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Abstract

We report our participation to the TREC 2017 Core Track. Our objective is to systematically investigate the
use of weak baselines, namely off-the-shelf open source IR systems, and understand how they compare with
respect to TREC state-of-the-art ones. We are also interested in understanding how IR components – namely
stop lists, stemmers/n-grams, and IR models – contribute to the overall performances and, specifically, to
the pools.

1. Introduction

The goal of the TREC 2017 Common Core Track1 is to explore new ways to test collection construction
with a specific focus on relevance assessment creation and how to go beyond standard depth-k pooling, both
in a traditional NIST assessors-based setting and in a crowd-sourcing context.

The TREC 2017 Common Core Track is a standard ad-hoc task, using a set of 249 topics taken from
the TREC 2004 Robust Track [40] against a newswire corpus by the New York Times2, consisting of 1.8
million articles from 1987 to 2007; 50 of these topics have been assessed by NIST and are used in the present
report, while the remaining 199 have been assessed by using crowd-sourcing. The TREC 2017 Common
Core Track solicited the participation of as diverse as possible Information Retrieval (IR) systems, focused
on retrieving as much unique relevant documents as possible, in order to support the exploration of new
pooling techniques. For more details on the TREC 2017 Common Core Track, please see the overview of
the track [1].

The objective of our participation is to investigate how weak baselines, namely off-the-shelf open-source
IR systems, perform in this task and how they compare to state-of-the-art and optimized TREC systems
participating in the track. Indeed, it has been repeatedly shown that best historical TREC systems still
outperforms off-the-shelf open source systems [4, 5, 21, 26] but these comparisons happened somehow post-
hoc in the sense that the analysed open source systems typically did not participate in the examined TREC
tracks and their configurations have not been systematically explored and exploited to see whether they can
get closer to best TREC systems.

Therefore, we used Apache Lucene3 6.6.0 to create a Grid of Points (GoP) [13, 14] made up of hundreds
of runs resulting from all the possible combinations of a set of selected stop lists, stemmers, and IR models.
We then exploited data fusion techniques [10, 41] to merge these runs and get out the maximum from them.

In our previous work, we conducted a study on how to break-down the overall IR system into the
contributions of the individual components [14–16], using GoPs created with Terrier4 on several past TREC
and CLEF ad-hoc collections. An additional objective of our participation is to create a GoP using Lucene
instead of Terrier, based on a test collection where the GoP systems actually participated, and see whether
there are differences with respect to our previous findings.

1https://trec-core.github.io/2017/
2https://catalog.ldc.upenn.edu/ldc2008t19/
3http://lucene.apache.org/
4http://terrier.org/
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Finally, we take the opportunity to start investigating how IR system components contribute to pool
and how to break-down their contributions.

The paper is organized as follows: Section 2 provides some background information on the statistical
tools used for conducting the analyses; Section 3 introduces the adopted approach; Section 4 describes the
implemented software library, which is available for further re-use; Section 5 reports the analyses on the
experimental outcomes; finally, Section 6 draws conclusions and wraps up the discussion on the main findings
of the study.

2. Background on GLMM and ANOVA

A General Linear Mixed Model (GLMM) [36] explains the variation of a dependent variable (“Data”)
in terms of a controlled variation of independent variables (“Model”) in addition to a residual uncontrolled
variation (“Error”): Data = Model + Error.

ANalysis Of VAriance (ANOVA) expresses a GLMM, for example, as Yij = µ + αj + εij , where Yij is
the i-th subject’s dependent variable score in the j-th experimental condition, the parameter µ is the grand
mean of the experimental condition population means that underlies all subjects’ dependent variable scores,
the parameter αj is the effect of the j-th experimental condition and the random variable εij is the error
term, which reflects variation due to any uncontrolled source.

For a given model, the ANOVA table summarizes the outcomes of the ANOVA test indicating, for each
factor, the Sum of Squares (SS), the Degrees of Freedom (DF), the Mean Squares (MS), the F statistics,
and the p-value of that factor, which allows us to determine the significance of that factor. In the following,
we consider a confidence level α = 0.05 to determine if a factor is statistically significant.

We are not only interested in determining whether a factor effect is significant, but also which proportion
of the variance is due to it, that is we need to estimate its effect-size measure or Strength of Association
(SOA). The SOA is a “standardized index and estimates a parameter that is independent of sample size
and quantifies the magnitude of the difference between populations or the relationship between explanatory
and response variables” [32, 37].

