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In this report, we discuss the experiments we conducted for the TREC 2017 Common Core Track. We implemented a
High-Recall retrieval system for assessors to e�ciently �nd relevant documents within a limited period of time. �e system
consists of an AutoTAR Continuous Active Learning (CAL) system based on paragraph/document level relevance feedback.
�e system also includes a search engine where users can repeatedly enter their own queries to �nd relevant documents.
For the �rst round of submissions, we used our system to judge 32,172 documents across 250 topics. �e system’s trained
model of relevance was used to rank all unjudged documents. A�er each judgment, our system can retrain the machine
learning model and rank the whole collection while maintaining interactive performance without any user discernible lag.
For the second round of submissions, we cra�ed a user study to measure the impact of interaction mechanisms on technology
assisted review and completed an initial version of the study with 10 users and 50 topics.

1 INTRODUCTION
�e task of TREC 2017 Common Core Track 1 is an ad-hoc retrieval of documents for a set of topics from the
New York Times dataset 2. Manually reviewing documents and labeling relevance always requires a lot of human
e�ort. �e objective of our system is to assist assessors in �nding as many relevant documents as possible within
limited time. In other words, the target is to achieve high recall with reasonable e�ort.

High-Recall retrieval addresses the problem of �nding as many relevant documents as possible with reasonable
e�ort in terms of time or budget. One example task is building a test collection for IR evaluation. Interactive
Searching and Judging (referred to as “ISJ”) is one of the e�ective methods to build test collections [4]. In ISJ,
assessors repeatedly reformulate new queries and review top ranked results from search engines. Compared to
traditional pooling method, ISJ can generate comparable gold standard with less e�ort [4, 10, 15].

AutoTAR — an implementation of Continuous Active Learning (“CAL”) protocol [4, 5] applies relevance
feedback and machine learning to �nd the most-likely relevant documents for assessment. �e TREC Total Recall
Track 2015 and 2016 evaluated di�erent retrieval methods with a simulated human-in-the-loop process to achieve
high recall [7, 9]. A baseline model implementation (“BMI”) based on AutoTAR was provided and served as
the baseline model in Total Recall Track 2015 and 2016. None of the submi�ed runs were able to consistently
outperform BMI [7, 9, 19]. �e BMI also showed its e�ectiveness on other tasks such as systematic review for
evidence based medicine [8] and nugget annotation [1].

Recently, Zhang et al. [17] used sentence-level feedback instead of document-level feedback in CAL to achieve
high recall. �eir results showed that by using sentence-level feedback only, achieved the same recall as using
document-level feedback, at the same amount of e�ort (number of judgments). If e�ort was measured by the
number of sentences reviewed, Zhang et al. [17] suggest using sentence-level feedback was far more e�cient
than document-level feedback.

However, sentence-level feedback on CAL as suggested by Zhang et al. [17] was only evaluated inside a
simulation study and not by human assessors. �e system was running over a prede�ned complete label set [9]
and all aspects of human interactions were simulated. For the TREC Common Core Track, we designed a system
1h�ps://github.com/trec-core/2017
2h�ps://catalog.ldc.upenn.edu/ldc2008t19
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for the human assessors to e�ciently �nd and assess documents. According to the two deadlines made by TREC
Common Core track, we designed a two step experiment. We �rst implemented a prototype system and judged
documents for 250 topics by ourselves. A�er verifying the e�ectiveness and e�ciency of the prototype system,
we improved the prototype system according to our own user experience and implemented an improved system.
�en 10 users were recruited to use the improved system to judge 50 NIST topics.

We designed our system with the following objectives:
• E�ectiveness: �e assessors should be able to easily �nd relevant documents using our system. Our

system combines the advantages of ISJ and CAL.
• E�ciency: Our system applies the relevance feedback from assessor to retrain the machine learning

model. �erefore it requires that the machine learning model to be retrained and the entire collection to
be re-ranked a�er each judgment while maintaining interactive performance with no user discernible
lag. Assessors should be able to quickly judge the document without the need to review its full content.
�e paragraph-length document summary and keyword highlighting features were provided to assist
assessment.

