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Abstract

In this paper, we describe the system designed for the TREC
2017 Precision Medicine track by the University of Texas
at Dallas (UTD) Human Language Technology Research In-
stitute (HLTRI). Our system incorporates an aspect-based
retrieval paradigm wherein each of the four structured com-
ponents of the topic is cast as a separate aspect, along with
two “hidden” aspects encoding the need that retrieved docu-
ments be within the domain of precision medicine and that
retrieved documents have a focus on treatment. To this end,
we construct knowledge graph encoding the relationships be-
tween drugs, genes, and mutations. Our experiments reveal
that the aspect-based approach leads to improved quality of
retrieved scientific articles and clinical trials.

1 Introduction

One of the aims of the National Institutes of Health (NIH)
Precision Medicine Initiative is to investigate how a person’s
genome can inform the treatment of his or her disease. It
is hoped that understanding which specific genetic varia-
tions contribute to the pathologic process will enable specific
drugs to be targeted against those genetic anomalies to pre-
cisely manage a patient’s disease. Malignant diseases, in par-
ticular, have been found in many cases to be associated with
a relatively few number of genetic anomalies. Consequently,
these diseases are particularly susceptible to a strategy of
precise treatment. This has lead to the design of many drugs
capable of targeting important genes – and even specific
genetic mutations.

However, as the number of available drugs has multiplied,
and as their genetic specificity has increased, it has become
increasingly difficult for clinicians to sift through the med-
ical literature to identify potentially useful highly-precise
anti-tumor agents. Another consequence of the explosion
in the number of gene-targeting drugs is the increase in the
number of clinical trials investigating their efficacy against
malignancy. Thus, it is becoming increasingly challenging
for cancer patients and clinicians to identify drug trials for
which they might be eligible.

Topic 4

Disease: Breast cancer
Gene(s): FGFR1 Amplification, PTEN (Q171)
Demographics: 67-year-old female
Other: Depression, Hypertension, Heart Disease

Figure 1. Example of a topic evaluated in the 2017 TREC
Precision Medicine Track.

The 2017 Text REtrieval Conference (TREC) Precision
Medicine Track aims to address the important clinical chal-
lenge of providing useful precision-medicine related informa-
tion to clinicians treating patients with cancer. Specifically,
participants are invited to devise automatic and/or manual
systems capable of (1) obtaining pertinent scientific articles
from the medical literature describing the precise treatment
of tumors exhibiting specific genetic mutations of alterations;
and (2) identifying clinical studies in the National Library of
Medicine (NLM)’s ClinicalTrals.gov database that investigate
drugs targeting the patient’s malignancy and for which the
patient might be eligible.

In this paper, we present our system designed for the TREC
2017 Precision Medicine Track. As the track specifically em-
phasizes that retrieved scientific articles and clinical trials
should have a focus on treatment, we cast both tasks as a
hybrid question answering (Q&A) and information retrieval
(IR) problem. Formally, we consider the topic (as exemplified
in Figure 1) to be asking an implicit question,What is the best
treatment for the patient described by the topic? To answer
this question, we adapt techniques for Q&A from knowledge
bases by generating and using a knowledge graph encoding
relationships between drugs, genes, and mutations. This al-
lows us to retrieve articles discussing both the topic and its
inferred answers by incorporating an aspect-based retrieval
strategy based on rank fusion.
The remainder of this paper is organized as follows: Sec-

tion 2 describes the data evaluated in the 2017 TREC Preci-
sion Medicine track, Section 3 details our approach, Section
4 describes each of the runs we submitted, Section 5 reports
initial results, and Section 6 summarizes the conclusions.
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Figure 2. Architecture of Multi-task Retrieval System

2 The Data

Two separate document collections were used for the Preci-
sion Medicine track: scientific abstracts and clinical trials.

2.1 Scientific Abstracts

The scientific abstracts considered in Task A originated from
two sources: (1) MEDLINE abstracts, and (2) Conference
Proceedings.

MEDLINE Articles A January 2017 snapshot of MEDLINE
abstracts was used for the scientific abstracts. The task orga-
nizers provided both a rich XML and simple textual represen-
tation for all abstracts. In this work, we considered the XML
representation which provided, in addition to the textual
content of the article, a variety of metadata including Med-
ical Subject Headings (MeSH), keywords, and a controlled
vocabulary of studied chemical compounds.

Conference Proceedings Because many of the topics eval-
uated in TREC PM were highly specific, the organizers also
included abstracts of articles published in the proceedings of
the annual meetings of the American Association for Cancer
Research (AACR) and American Society of Clinical Oncol-
ogy (ASCO). These articles were included with the intent to
provide potentially relevant reports/articles describing pre-
cision medicine studies which are not included in MEDLINE.
It should be noted that only a simple textual representation
of articles presented at AACR/ASCO was available.