ω̂2
〈fact〉 =

dffact(Ffact − 1)

dffact(Ffact − 1) +N
(1)

is an unbiased estimator of the variance components associated with the sources of variation in the design,
where Ffact is the F-statistics and dffact are the degrees of freedom for the factor while N is the total
number of samples.

The common rule of thumb [36] when classifying ω̂2
〈fact〉 effect size is: 0.14 and above is a large size

effect, 0.06–0.14 is a medium size effect, and 0.01–0.06 is a small size effect. ω̂2
〈fact〉 values could happen to

be negative and in such cases they are considered as zero.
A Type I error occurs when a true null hypothesis is rejected and the significance level α is the probability

of committing a Type I error. When performing multiple comparisons, the probability of committing a Type
I error increases with the number of comparisons and we keep it controlled by applying the Tukey Honestly
Significant Difference (HSD) test [19] with a significance level α = 0.05. Tukey’s method is used in ANOVA
to create confidence intervals for all pairwise differences between factor levels, while controlling the family
error rate; it is an effective method generally more powerful than other popular statistical methods like the
Bonferroni one [28]. Two levels u and v of a factor are considered significantly different when

|t| = |µ̂u − µ̂v|√
MSerror

(
1
nu

+ 1
nv

) > 1√
2
qα,k,N−k (2)

where µ̂u and µ̂v are the marginal means, i.e. the main effects, of the two factors; nu and nv are the sizes
of levels u and v; qα,k,N−k is the upper 100 ∗ (1− α)th percentile of the studentized range distribution with
parameter k and N −k degrees of freedom; k is the number of levels in the factor and N is the total number
of observations.
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3. Approach

3.1. Grid of Points

We consider three types of components of an IR system: stop list, stemmer and n-grams, and IR model.
We select a set of alternative implementations of each component and, by using the Lucene open source
system, we create a run for each system defined by combining the available components in all the possible
ways. The components we experiment are:

• Stop list (6 components): nostop, indri, lucene, smart, snowball, terrier;

• Stemmer (5 components): nolug, krovetz, lovins, porter, 5grams;

• Model (11 components): bm25, dfichi, dfiis, dfrinb2, dfrinexpb2, dfrinl2, iblgd, ibspl, lmd,
lmjm, lucene.

Stop lists differ in the number of composing terms: lucene has 33 terms, snowball has 174 terms, indri
has 418 terms, smart has 571 terms, and terrier 733 terms.

Stemmers can be classified into aggressive and weak stemmers. lovins [27] is the most aggressive
stemmer; porter [33] si weaker than lovins; krovetz [23] is as aggressive as porter and weaker than
lovins. When it comes to n-grams, we use n = 5, which is one of the best performing lengths according to
previous findings [16, 29].

The models we employ are classified into the three main approaches currently adopted by search en-
gines [35]: the vector space model [38] (lucene), the probabilistic model – comprehending the bm25

model [34], Divergence From Randomness (DFR) models [2] (dfrinexpb2 and dfrinl2), Divergence From
Independence (DFI) models [22] (dfichi and dfiis), and information-based models [9] ( iblgd and ibspl)
– and Language Models (LMs) [42] (lmd and lmjm). For all the models, we considered their off-the-shelf
implementation with default parameters.

More in detail, lucene is the classic similarity of Lucene5; dfichi is DFI model with normalized chi-
squared measure of distance from independence while dfiis is a DFI model with saturated measure of dis-
tance from independence; dfrinb2 is a DFR model with Inverse Document Frequency model with Bernoulli
after-effect and normalisation 2, dfrinexpb2 is a DFR model with Inverse Expected Document Frequency
model with Bernoulli after-effect and normalisation 2, and dfrinl2 is a DFR model with Inverse Document
Frequency model with Laplace’s law of succession after-effect and normalisation 2; iblgd is an information-
based model with log-logistic distribution, lambda as average number of documents where w occurs and
normalization 2 while ibspl is an information-based model with smoothed power-law (SPL) distribution,
lambda as average number of documents where w occurs, and normalization 2; finally, lmd and lmjm are
LMs with, respectively, Dirichlet and Jelinek-Mercer smoothing.

Overall, we create GoPs consisting of 6×5×11 = 330 system runs. They represent nearly all the possible
off-the-shelf configurations of Lucene made up with core components and thus provide quite an accurate
view on what is actually possible to achieve.

3.2. Data Fusion

We adopted basic data fusion techniques for two main reasons. Firstly, they typically improve over the
performance of the merged runs and thus this represents a further chance for off-the-shelf systems to get
closer to best TREC systems. Secondly, the Core Track guidelines limited submissions to 3 official runs for
each participant plus possibly 7 additional runs; clearly, the GoP above consisting of 330 systems does not
fit into these limits. Therefore, data fusion represents a way to “summarize” the runs in the GoP in order
to give their documents a chance for being pooled anyway.