Our group (UWaterlooMDS) implemented an assessment system that included a search engine and a CAL-based
component. Using our system, we manually judged documents for all the 250 topics. In addition to judging
documents ourselves, we also cra�ed a user study and recruited 10 users to use di�erent variants of our improved
assessment system to judge 50 NIST topics. In total, we submi�ed 10 manual runs to TREC.

ALGORITHM 1: �e AutoTAR algorithm
Step 1. Find a relevant “seed” document using ad-hoc search, or construct a synthetic relevant document from the topic
description;
Step 2. �e initial training set consists of the seed document identi�ed in step 1, labeled “relevant”;
Step 3. Set the initial batch size B to 1;
Step 4. Temporarily augment the training set by adding 100 random documents from the collection, temporarily labeled “not
relevant”;
Step 5. Train an Logistic Regression classi�er using the training set;
Step 6. Remove the random documents added in step 4;
Step 7. Select the highest-scoring B documents for review;
Step 8. Review the documents, coding each as “relevant” or “not relevant”;
Step 9. Add the documents to the training set;
Step 10. Increase B by d B10 e;
Step 11. Repeat steps 4 through 10 until a su�cient number of relevant documents have been reviewed.

2 ASSESSMENT SYSTEM
We implemented a document assessment system with an online front-end interface accessible through a web
browser. �e system was composed of two components: Search model and CAL model. Each model has its
own interface that was used to assess documents. �e search model was built to allow users to query and search
for documents to judge. While in the CAL model, users were automatically presented with documents to assess.

�e search model consists of a search engine based on Indri [13] with the same retrieval and snippet generation
algorithms mentioned in Smucker et al. [12]. In the search interface, users can enter their own queries and
the top ranked documents retrieved by the search engine were shown to the users. Each document included
a title, a snippet, and three bu�ons for judging. �e three bu�ons corresponded to three relevance categories:
Highly-Rel, Relevant, Non-Relevant. Users can click on any of these bu�ons to make a judgment or change an
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existing judgment. Users can also click on a document to view its full content, search its content and make a
judgment.

�e CAL model is a variation of BMI. It returns a batch of most likely relevant documents to the user for
further review. Each time a user made a new judgment, the relevance judgment was used to retrain the machine
learning model, and a new batch of documents was returned and the next most-likely relevant document was
shown to the user for assessment. Judgments from both search interface and CAL interface were used to retrain
the CAL model. In the CAL interface, users can undo and change their previous judgments. Modi�ed judgments
are also used to retrain the CAL model.

Users were not limited to a single interface and can switch to any of the two interfaces at any moment. In both
interfaces, users were able to search and highlight desired keywords in the a document. Any word (or part of
a word) entered in the highlighting search bar is highlighted if it exists in the document’s body or title. In the
CAL interface, the highlighting persists across successive documents. To make the process of judging documents
faster and more e�cient, we introduced 3 keyboard shortcuts that corresponded to the three relevance categories.
Users can choose to click on any of the judging bu�ons to make a judgment.

Two versions of the system were implemented for the two di�erent submission deadlines of the TREC Common
Core track. For the �rst submission, a prototype system described in the next section was built. A�er the �rst
deadline, we made several improvements based on our experience with using the prototype system. �e improved
system was then applied in a controlled user study. Judgments collected from the user study were used to compose
runs for the second submission deadline.

2.1 Prototype system for the first submission
Our UWaterlooMDS team used the prototype system to �nd and judge documents for all the 250 topics. �e
judgments collected from the prototype system were used to compose three runs that were submi�ed to the TREC
Common Core track. Each component of the system is described in more details in the following subsections.

2.1.1 Search Model. �e search interface is shown in Figure 1. Users can enter their own queries in the search
bar. In the prototype system, search engine only retrieved the top 20 results for a given query. Pagination in
the search interface is not supported. Each result in the SERP (Search Engine Results Pages) is composed of
a document title, id and a snippet. To help users re�ne their search result, we allowed the following search
operators:

• Double quotes (“”): to search for an exact phrase or word. For example, “New York Times”.
• Plus sign (+): to require the presence of a word in the search result. For example, +France.
• Combination of + and “”: to require the presence of phrases in the search result. For example, +“New
York Times”.