2.2 Registered Clinical Trials

For Task B, a snapshot of ClinicalTrials.gov obtained in April
2017 was considered. As with MEDLINE, both a rich XML
and simple textual representation of each clinical trial was
provided by the organizers. In this work, we considered the
XML representation.

3 The Approach

Our system, illustrated in Figure 2, includes both “on-line”
steps (i.e., steps applied for each topic) and “off-line” steps
(steps applied before any topics are considered). In terms of
on-line processing, the system has three mandatory steps:

1. Topic Analysis. The structured information of a given
topic is analyzed to determine its main components or
aspects;

2. Topic Expansion. The various aspects of the topic are
expanded using external resources;

3. Document Retrieval. The aspects of the topic are rep-
resented as queries, and a set of ranked documents,
i.e., scientific articles or clinical trials (depending on
whether the system is configured for Task A or B), is
retrieved; and

as well as two “optional” steps designed to improve the qual-
ity of retrieved documents:

4. Aspect Fusion (Optional). The ranked documents sepa-
rately retrieved for each aspect of the topic are com-
bined or fused together;
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5. Similarity Fusion (Optional). The ranked documents
retrieved using multiple similarity measures (i.e., rele-
vance models) are fused together.

In terms of off-line processing, the system relies on the avail-
ability of three data structures: (a) the Precision Medicine
Drug Graph (PMDG), (b) an index of scientific articles, and
(c) an index of clinical trials. In the remainder of this section
we describe the off-line steps used to create the above data
structures, followed by the on-line steps of our system.

HER2

Gleevec
imatinib

lapatinib
neu

T790M

EGFR

Figure 3. Examples of relations in the Precision Medicine
Drug Graph (PMDG).

3.1 Building the Precision Medicine Drug Graph

Knowledge about the interactions between disease, genes,
and drugs is available in a large variety of disconnected
knowledge bases. Consequently, to unlock this knowledge,
we create a unified knowledge graph which we refer to as
the Precision Medicine Drug Graph (PMDG). The PMDG
aggregates a subset of information from a variety of knowl-
edge sources, including the Catalogue of Somatic Mutations
in Cancer (COSMIC) [8], FDA Labels, as well as the 15 data
sources incorporated within the Drug-Gene Interaction Data-
base (DGIdb) [9].

Illustrated in Figure 3, the PMDG represents drugs, genes,
and mutations as nodes. The PMDG encodes both binary re-
lations such as HER2

Has-Synonym−−−−−−−−−−→ neu, as well as ternary re-
lations such as (EGFR, T790M) CONFERS-RESISTANCE−−−−−−−−−−−−−−−−−→ imatinib.
Specifically, the PMDG encodes four types of relations: (1)
drug synonyms, (2) gene synonyms, (3) that a gene and locus
confer resistance to a drug, and (4) that a drug can target
(e.g. regulate) a specific gene and (possibly) a locus. In our
system, the PMDG is used for both Topic Analysis and Topic
Expansion.

3.2 Indexing the Data

We maintain two separate indices corresponding to the two
tasks evaluated in the track.

3.2.1 Indexing for Task A

For task A, we maintain an tiered index including both MED-
LINE articles and articles published in AACR/ASCO Pro-
ceedings. Because the MEDLINE articles are available in
a rich XML format and the AACR/ASCO proceedings are
only available as text, the indexing strategy varies for each
dataset.

IndexingMEDLINEArticles TheNational Library ofMedicine
(NLM) provides an abundance of metadata about each article
indexed in MEDLINE. In this work, we indexed a total of
eight fields of metadata:

• PubMed ID (PMID): the unique identifier assigned to
each document in MEDLINE, used as the document ID
for TREC PM submissions;

• Journal Title: the NLM version of the International
Standards Organization (ISO) abbreviation of the title
of the journal containing the article;

• Publication Date: the date the article was submitted
to MEDLINE (specifically, the date when MEDLINE
processing began for the article);

• Article Title: the (possibly-translated) title of the article;
• Publication Type(s): theMedical Subject Headings (MeSH)
[11] unique identifiers for all publication types associ-
ated with the article;

• MeSH Term(s): the MeSH terms associated with the
article;

• Chemical Compound(s): the MeSH terms associated
with all registered chemical compounds associated
with the article; and

• Abstract Text: the full text of the abstract (note: struc-
tured abstracts are combined into a single passage).