We took two approaches to data fusion, one unsupervised and the other supervised.
As unsupervised approach, we merged the above GoP runs with the CombSum algorithm [18] using the

Min-Max normalization [24] (run ID ims cmbsum).

5https://lucene.apache.org/core/6_6_0/core/org/apache/lucene/search/similarities/ClassicSimilarity.html
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As supervised approach, we merged the above GoP runs with the Weighted CombSum algorithm [3]
using the Min-Max normalization. We trained the weighting for each pair of topics and runs by creating
another GoP with the same set of systems on the TREC 2004 Robust track collection [40], which uses the
same topics as the Core Track but a different set of documents.

Besides using Average Precision (AP) as weighting measure (run ID ims wcmbsum ap), as done in [3], we
also experimented with Precision at 10 (run ID ims wcs p10), Recall (run ID ims wcs recall), R-prec (run
ID ims wcs rprec),Rank-Biased Precision (RBP) [30] (run ID ims wcs rbp), Normalized Discounted Cumu-
lated Gain (nDCG) [20] (run ID ims wcs ndcg), Expected Reciprocal Rank (ERR) [8] (run ID ims wcs err),
and Twist [17] (run ID ims wcs twist).

Finally, since one of the goals of the Core Track was to retrieve as much unique relevant documents
as possible, we also tried a very simplistic approach merging different runs but pushing on top the unique
documents in this set of runs (run ID ims wcs ap uf). In particular, we adopted a two layers merging
approach to try to mitigate the noise at least a bit. Instead of directly merging the GoP runs, in the lower
layer we used the native Lucene merger6 which implements the CombSum algorithm without any score
normalization. We used it to merge the 11 IR models above for each combination of stop list and stemmer
but without 5-grams to further reduce noise. This originated a set of 6× 4 = 24 runs which then we merged
using AP Weighted CombSum with Min-Max normalization but putting on top the unique documents in
this set of 24 runs.

4. Implementation

We developed a library which acts a generic tool kit for creating GoPs using Lucene and then applying
different data fusion techniques. The library is open source and available at https://bitbucket.org/

frrncl/trec-core-2017 to ease the reproducibility of the experiments [11, 12].
The main challenges in developing this library were to have a simple and declarative way to define which

components have to be combined to create a GoP and, especially, scalability and efficiency issues to allow
the creation of hundreds of indexes and runs as well as merging hundreds of runs.

The simple declarative way to specify GoP components is achieved with a parametric Java properties
file where it is possible to specify lists of components, the Java classes which implement them, and input
parameters to them, such as the files containing the stop words.

When it comes to efficiency, the library allows us to create the indexes and then the runs in a multi-
threaded way by using thread pools with separate sets of workers for indexing and searching. The number
of workers and the memory allocated to each worker can be configured in the Java properties file mentioned
above.

Another scalability issue is related to the limits of the Java virtual machine and the garbage collector
which are put under pressure during the merging phase. Indeed, we needed to merge 330 runs of 250
topics each, retrieving 10,000 documents for each topic, amounting to 825,000,000 document identifiers to
be managed as Java String objects. In order to avoid the creation of so many Java objects as well as to
reduce the requested memory footprint, we implemented a caching mechanism for Java String objects in
order to return the same Java object when the same document appears in more runs and topics, instead of
creating a new String object for each these replicates.

The library is organized into the following packages:

• it.unipd.dei.ims.treccore.analysis: extends Lucene basic text processing components by adding
a generic analyzer for creating GoPs, n-grams, and the Lovins stemmer, wrapping the implementation7

of Eibe Frank at University of Waikato, New Zeland.

• it.unipd.dei.ims.treccore.index: provides a generic mechanism for developing parsers for exper-
imental collections and gives two concrete instances, a very basic one for TIPSTER, derived from
sample code8 by Ian Soboroff at NIST, USA, and one for the New York Times. These parsers re-

6https://lucene.apache.org/core/6_6_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html
7http://www.cs.waikato.ac.nz/~eibe/stemmers/
8https://github.com/isoboroff/trec-demo/blob/master/src/TrecDocIterator.java
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cursively index a directory tree containing the collection, processing a document at time. However,
due to need of producing hundreds of indexes and to avoid opening and closing millions of files, we
also developed pre-processing parsers which scan the whole directory tree, parse the documents, and
produce a single text file where each line is the pre-processed content of a document; in this way, the
subsequent indexers have to open just one single file for the whole collection and, apart from operating
system resources, this also saves a bit of time in terms of pre-processing.

