bayes classifiers to detect
silent days. We now discuss the details about how the classifiers were trained.

Training Data The data from 2015 Microblog Track and 2016 RTS Track were the obvious choices
for the training data. In order to obtain more training data in the hope of improving the classifiers, we
modified the data used in 2011 and 2012 Microblog Track by identifying silent days according to the
timestamps of the tweets and queries so that they could be used to train the classifiers.

Parameter Settings We tuned the parameter settings of the proposed silent day detectors on the
training data in order to obtain the optimal parameter settings for the submitted runs. For phrase-based
weighted information gain, the number of tweets K was set to 5 and λ was set to 0.2. Whereas, for local
query coherence we set the number of tweets as 5, 10, 100 for the aggregation functions Max, Average,
and Binary, respectively.



Table 1: Summary of Silent List Phenomenon
Collection # of Silent Days # of Silent Lists*

2011&2012 355 255

2015 126 121

2016 131 171
∗ silent days are excluded for this number

Different Labeling Strategies: Silent Day vs. Silent List. During the experiments of exploring
silent day detection, an interesting phenomenon was discovered: given a query, it is possible that there
are some relevant tweets in the day, but the retrieval method fails to retrieve any relevant documents in
the top 10 results (10 is chosen here since it is the tweets-per-day limit). In other words, the retrieved
list is ”silent” but the day is not. When using the retrieval function F2EXP [8], the number of silent
lists in tracks of different years are shown in Table 1. As it can be clearly seen, this phenomenon is
frequent. Therefore, besides labeling silent days only based on the judgment information, there is another
reasonable labeling strategy which labels days with silent lists as silent days. There are two reasons
why this could be more desirable. First, since there are no relevant tweets in a silent list, in terms of
performance, returning any tweets from the top of the list is the same as treating the day as a silent day
and returning no tweets. More importantly, since the proposed detectors are post-retrieval and rely on the
top retrieved tweets, they may receive similar values for silent days and silent lists. As a result, assigning
them the same label could be more benefitial for the final classification performance than assigning them
with different labels. Both labeling strategies were explored in our submitted runs.

3 Submitted Runs

We use the same corpus we crawled using twitter ”sample” end point of the twitter stream api2 during
the evaluation for both scenarios. Non-English tweets were filtered out. For the downloaded tweets, only
”id” and ”text” fields were used. If a tweet was a retweet, the ”text” field of the original tweet was used
since retweets would be normalized to the underlying tweets for evaluation. For the interest profiles, we
only used ”title” field as initial queries for our system.

3.1 Scenario A

In scenario A, we tested the effectiveness of the proposed silent day detectors as well as explored how
different silent day labeling strategies affect the performance. There are 4 steps for generating our scenario
A runs: 1) Given a day and a query representing an interest profile, retrieve an initial result at the end of
day using some ranking function; 2) Use a silent day classifier to detect whether a day is a silent day or
not; 3) If the day is a silent day, do nothing, but if it is not, use the top 10 retrieved tweets as candidate
tweets 4) Perform redundancy detection on the candidate tweets and return non-redundant tweets. We
submitted three runs, which all used F2exp [9] as the ranking function and jaccrad distance and threshold
0.5 for the redundancy test. The differences among these runs are the queries for interest profiles, the
labeling strategy for training silent day classifiers, and the number of returned tweets for non-silent days.
The details of each runs are described below:

– UDInfoBL: In this run, ”title” field of the interest profiles were used as queries. We trained the
classifier without considering silent lists. For each non-silent day, only the top non-redundant tweet
was returned. The decision of returning one tweet was based on our experiment results on the previous
year’s tracks.

– UDInfoSDWR: Similar to the previous run, except that the classifier was trained by treating silent
lists as silent days.

2 https://dev.twitter.com/streaming/reference/get/statuses/sample



– UDInfoEXP : In this run, we searched the ”title” field on commercial search engines such as Google
and Bing before the evaluation period. The snippets of the search results were subsequently crawled
and used to expand the ”title” field [8]. The expanded queries were used to retrieve results for each
day for each query. The classifier used in this run is the same as the one in UDInfoBL. For each
non-silent day, all the non-redundant tweets of the candidate tweets (up to 10) were returned.