�ree judgment bu�ons: “Relevant”, “On topic” and “Not relevant” are provided next to each result. In the
prototype system, the relevance categories are:

• Relevant: If the document directly addresses the core information need of the topic and covers all the
aspects of the topic.

• On topic: If the document only mentions partial information of the topic and does not address the
information need in the topic’s description or its narrative.

• Not relevant: If the document is not relevant to the topic.
Users can click on any of the judgment bu�ons from the SERP to make a judgment. Clicking on any of the

search result displayed a popup containing the full document. �e full document popup is shown in Figure 2. As
shown in the �gure, the title and the content of the document are present, along with the same judgments bu�ons
for judging the document. �e popup automatically closes once a judgment is made. Users can use the “Ctrl +
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Fig. 1. Search Interface layout in prototype system. The first two results shown in the SERP are “Relevant”, and third result
is “Not relevant“.

F” shortcut or enter any keywords in search box to highlight keywords in the document. Multiple keywords
separated by space can be entered to highlight each keyword simultaneously.

�e SERP may contain documents which have already been judged. �ese documents are visually labeled with
their current judgments as shown in Figure 1. Users may rejudge these documents.

2.1.2 CAL model. Unlike the search model where users have to enter their own queries and search for
documents, the CAL model automatically selected the most-likely to be relevant document and presented it to the
users for assessments. �e CAL model is a Continuous Active Learning system, which is based on the AutoTAR
baseline model implementation (“BMI”) 3. �e AutoTAR algorithm is described in Algorithm 1. �e original BMI
algorithm was wri�en in BASH, which is suitable for simulations but ine�cient for practical use. We rewrote the
BMI algorithm in C++ and made several improvements and changes for our prototype system:

• Seed query: In BMI, the syntactic seed query for the initial classi�er is the title of the topic. In our user
study, the seed query was entered by the users themselves. Users could enter any terms they believed to
be helpful and related to the topic.

• Batch size: In BMI, the batch size increases exponentially. We propose a real-time re-ranking CAL
system in our se�ing. �e system re-trains the model and re-ranks all the documents every time a new
judgment is available from the user.

3h�ps://plg.uwaterloo.ca/ gvcormac/trecvm/
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Fig. 2. Clicking at any result from Search Interface will show the full document judgment interface.

• In memory processing: Re-ranking 1.8 million documents is computationally expensive, especially
when it is done a�er every judgment. A signi�cant part of that computation is the score calculation
which is the inner product of a document feature vector and the model feature vector. To enable fast
re-ranking, we store all the document feature vectors in memory, and parallelize the computation across
documents.

• Documents Cache �eue: �e process of re-ranking may cause noticeable delay for users. Instead
of waiting for the ranking, we immediately show the user the next highest ranked document from the
current ranking. We maintain a queue of 10 documents in the order of their rank. �is queue is �ushed
and updated with a new ranking as soon as it is received from the back-end server.

• Logistic Regression: was done using So�a-ML4 with the same hyperparameters as the BMI.
�e judgment interface for the CAL model is shown in Figure 3. �e interface is similar to the full document

popup view in the search interface but has the following di�erences:
(1) We provided a document summary above the full document content. Snippet generation was based on

terms weighted by the CAL logistic regression model. Terms that are more relevant and informative to a
particular task get higher weights. We identi�ed the top 10 weighted terms.

Snippets are generated using the paragraph ranking algorithm described in section 9.6 in [2]. �e
algorithm selects a portion or a cover [u,v] of a document such that it contains at least k query terms.
Multiple such covers may exist and we �nd all of them. We also collect covers that contain at least two of

4h�ps://code.google.com/archive/p/so�a-ml/
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Fig. 3. CAL interface in the prototype system.

the query terms, by iterating over covers that contain 2 up to n terms where n is the number of terms in
the given query.

A snippet s of length l produced by query q is scored as follows:

p (t ) =
lt
lc

(1)

p (t , l ) = 1 − (1 − p (t )l ) (2)

score (s,q) =
∏
t ∈q

p (t , lenдth(s )) (3)

Here, p (t ) gives the prior probability for the appearance of a term t at any position in the corpus (lt is
the frequency of term t, whereas lc is the total number of words in the corpus). �us, p (t , l ) gives the
probability of a snippet of length l containing all the terms in the query q. A su�ciently large snippet
would contain all words with a high probability. �us, a shortest snippet s containing all the terms were
ranked the lowest, and represents the case where it was least likely to have all the terms, but still does.
�is makes the snippet interesting to us.