• it.unipd.dei.ims.treccore.similarities: extends the Lucene similarities, i.e. the IR models, in
order to provide concrete instances for the DFR, DFI, LM and information-based models described in
Section 3 as well as instantiating the native Lucene merger with those IR models.

• it.unipd.dei.ims.treccore.search: extends Lucene searchers to allow its easy configuration in
order to create a GoP and working in a pool of threads.

• it.unipd.dei.ims.treccore.gop: manages the multi-threading approach and the pools of workers
needed for indexing and searching a GoP and it is the entry point for managing the GoP creation
process.

• it.unipd.dei.ims.treccore.merge: provides a generic infrastructure for developing data fusion
algorithms, both supervised and unsupervised, in an efficient way and contains several instantiations
of them; besides those used in the official runs described in Section 3, it also implements CombSum
with ZMUV normalization [31] and MapFuse [25].

• it.unipd.dei.ims.treccore.uniquerel: provides helper classes for counting unique relevant docu-
ments and conducting the analyses reported in this paper.

Finally, the above repository contains also a matlab folder containing all the Matlab9 code required
for conducting the the analyses reported in this paper. The Matlab code is based on the MATlab Toolkit
for Evaluation of information Retrieval Systems (MATTERS) library available at http://matters.dei.

unipd.it/.

5. Analysis

First, in section 5.1, we conduct a preliminary analysis of the 330 GoP runs, which constitute the basis
for the official runs submitted to the Common Core track. Then, section 5.2 analyses the official runs.

Section 5.3 uses the GoP runs to break-down the overall system performance into the contribution of
stop lists, stemmers, and IR models.

Finally, Section 5.4 uses the GoP runs to explore how the IR system components contributed to pools.
We adopt the official measures of the Common Core track, namely Average Precision (AP), P10, and

Normalized Discounted Cumulated Gain (nDCG); note that AP and nDCG are computed on the full ranked
result list, i.e. on the 10,000 returned documents. We also consider Recall, as additional measure, again
computed on the full ranked result list.

We use α = 0.05 as significance level.

5.1. GoP Runs

Table 1 reports the average performance of the GoP runs over the 50 topics assessed by NIST, showing the
minimum, maximum, mean and median performance while Figure 1 shows the boxplot of the performances
scores across the topics for each run and measures to give an idea of the distribution of the scores.

We can see how the GoP runs have reasonable performance in terms of AP, P10, and nDCG, as you can
expect from weak baselines, and quite good performance in terms of recall; this is also due to the very long

9https://www.mathworks.com/
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Average across topics
AP P10 nDCG Recall

Minimum 0.0998 0.2600 0.2422 0.5399
Mean 0.2114 0.4911 0.4383 0.7384
Median 0.2261 0.5280 0.4586 0.7496
Max 0.2634 0.6020 0.5059 0.8042

Table 1: Performance of the GoP runs over the 50 topics assessed by NIST.

AP
P1

0
nD

C
G

Re
ca

ll

GoP Runs
Figure 1: Box plot of the performance distributions of the GoP runs for the different evaluation measures.
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runs (10,000 retrieved documents) that give the opportunity to retrieve relevant documents also at very low
rank positions.

Overall, we can note how GoP runs are weak baselines mainly because how they rank the relevant
documents rather than not retrieving enough of them. We can also observe that we have the highest
variability with AP which has many more outliers than the other evaluation measures.

In order to assess the significant differences among the GoP runs, we use the GLMM shown in equation (3)
below, which breaks down the performance into a topic (τi) effect and a system effect (σj), as previously
done in the literature [6, 39] to conduct this kind of analysis:

Yij = µ·· + τi + σj + εij (3)

Tables from 1(a) to 1(d) report the results of the GLMM of equation (3) applied to all the GoP runs;
besides the ANOVA table, they also report the ω̂2

〈fact〉 effect size for the topic and system effects as well as
the number of significantly different system pairs according to the Tukey HSD test.

We can observe as, consistently with previous findings in the literature, both the topic and system effects
are statistically significant, for all the measures; moreover, they are large size effects and, as expected, the
topic effect is the most prominent one. We can also observe that, depending on the measure, between 1

4 and
1
3 of the system pairs are significantly different.