There are two things need to be noted for the submitted scenario A runs. First, in run UDInfoBL
and UDInfoSDWR, we chose to return only 1 tweet for a non-silent day since when we conducted exper-
iments on previous years’ tracks about how the number of returned tweets would affect the performance,
returning 1 tweet provided the best performance. Moreover, since we initially planed to use the relevance
feedback provided from the broker, we decided to return the maximum number of tweets allowed for a
non-silent day in run UDInfoEXP to maximize the amount of relevance feedbacks we could receive.
However, because the relevance feedback containing conflicting judgments and we did not come up with
a reasonable way of using them, we did not use the feedbacks for our scenario B runs.

3.2 Scenario B

In scenario B, we wanted to investigate different redundancy detection methods. Therefore, we submitted
three runs which were all based on UDInfoSDWR, which was expected to be the best run for our
scenario A at that time. The only difference between these runs is how redundant tweets were detected.
The detailed explanation of them are listed below:

– UDInfoJac: It is the same as UDInfoSDWR except returning 10 tweets per day instead of 1.

– UDInfoW2Pre: This run is similar to UDInfoJac except the fact that we changed the redundancy
detection method to a word embedding based method. More specifically, we represent a tweet with
a vector that is the averaged sum of the vectors of words in the tweet. The cosine distance between
the vector representations of two tweets were used to decide whether they are redundant. The word
vectors used were the pre-trained vectors trained on part of Google News dataset3, which was pro-
vided by the authors of the toolkit word2vec [10]. The redundancy threshold was set to 0.9, which
was tuned on previous years’ data.

– UDInfoW2V TWT : It is similar to UDInfoW2V TWT . The difference is that, instead of using pre-
trained vectors, we trained the vectors on the tweets we crawled before the evaluation period for
about a 7-day period. The redundancy threshold was 0.9, which was tuned on previous years’ data.

4 Results and Analysis

The performances of submitted runs as well as the track medians for different scenarios are shown in
Table 2. Note that only primary metrics, which are EG-p for scenario A, and nDCG@10-p scenario B,
are reported.

For scenario A, it can be clearly seen that UDInfoSDWR and UDInfoBL can outperform track median
significantly, which shows that the silent day detection methods we used are very effective. However,
UDInfoSDWR, which uses the classifier that employs the labeling strategy considering silent lists the
same as silent days, performs worse than UDInfoBL, which uses the classifier that employs the labeling
strategy without considering silent lists. It is inconsistent with our experiments on past years’ data. We
discovered through additionally analysis and experiments that it might be caused by the fact that there
are less silent days in this year. In this year there are only 17.7% of days that are silent days, which are
less than that of 2015 (24.7%) and 2016 (23.4%). As a result, in this year precision tends to be more
impactful on the system’s performance. However, the classifier trained by treating silent lists as silent

3 https://code.google.com/archive/p/word2vec/



Table 2: Performances of Submitted Runs

(a) Performances of Scenario A

Run Name EG-p

UDInfoBL 0.3226

UDInfoSDWR 0.2907

UDInfoEXP 0.2025

Track Median 0.2194

(b) Performances of Scenario B

Run Name nDCG@10-p

UDInfoJac 0.2886

UDInfoW2Pre 0.2933

UDInfoW2V TWT 0.2906

Track Median 0.1865

days has advantageous performance in past years because it predicts silent days more aggressively, which
leads to higher recall but lower precision. Thus, using it is less effective on this year’s data.

For scenario B, there seems to be no difference among the redundancy detection method in terms of
performance, which might suggest that the word embedding based method does not prove to be superior
over jaccard distance.

5 Conclusion

In this year’s Real-Time Summarization Track, we directly address the problem of silent day detection. It
was handled as a classification problem and two sets of silent day detectors using query terms collectively
are introduced. Track results indicate that the proposed silent day detectors can indeed be effective for
RTS tracks, and thus prove their usefulness to microblog retrieval tasks when silent days are somewhat
frequently present.
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