To create a summary, we selected the paragraph that contained the lowest scoring snippets. In
case snippet generated started at the end of a paragraph, and continued to the next, we selected both
paragraphs. We continued selecting the lowest scoring snippet till the length of the summary became at
least 500 characters long.
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(2) �e second di�erence is that users were allowed to view and modify their previous 10 judgments made
through the CAL interface. Users may want to modify their previous judgments in case they make
mistakes or if their understanding of relevance during assessments change.

2.2 User study system for the second submission

Fig. 4. CAL interface which shows paragraph with toggled full document in the user study system.

A�er we judged all the 250 topics using the prototype system described in Section 2.1, we improved our system
based on our own experiences and feedback on the prototype system. �e improved system was then applied to
a real user study of 10 participants. �e user study covered only 50 NIST topics. �e judgments collected in the
user study were then submi�ed as the second submission.

Changes made to the prototype system are described in the subsections below.

2.2.1 Modified Relevance Categories. We changed the relevance categories from {Relevant, On topic and Not
Relevant} to {Highly Relevant, Relevant and Not Relevant}. We followed the same de�nition of relevance de�ned
by Voorhees [16]: “Assume that you have the information need stated in the topic and that you are at home
searching the web for appropriate material.” and the same relevance categories:

• Highly Relevant: If the document directly addresses the core information need of the topic.
• Relevant: If the document contains information that you would �nd helpful in meeting your information

need.
• Not Relevant: If the document is not relevant to the topic.
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Fig. 5. CAL interface which only shows paragraph in the user study system.

2.2.2 Improved Search Options. We found the search model to be very helpful to �nd relevant documents
during the beginning stage of assessment (when few relevant documents are available in the CAL model). Search
was also very e�ective when the topic was hard (CAL model found only non-relevant documents). Instead of
restricting users to 20 search results, we added an option to set the number of returned results (10, 20, 50, 100) in
the search interface.

2.2.3 Improved CAL Model. For many topics in the prototype system, we realized the document summaries
selected using the methods in Section 2.1.2 were inadequate for our information need (i.e. Figure 3). For some
relevant documents, the displayed summary was not informative and lacked the necessary information to make
a judgment. We therefore decided to replace the document summary generation algorithm with the summary
selection method proposed in Zhang et al. [17] (i.e. Figure 5).

Instead of using a sentence as a summary of a document as proposed in Zhang et al. [17], we use paragraphs.
A single paragraph usually contains more context than a sentence, while still being signi�cantly shorter than the
full document. �e sentence feedback method proposed in Zhang et al. [17] was simulated on datasets from the
TREC Total Recall track. Providing a single sentence to judge a document can be limiting, as it is o�en short
in length and does not describe all aspects of the topic. However, paragraphs can provide more context and
information than a single sentence.

We made several changes to our CAL system to adapt to paragraph relevance feedback. We �rst extracted and
indexed all paragraphs from all the documents, and calculated the tf-idf features for each paragraph using the
same document frequency (df ) corresponding full documents (instead of counting each paragraph as a separate
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document). �e seed query, for which the initial classi�er for each topic was built, was composed of the topic’s
title and description. �e classi�er is initially trained with 100 randomly chosen documents that we label as
non-relevant. �e classi�er then ranks all documents paragraphs and select the highest ranking paragraph and
its corresponding document. �e highest ranking paragraph is then shown to the user for assessment.

We also provided the ability to view the full document content by clicking on the “View full document” bu�on
(Figure 4). Clicking the bu�on would display the full document content below the paragraph.

Upon making a judgment, the relevance of the paragraph and its corresponding document were sent to the
CAL model to retrain the classi�er. �en, the next most likely paragraph with its corresponding document was
selected from the remaining unassessed documents.