Since as it emerges in Section 5.3 and it is known from the literature [7], n-grams deteriorate retrieval
performances, we repeated the above analysis removing the runs containing the 5grams component, i.e.
using a smaller GoP consisting of 264 runs, in order to check that the spread in performance observed in the
above analyses is not mainly due to the 5grams component. Tables from 2(a) to 2(d) report the outcomes of
this analysis. We can observe both the topic and the system effects are statistically significant but while the
topic effect is still a large-size effect, the system effect is now a medium-size effect, close to a small-size one
in the case of AP and P10. Also, the number of significantly different system pairs has drastically reduced,
being between 2% and 3% of the total possible pairs, an order of magnitude less than in the previous case.
This clearly indicates that much of the variability was due to low performing n-grams while all the other
systems are somehow more homogeneous.

5.2. Official Runs

Table 4 reports the average performance of the official runs over the 50 topics assessed by NIST, where
the maximum score for each measure is highlighted in bold. It clearly emerges that ims wcs ap uf, i.e.
merging by putting unique documents first, does not work at all and it is a far too simplistic idea. The
training experiments on the TREC 2004 Robust track were not so negative but, in the training phase,
runs retrieved 1,000 documents while the Core Track runs retrieve 10,000 documents and this gives room
for much more noise, especially in the unique documents. ims wcmbsum ap, i.e. CombSum with Min-Max
normalization weighted by AP, is the best method in terms of AP and nDCG while ims wcs rbp is the best
one in terms of P10. We can also observe a kind of trend in the case of P10 where merging with weights
based on a more top-heavy measure (RBP, ERR, P10) works slightly better.

We applied the GLMM of eq. (3) to the official runs, excluding ims wcs ap uf which clearly performs
significantly worse than all the other runs. The ANOVA test reports significant differences among the
official runs (without ims wcs ap uf) and Tables from 4(a) to 4(d) show how runs are grouped according
to the Tukey HSD test. It emerges, consistently across all the evaluation measures, that weighted combsum
approaches are better than plain combsum, confirming previous findings in the literature, while there are
no significant differences among the measures used for weighting.

5.3. Grid of Points

We broke-down the contribution of the different components in the GoP – namely, stop lists, stemmers
and n-grams, IR models – according to the methodology we proposed in [14, 16].

We define a three factors design where we manipulate factors A, B and C corresponding to the stop lists,
the stemmers/n-grams and the IR models respectively; with this design we can also study the interaction
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(a) AP.

Source SS DF MS F p ω̂2
〈fact〉

Topic 626.2727 49 12.7810 2652.1999 0.0000 0.8873
System 28.5738 329 0.0869 18.0224 0.0000 0.2543
Error 77.6879 16121 0.0048
Total 732.5344 16499

Significantly Different Pairs 15,693 out of 54,285 possible pairs (28.91%)

(b) P10.

Source SS DF MS F p ω̂2
〈fact〉

Topic 972.6175 49 19.8493 766.1859 0.0000 0.6944
System 133.2276 329 0.4049 15.6310 0.0000 0.2258
Error 417.6416 16121 0.0259
Total 1523.4868 16499

Significantly Different Pairs 13,364 out of 54,285 possible pairs (24.62%)

(c) nDCG.

Source SS DF MS F p ω̂2
〈fact〉

Topic 788.9116 49 16.1002 2078.6696 0.0000 0.8605
System 71.2373 329 0.2165 27.9553 0.0000 0.3496
Error 124.8644 16121 0.0077
Total 985.01343 16499

Significantly Different Pairs 17,407 out of 54,285 possible pairs (32.07%)

(d) Recall.

Source SS DF MS F p ω̂2
〈fact〉

Topic 788.9116 49 16.1002 2078.6696 0.0000 0.8605
System 71.2373 329 0.2165 27.9553 0.0000 0.3496
Error 124.8644 16121 0.0077
Total 985.01343 16499

Significantly Different Pairs 12,937 out of 54,285 possible pairs (23.83%)

Table 2: ANOVA tables for the GLMM of eq. (3) on the GoP runs using different evaluation measures.
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(a) AP.

Source SS DF MS F p ω̂2
〈fact〉

Topic 559.48381 49 11.4180 4980.1578 0.0000 0.9487
System 2.6065 263 0.0099 4.3226 < e-5 0.0621
Error 29.5461 12887 0,0023
Total 591.6364 13199

Significantly Different Pairs 649 out of 34,716 possible pairs (1.87%)

(b) P10.