3 TWO STAGE ASSESSMENTS
As described in the Section 2, we designed two di�erent systems for the two TREC Common Core deadlines.
For the �rst deadline, six graduate students and one faculty member from the UWaterlooMDS team used the
prototype system described in Section 2.1 to judge documents for all the 250 topics. For our own assessments,
there was no time limit for single topic. �e assessors could judge as many documents as they want and were
free to use/switch between the search interface and the judging interface during the task.

We judged 31,661 unique documents for all the 250 topics and 6,854 unique documents for the 50 NIST topics.
We also calculated the time taken for judging any document. �is was done by calculating the di�erence between
the timestamps at which the server received two successive judgments. In cases where judgments lasted more
than 5 minutes, the judgment time for those documents were set to 5 minutes. We set the time spent to judge the
�rst document of every topic to the average judgment time for that task. �e average and median time for a
single judgment over all 250 topics were 13 and 4.1 seconds respectively. �e total time to judge all the 250 topics
was 115.9 hours. For the 50 NIST topics, we spent 25.4 hours in total. An average of 27.6 minutes was spent on
each topic.

For the second submission deadline, the improved user study system described in Section 2.2 was used to
collect users’ judgments in a controlled user study. We recruited 10 participants for the user study. We divided
the 50 NIST topics into 10 sets, with each set having 5 di�erent topics. Each participant judged 1 such set.

In order to compare the e�ectiveness and e�ciency of di�erent components of our interface, we designed 5
di�erent treatments. �ese treatments are described in Table 1. �e 5 treatments are described below:

• Para: Only the CAL model is active in this treatment. �e CAL interface shows a single paragraph from
the document for judgment, as shown in Figure 5.

• Search/Para: Both the search model and the CAL model are active in this treatment. �e CAL interface
shows a single paragraph.

• Para&Doc: Only the CAL model is active in this treatment. On the CAL interface, a single paragraph
from the document is shown by default. However, users are able to view the full document content by
clicking on the “View full document” bu�on, as shown in Figrue 4.

• Search/Para&Doc: Both the search model and the CAL model are active for this treatment. �e CAL
interface shows a single paragraph but users can view the full document content if they wish.

• Reference: We randomly sampled 60 documents for each topic. �e probability of each document being
sampled is based on the relevance of that document. �e interface shows the full documents one by one
in a randomized order.

We wrapped our online user study system into a JavaScript executable application using Electron 5. �e
purpose was to restrict participants from opening other applications/tabs while judging, and to allow us to be�er
measure the time spent judging each document. Upon opening the application, a full-screen view of our system

5h�ps://electron.atom.io/
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Table 1. The 5 treatments used in the user study and their corresponding features.

Treatments Search Model CAL model
showing Paragraph

CAL model
showing toggle
full document

Reference Model
showing full

document
Para 7 3 7 7

Search/Para 3 3 7 7

Para&Doc 7 3 3 7

Search/Para&Doc 3 3 3 7

Reference 7 7 7 3

is shown to the user. Users can exit the application by pressing the “ESC” keyboard bu�on. Prior to judging,
the participants completed a 1 hour in-lab tutorial on how to assess documents using the interface, relevance
de�nition, user study procedure and so on. Participants were asked to install the application on their laptops and
were instructed to complete the study at any time of the day but within 5 to 7 days. Each user had to �nish 5
tasks, with each task having 1 topic and 1 treatment. We made sure each user was given 5 di�erent topics and 5
di�erent treatments. Moreover, we ensured that over 10 users, we covered all 50 topics.

For all tasks under the Para, Search/Para, Para&Doc and Search/Para&Doc treatments, users were allocated 1
hour of active time. Active time is the amount of time a user spends interacting with the system. Any mouse
or keyboard action made within a 2 minute window contributes to the user’s active time. As for the Reference
treatment, users had to judge 60 documents without any time limit.

A�er analyzing the user study data, we found that the 10 users made a total of 8,093 judgments for all 50 topics.

4 COMPOSE SUBMITTED MANUAL RUNS
In total, we submi�ed 10 manual runs to TREC Common Core for the two submissions deadlines. �e �rst 3
runs were composed using our own judgments from the �rst assessment stage (prototype system) and were
submi�ed for the �rst deadline (June 18, 2017). For the remaining seven runs, they were based on a mix of our
own judgments and the judgments collected from the user study in the second assessment stage. �e seven runs
were then submi�ed for the second deadline (July 31, 2017). Table 2 shows a brief description of each run.