Source SS DF MS F p ω̂2
〈fact〉

Topic 920.3072 49 18.7817 1181.6869 0.0000 0.8142
System 19.1455 263 0.0727 4,5801 < e-5 0.0666
Error 204.8265 12887 0.0159
Total 1144.2793 13199

Significantly Different Pairs 855 out of 34,716 possible pairs (2.46%)

(c) nDCG.

Source SS DF MS F p ω̂2
〈fact〉

Topic 679.2036 49 13.8612 4621.3181 0.0000 0.9449
System 4.4164 263 0.0168 5.5985 < e-5 0.0839
Error 38.6536 12887 0,0030
Total 722.2736 13199

Significantly Different Pairs 1,184 out of 34,716 possible pairs (3.41%)

(d) Recall.

Source SS DF MS F p ω̂2
〈fact〉

Topic 674.8188 49 13.7718 3652.3937 0.0000 0.9313
System 8.5998 263 0.0327 8.6721 < e-5 0.1326
Error 48.5920 12887 0.0038
Total 732.0108 13199

Significantly Different Pairs 2,539 out of 34,716 possible pairs (7.31%)

Table 3: ANOVA tables for the GLMM of eq. (3) on the GoP runs without the 5grams component for different evaluation
measures.
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Run AP P10 nDCG Recall
ims cmbsum 0.2625 0.5720 0.5104 0.8092
ims wcmbsum ap 0.2795 0.5900 0.5223 0.8158
ims wcs ap uf 0.0400 0.0160 0.1361 0.8046
ims wcs err 0.2776 0.6000 0.5202 0.8151
ims wcs ndcg 0.2719 0.5840 0.5183 0.8158
ims wcs p10 0.2781 0.5980 0.5195 0.8146
ims wcs rbp 0.2794 0.6040 0.5197 0.8122
ims wcs recall 0.2704 0.5860 0.5171 0.8166
ims wcs rprec 0.2759 0.5880 0.5199 0.8147
ims wcs twist 0.2765 0.5920 0.5197 0.8159

Table 4: Average performance of the official runs over the 50 topics assessed by NIST. The maximum score of each column is
highlighted in bold.
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Figure 2: Box plot of the performance distributions of the official runs for the different evaluation measures.

between component pairs. The full GLMM model for the described factorial ANOVA for repeated measures
is:

Yijkl = µ···· + τi + αj + βk + γl︸ ︷︷ ︸
Main Effects

+ αβjk + αγjl + βγkl + αβγjkl︸ ︷︷ ︸
Interaction Effects

+ εijkl︸︷︷︸
Error

(4)

where: Yijkl is the score of the i-th subject in the j-th, k-th, and l-th factors; µ···· is the grand mean; τi
is the effect of the i-th subject, i.e. topics, where τi = µi··· − µ···· and µi··· is the mean of the i-th subject;
αj = µ·j·· − µ···· is the effect of the j-th factor, i.e. stop lists, where µ·j·· is the mean of the j-th factor;
βk = µ··k· − µ···· is the effect of the k-th factor, i.e. stemmers or n-grams, where µ··k· is the mean of the
k-th factor; and, γl = µ···l − µ···· is the effect of the l-th factor, i.e. IR models, where µ···l is the mean of
the l-th factor; εijkl is the error committed by the model in predicting the score of the i-th subject in the
three factors j, k, l. It consists of all the interaction terms between the subjects and the fixed factors, such
as (τα)ij , (τβ)ik and so on, plus the error εijkl which is an additional error due to uncontrolled sources of
variance.

Tables from 5(a) to 5(c) report the summary ANOVA tables for the conducted analyses on the different
evaluation measures. It emerges that stop lists, stemmers/n-grams, and IR models are always a significant
effect while only the interaction between stemmers/n-grams and IR models is significant. These results are
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(a) AP.

AP Systems Groups
0.2795 ims wcmbsum ap X
0.2794 ims wcs rbp X
0.2781 ims wcs p10 X
0.2776 ims wcs err X
0.2765 ims wcs twist X
0.2759 ims wcs rprec X
0.2719 ims wcs ndcg X X
0.2704 ims wcs recall X X
0.2625 ims cmbsum X

(b) P10.