4.1 First Submission
4.1.1 UWatMDS TARSv1. �e classi�er was trained on positive examples (“Relevant” and “On Topic” docu-

ments) and negative examples (“Not Relevant” documents). �e classi�er then computed relevance score for each
document. �e unjudged documents were regarded as “Not Relevant”. �erefore, the “Not Relevant” documents
labeled by users were merged with unjudged documents.

For this run, every document was ranked using the tuple < relevance, score >. �e documents were �rst
ranked by “relevance” (where “Relevant” > “On-Topic” > “Not Relevant”), and then by the relevance scores. �e
top 10,000 ranked documents were selected to compose this run.

4.1.2 UWatMDS TARSv2. �is run is similar to UWatMDS TARSv1 except for the sample weights used for
training examples. A single training iteration in so�a-ml comprises of randomly sampling a positive and a
negative example denoted by vectors a and b. �e loss is computed over the di�erence of a and b [11]:

L(w, a, b) =
1

1 + e<w,a−b>
(4)

When using the sample weights sa and sb , we modi�ed the loss function to
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L(w, a, b, sa , sb ) =
1

1 + e<w, |sa |a−|sb |b>
(5)

During classi�er training for UWatMDS TARSv1, “Relevant” and “On-Topic” documents were treated as a
positive example (weiдht = 1), and “Non Relevant” documents were treated as a negative example (weiдht = −1).
For this run, we experimented with various weights corresponding to each relevance label. Each parameter
choice was evaluated using Mean Average Precision. We performed k-fold cross validation (k = 5) to select
the best weight combination for each topic, which was used to train the �nal classi�er for that topic. �e run
generation was performed in the same way as UWatMDS TARSv1.

4.1.3 UWatMDS HT10. �is run used the same classi�er used in UWatMDS TARSv1. Documents were
ranked by its relevance score. For this run, 10 documents of each topic were randomly sampled according to
the probability estimated by the Horvitz–�ompson estimator [14, 18]. In our se�ing, the probability of each
document being relevant was set to the reciprocal rank based on its classi�cation score. �e remaining 9990
documents in this run were selected based on their classi�cation scores.

4.2 Second Submission
�e second submission contained 7 runs. �e judgments used for the second submission are described below:

Table 2. Brief description of the 10 submi�ed runs to TREC. Three sources of judgments were used to compose the runs. “G”
judgments set were generated from Grossman and Cormack [6]. “M” judgments set were generated from the UWaterlooMDS
team during the first assessment phase. “U” judgments set were generated from 10 participants of the user study during the
second assessment phase.

Runs Judgments Topics Precedence Description
G M U

UWatMDS TARSv1 3 250 1 Ordered by {Rel, On-Topic, No-Rel} and
each set was ranked by classi�cation score.

UWatMDS TARSv2 3 250 3 Ordered by {Rel, On-Topic, No-Rel} and
each set was ranked by tuned classi�cation score.

UWatMDS HT10 3 250 2 Top 10 docs are sampled by HT Estimator and
the rest are ranked by classi�cation scores.

UWatMDS ustudy 3 NIST 50 1 Ordered by {Highly-Rel,Rel, No-Rel} and each
set was ranked by classi�cation score.

UWatMDS AFuse 3 3 250 3 RRF Fusion of two rank lists from
judgments in G, and M.

UWatMDS AUnion 3 3 250 3 Ranked by classi�er built on
union of judgments in G, and M.

UWatMDS AWgtd 3 3 250 3 Ranked by weighted classi�cation score.

UWatMDS BFuse 3 3 3 NIST 50 2 RRF Fusion of three rank lists using judgments
from G, M, and U.

UWatMDS BUnion 3 3 3 NIST 50 2 Ranked by classi�er trained on union of
judgments from G, M, and U.

UWatMDS BWgtd 3 3 3 NIST 50 2 Ranked by weighted classi�cation score.
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• “G”: is the relevance set generated from Grossman and Cormack [6]. Grossman and Cormack [6] used a
variation of CAL and manually judged documents for 250 topics. �ey used binary relevance — relevant
and non relevant to label each judged document.

• “M”: is the relevance set generated from UWaterlooMDS team in the �rst assessment stage.
• “U”: is built out of data collected using the �ve interface treatments from the user study experiment over

the 50 NIST topics and 10 users.
UWatMDS ustudy run was composed based on the judgments set “U” which was derived from real users’

judgments. �e six other runs investigated ways to use multiple judgments to produce a ranking. �ree runs
used the “G” + “M” relevance judgment sets (250 topics). �e remaining runs used “G” + “M” + “U” (50 NIST).
Judgment sets were merged using one of the three strategies:

• Union: A document is considered relevant if at least one relevance set marked it as relevant.
• Weighted: �e judgment labels for documents are converted to integer labels: 0, 1, 2 for “M” and “U”,

and 0, 1 for “G”. For any document, the new label is the sum of individual integer labels. �e sample
weights for each �nal integer label was determined using the same approach used in UWatMDS TARSv2.
• Fusion: A classi�er is trained on each judgment set (e.g. classi�er for “G”, classi�er for “M” and classi�er

for “U”) and each classi�er is used to produce a rank list r . Every document d in the document set D has
a rank r (d ) in rank list r . �ese rank lists R for di�erent classi�ers are fused into a �nal ranking using
Reciprocal Rank Fusion [3]. �e documents in the fused rank list are ordered based on their RRFscore as
shown in Formula 6. In our experiment, k is set to 60.

RRFscore (d ∈ D) =
∑
r ∈R

1
k + r (d )

(6)

4.2.1 UWatMDS ustudy. �is run was built the same way as UWatMDS TARSv1 but using the judgments “U”
from user study. �e classi�er was trained on positive examples (“Highly Relevant” and “Relevant” documents)
and negative examples (“Not Relevant”). �e classi�er computed classi�cation score for each document. �e
unjudged documents were regarded as “Not Relevant”.

For this run, every document was ranked using the tuple < relevance, score > as the key (where “Highly
Relevant” > “Relevant” > “Not Relevant”). �e ranking strategy is the same as the run UWatMDS TARSv1. �e
top 10,000 ranked documents were selected to compose this run.

4.2.2 UWatMDS AFuse. Two di�erent classi�ers were built from the judgment “G” and “M” on 250 topics
separately. Two ranked lists of documents were generated from these two classi�ers and merged using reciprocal
rank fusion.

4.2.3 UWatMDS AUnion. Judgment sets “G” and “M” were merged using the Union strategy. For each topic,
a classi�er was trained using the merged judgment set and the resulting rank lists were used to compose the run.

4.2.4 UWatMDS AWgtd. Judgment sets “G” and “M” were merged and classi�ers were trained using the
Weighted strategy.

4.2.5 UWatMDS BFuse. �ree di�erent classi�ers were built from the judgments set: “G” and “M” and “U” on
50 NIST topics separately. �ree rank lists of documents were generated from these three classi�ers separately.
We fused these three rank lists using reciprocal rank fusion to compose this run.

4.2.6 UWatMDS BUnion. We merge the three judgments sets “G”, “M” and “U” using the union strategy. We
built a classi�er using the merged judgment set and the resulting rank list was used to compose the run.

4.2.7 UWatMDS BWgtd. Judgment sets “G”, “M” and “U” (50 NIST topics) were merged and classi�ers were
trained using the Weighted strategy.
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Table 3. MAP, NDCG, P@10 and Recall@1000 for the 10 submi�ed runs evaluated on the NIST 50 topics only. The AP of each
topic from every run is compared with the median AP from Manual Routing runs, Automatic Routing runs and Automatic
Non-Routing runs, separately. The right side of the table shows the number of topics on each run with an AP greater than or
equal to the median AP of the 3 di�erent routing categories.