P@10 Systems Groups
0.6040 ims wcs rbp X
0.6000 ims wcs err X
0.5980 ims wcs p10 X
0.5920 ims wcs twist X X
0.5900 ims wcmbsum ap X X
0.5880 ims wcs rprec X X
0.5860 ims wcs recall X X
0.5840 ims wcs ndcg X X
0.5720 ims cmbsum X

(c) nDCG.

nDCG Systems Groups
0.5223 ims wcmbsum ap X
0.5202 ims wcs err X
0.5199 ims wcs rprec X
0.5197 ims wcs twist X
0.5197 ims wcs rbp X
0.5195 ims wcs p10 X
0.5183 ims wcs ndcg X
0.5171 ims wcs recall X X
0.5104 ims cmbsum X

(d) Recall.

recall Systems Groups
0.8166 ims wcs recall X
0.8159 ims wcs twist X X
0.8158 ims wcs ndcg X X
0.8158 ims wcmbsum ap X X
0.8151 ims wcs err X X
0.8147 ims wcs rprec X X
0.8146 ims wcs p10 X X
0.8122 ims wcs rbp X X
0.8092 ims cmbsum X

Table 5: Tukey HSD Test for the GLMM of eq. (3) on the official runs for different evaluation measures..

partially discordant with previous findings [14, 16] where the only significant interaction effect was the Stop
List*IR Model one. Another difference with respect to our previous work is that now the stop list effect
is an extremely (almost negligible) small-size effect while before was a small to medium-size effect; also
stemmers/n−grams were small to medium size effects while now they are large-size effects.

Figure 3 shows the main effects plots for the stop lists, stemmers/n-grams, and IR models for the different
evaluation measures. Even in this case there are some discrepancies with respect to previous findings [14, 16].
Whilst the main effects of stop lists and stemmers present minor discrepancies, even if we used exactly the
same stop lists and stemmers as in the previous work, the relative ranking of IR models turns out to be
different, also among those models which are the same as in previous work.

Figure 4 shows the interaction effects plots for the stop lists, stemmers/n-grams, and IR models for the
different evaluation measures. As expected in the interaction between stemmers/n-grams and IR models,
we observe a noticeable difference between the group of stemmers and the n-grams, which greatly lower the
performance of all the models. However, also in this case, we observe different with respect to our previous
work. For example, the interaction between bm25 and nostop was negative and the absence of a stop list
lowered the performance while now it does not change much for bm25 whether a stop list is applied or not.

All these differences with respect to our previous work can be certainly due to the change in the experi-
mental collections but they could be also due to intrinsic differences between Lucene, used here, and Terrier,
used in previous work, even if many of the investigated components are the same.

5.4. Contribution of the Components to the Pool

In this section we try to analyze of the different components contribute to the pool or, more precisely,
how they retrieve relevant documents.

For each relevant document in the pool, NIST has provided the number of teams which have retrieved
that relevant document. Therefore, unique relevant documents are those retrieved by just one team (labelled
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(a) AP.

Source SS DF MS F p ω̂2
〈fact〉

Topic 626.2727 49 12.7811 2652.1999 0.0000 0.8873
Stop list 0.0922 5 0.0184 3.8251 0.0018 0.0008
Stemmer 25.7429 4 6.4357 1335.4788 0.0000 0.2444
IR Model 0.6560 10 0.0656 13.6134 < e-5 0.0076
Stop list*Stemmer 0.0244 20 0.0012 0.2535 0.9997 –
Stop list*IR Model 0.1235 50 0.0025 0.5127 0.9983 –
Stemmer*IR Model 1.9027 40 0.0476 9.8706 < e-5 0.0211
Stop list* Stemmer*IR Model 0.0321 200 0.0001 0.0333 1.0000 –
Error 77.6879 16121 0.0048
Total 732.5345 16499

(b) P10.

Source SS DF MS F p ω̂2
〈fact〉

Topic 972.6175 49 19.8493 766.1859 0.0000 0.6944
Stop list 0.2937 5 0.0587 2.2674 0.0451 0.0003
Stemmer 108.8487 4 27.2122 1050.3922 0.0000 0.2028
IR Model 12.1523 10 1.2152 46.9078 < e-5 0.0271
Stop list*Stemmer 0.2789 20 0.0139 0.5384 0.9520 –
Stop list*IR Model 0.7741 50 0.0155 0.5976 0.9893 –
Stemmer*IR Model 10.2303 40 0.2558 9.8723 < e-5 0.0211
Stop list* Stemmer*IR Model 0.6495 200 0.0032 0.1254 1.0000 –
Error 417.6417 16321 0.0259
Total 1523.4868 16499

(c) nDCG.

Source SS DF MS F p ω̂2
〈fact〉

Topic 788.9117 49 16.1002 2078.6696 0.0000 0.8605
Stop list 0.1710 5 0.0342 4.4152 0.0005 0.0010
Stemmer 64.2259 4 16.0565 2073.01818 0.0000 0.3344
IR Model 0.6950 10 0.0695 8.9728 < e-5 0.0048
Stop list*Stemmer 0.0331 20 0.0017 0.2136 0.9999 –
Stop list*IR Model 0.2140 50 0.0043 0.5526 0.9957 –
Stemmer*IR Model 5.8485 40 0.1462 18.8772 < e-5 0.0415
Stop list* Stemmer*IR Model 0.0498 200 0.0002 0.0322 1.0000 –
Error 124.8644 16321 0.0077
Total 985.0134 16499

Table 6: ANOVA tables for the GLMM of eq. (4) on the GoP runs using different evaluation measures.
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Figure 3: Main effects of stop lists, stemmers/n-grams and IR models for different evaluation measures.
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Figure 4: Interaction effects of stop lists, stemmers/n-grams and IR models for different evaluation measures.
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Source SS DF MS F p ω̂2
〈fact〉

Topic 9093454.0338 49 185580.6945 17803.7398 0.0000 0.7790
Stop list 1069.6607 5 213.9321 20.5236 < e-5 0.0004
Stemmer 153938.0836 4 38484.5209 3692.0241 0.0000 0.0563
IR Model 5838.2465 10 583.8247 56.0094 < e-5 0.0022
Team 8302968.0506 14 593069.1464 56896.2673 0.0000 0.7630
Topic*Team 20667655.8943 686 30127.7782 2890.3174 0.0000 0.8890
Stop list*Team 2520.2141 70 36.0031 3.4539 < e-5 0.0006
Stemmer*Team 201517.5295 56 3598.5273 345.2258 0.0000 0.0723
IR Model*Team 10204.1723 140 72.8869 6.9924 < e-5 0.0033
Error 2568449.7401 246405 10.4237
Total 41009345.9873 247439

Table 7: Four-way ANOVA of eq. (5).

1T); according to NIST data, the maximum is 15 teams retrieving a given relevant document (labelled 15T),
with all the other possible bins in-between.

We processed all the 330 GoP runs and counted, for each topic: how many 1T documents they retrieved
– i.e. documents retrieved by just one team; how many 2T documents they retrieved – i.e. documents
retrieved by just two teams; and so on up to how many 15T documents they retrieved.

We then analysed these data according to the following GLMM

Yijklm = µ····· + τi + αj + βk + γl + δm︸ ︷︷ ︸
Main Effects

+ τδim + αδjm + βδkm + γδlm︸ ︷︷ ︸
Interaction Effects

+ εijklm︸ ︷︷ ︸
Error

(5)

where, as above, τ is the topics effect, α is the stop list effect, β is the stemmer/n-gram effect, and γ is
the IR model effect while δ is the effect of the number of teams retrieving a given document, followed by
the interactions among these effects.

Table 7 reports the ANOVA table for the conducted analysis. We can see that all the main effects
are statistically significant, suggesting that all the components play a role in determining how relevant
documents are retrieved. When it comes to interactions, only the Stemmer*Team interaction is significant.

Figure 5 shows the main effects plots for stop lists, stemmers/n-grams and IR models. We can see how
all the stop lists give somehow similar contributions in terms of retrieved relevant documents, while n-grams
have the most negative impact, being krovetz and porter the best options among stemmers. When it
comes to IR models, the vector space model and the LM perform better than others.

6. Conclusions

We participated in the Core Track with the goal of getting a better understanding on how off-the-shelf
open source systems perform with respect to state-of-the-art TREC ones and how IR components contribute
to the pools.

To this end, we used Lucene to create a GoP of 330 runs, with different kinds of stop lists, stemmers/n-
grams, and IR models, basically representing almost everything you can get out-of-the-box from Lucene.
We also applied data fusion techniques on these GoP runs in order further improve the final performance.
We found out that the merged runs perform reasonably well, that there is not much difference among the
various fusion strategies adopted, and that putting unique retrieved documents first, without any further
care, was not effective at all.

We then analysed the GoP runs themselves to break-down their performance into those of their consti-
tuting components. We found some discrepancies with our previous work, which might be due to various
factors besides experimenting on a new collection. For example, previous work was build on Terrier while
here we experimented with Lucene. Therefore, we could have many differences, starting from tokenization
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Figure 5: Main effects of stop lists, stemmers/n-grams and IR models in terms or relevant documents retrieved.

and going onwards up to the implementation of the IR models. So, further investigation is needed in this
respect.

Finally, we started to envision a way to understand how component contribute to the pools and found
some preliminary results in terms of the effects of stop lists, stemmers, and IR models. Also in this case,
this is just an initial step and further modelling and analysis are needed.
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