Runs MAP NDCG P@10 Recall@1000 Contributed
to the pools

# Topics with >= Median AP
Manual Ad Hoc Auto Routing Auto Ad hoc

UWatMDS TARSv1 0.46 0.70 0.83 0.77 3 39 40 45
UWatMDS TARSv2 0.44 0.68 0.81 0.75 7 32 38 43
UWatMDS HT10 0.41 0.67 0.46 0.77 7 28 36 39
UWatMDS ustudy 0.32 0.57 0.65 0.68 3 17 20 37
UWatMDS AFuse 0.43 0.68 0.71 0.81 7 42 37 46

UWatMDS AUnion 0.40 0.65 0.65 0.77 7 30 29 42
UWatMDS AWgtd 0.40 0.66 0.68 0.79 7 33 27 40
UWatMDS BFuse 0.44 0.69 0.73 0.82 3 45 38 46

UWatMDS BUnion 0.38 0.64 0.64 0.77 3 28 27 40
UWatMDS BWgtd 0.42 0.66 0.74 0.78 3 36 32 44

Table 4. Results of the di�erent treatments from the user study over the NIST 50 topics. Every treatment covers 10 di�erent
topics, with no overlapping topics among treatments. The total number of judged documents, highly relevant, relevant and
non-relevant documents judged by users using each treatment are shown. We also calculated the total number of True
Positive (TP), averaged True Positive Rate (TPR) and averaged False Positive Rate (FPR) for each treatment based on the gold
standard — NIST qrels. For all treatments except for the Reference, we only count judgments made from the start of a topic’s
task to the end of the first hour of active judging (inactivity time was not counted). Few users have spent more than 1 hour
on some tasks but their judgments a�er the first hour were not counted. Tasks under the Reference treatment were not
time-limited (users only needed to judge 60 sampled documents for the task’s topic).

Treatments #Highly-Rel
by users

#Rel
by users

#Non-Rel
by users

#Highly-Rel
& Rel

by users

#Total
judged

by users

TPR
vs.

NIST

FPR
vs.

NIST

TP
vs.

NIST
Para 324 528 1410 852 2262 0.56 0.43 453

Search/Para 468 333 553 801 1354 0.72 0.62 403
Para/Doc 179 349 2168 528 2696 0.85 0.49 263

Search/Para+Doc 219 236 333 455 788 0.70 0.53 200
Reference 72 91 437 163 600 0.86 0.51 83

5 RESULTS AND DISCUSSION
We summarize our results in Table 3. Out of our 10 runs, only half of them contributed to the judgment pools.
Among all the manual-non-routing runs, our runs had the highest average precision for 45 of the 50 topics. Among
our runs, UWatMDS TARSv1 achieved the highest MAP, NDCG and P@10 scores. It is worth mentioning that
UWatMDS TARSv1 was built only using the judgment set M. UWatMDS BFuse achieves the highest recall@1000
among all our runs. As described in Section 4.2, UWatMDS BFuse used the RRF fusion of rank lists obtained from
three classi�ers (each trained on judgment set “G”, “M” and “U”, respectively). Compared to UWatMDS BUnion
and UWatMDS BWgtd which also used the same judgment sets, RRF fusion was able to build a run with higher
MAP, NDCG, P@10 and recall. We also observe that UWatMDS AFuse performs be�er than UWatMDS AUnion
and UWatMDS AWgtd runs. Runs submi�ed to TREC Common Core for evaluation have three di�erent categories
depending on whether the runs used judgments from past tracks: Manual Ad hoc runs, Automatic Routing
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runs and Automatic Ad hoc. Our runs fall under Manual Ad hoc since we did not use any judgments from
past tracks. For each topic, we compare AP of our runs with the median AP of all the submi�ed runs. We observe
that UWatMDS BFuse and UWatMDS TARSv1 runs perform relatively be�er than our other runs based on the
number of topics with AP greater than or equal to the median.

We also show the results of di�erent treatments from user study in Table 4. For each treatment, we calculated
the number of judged documents across each relevance category. We observe that Para can help users �nd the
more documents which are marked as Highly Relevant and Relevant by users within limited time. We evaluate
the user study data using the gold standard - NIST qrels and measure the number of True Positives (documents
considered relevant by the users and the NIST assessors). Tasks under the Para treatment retrieved the most
number of relevant documents. In addition to TP, we also measure the True Positive Rate (TPR) and False Positive
Rate (FPR). Tasks under the Para treatment have the lowest FPR.
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