IndexingAACR/ASCOProceedings BecauseAACR/ASCO
Proceedings were only available in a simple text format, we
were only able to index a subset of the fields indexed for
MEDLINE articles:

• Article ID: the filename of the abstract as provided by
the organizers, used as the document ID for TREC PM
submissions;

• Journal Title: the name of the conference;
• Publication Date: the year of the conference;
• Article Title: the title of the article; and
• Abstract Text: the unstructured text of the article;

3.2.2 Indexing for Task B

Task B relied on an index of clinical trials registered in Clini-
calTrials.gov. While an abundance of metadata is available
for each clinical trial, much of the metadata is represented as
un-normalized free text, including date expressions, investi-
gator names, descriptions of patient eligibility, etc. Producing
the Clinical Trial index, consequently, entails two steps: (1)
pre-processing each clinical trial, and (2) indexing each clin-
ical trial.
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Pre-processing Clinical Trials We observed three main
inconsistencies in the metadata associated with each clinical
trial on ClinicalTrials.gov:

1. Processing Investigator Names. Although the registry
includes separate fields for the first, middle, and last
name of each investigator, many investigators were
provided with no first name, no middle name, and their
entire name as the last name. If an investigator had no
provided first name, we relied on a series of rules to
try to recover the first and last names of investigator
from the provided names.

2. Normalizing Temporal Expressions. We found that min-
imum/maximum eligibility age was expressed in a va-
riety of ways, e.g., by years, months, weeks, or even
days. Moreover, the start date was provided in a va-
riety of inconsistent formats. To account for this, we
normalized temporal expressions using Natty1.

3. Recognizing Inclusion and Exclusion Criteria. The struc-
tured data associated with each clinical trial includes
a single unstructured field containing all eligibility
criteria. To distinguish between inclusion and exclu-
sion criteria, we used a simple rule-based strategy for
distinguishing between sections of the eligibility cri-
teria field that describe inclusion and exclusion crite-
ria. Moreover, to account for the role of negation, we
applied negation span detection using LingScope[1].
By detecting negation spans, we were able to parse
negated inclusion criteria as exclusion criteria and
negated exclusion criteria as inclusion criteria.

Indexing Clinical Trials When indexing clinical trials,
we considered a tiered index encoding multiple fields of
metadata:

• NCT ID: The unique identifier associated with each
clinical trial in ClinicalTrials.gov, used as the document
ID for TREC PM submissions.

• Brief Title: A brief summary of the clinical trial;
• Official Title: The official detailed title of the clinical
trial;

• Summary: A summary of the role and purpose of the
clinical trial;

• Description: A detailed description of the clinical trial
including the goals, study design, and experimental
setup;

• Studied Condition(s): The medical conditions studied
in the trial;

• Condition MeSH Term(s): MeSH terms associated with
the conditions studied in the trial (if any);

• Studied Intervention(s): The medical interventions (if
any) evaluated in the trial;

1http://natty.joestelmach.com/

• Studied Intervention Type(s): The type of medical in-
terventions evaluated in the trial (e.g., genetic, drug,
etc.);

• Intervention MeSH Term(s): MeSH terms associated
with the interventions evaluated in the trial (if any);

• Minimum Age: The minimum age of eligible partici-
pants (if provided);

• Maximum Age: The maximum age of eligible partici-
pants (if provided);

• Eligible Gender(s): The eligible gender(s) of partici-
pants;

• Inclusion Criteria: Unstructured textual representation
of all inclusion criteria parsed from the Eligibility Cri-
teria of the trial; and

• Exclusion Criteria: Unstructured textual representation
of all exclusion criteria parsed from the Eligibility Cri-
teria of the trial.

3.3 Topic Analysis

Because the topics evaluated in the 2017 TREC PM task
correspond to complex semi-structured medical cases, deter-
mining the relevance of a document (i.e. scientific article or
clinical trial) to a topic requires accounting for many differ-
ent aspects. In this, we consider a total of six aspects of the
topic: four corresponding to the four semi-structured fields
of the topic, and two additional implied or “hidden” aspects.
The four explicit aspects are represented as follows:

1. Disease Aspect: The disease (a type of cancer) is
represented as a 2-tuple (pair) containing (1) the lit-
eral/surface form of the disease included in the topic,
and (2) the set of zero or more concept unique identi-
fiers (CUIs) in the Unified Medical Language System
(UMLS) [3] corresponding to the disease. To identify
the concepts in UMLS corresponding to each disease,
we used a simple pattern-matching approach relying
on the surface form of the disease and any matching
atoms in UMLS;

2. Genetic Aspect: Because a topic may indicate more
than one genetic variant, we represent each genetic
variant as a 3-tuple consisting of (1) the name of the
gene, (2) the type of mutation, and (3) the locus of the
mutation (if provided). The mutation type was deter-
mined using a small number of lexical patterns; the set
of mutation types considered by our approach are: (1)
amplification, (2) duplication, (3) translocation,
(4) deletion, (5) point-mutation, (6) inactivation,
and (7) unspecified;

3. Demographic Aspect: The demographic aspect of
the topic was represented as a 2-tuple corresponding
to two facets of demographic information, the patients
age, and the patients gender; and

4. OtherAspect: The “other” aspect contains the set of
medical problems (i.e., diseases, disorders, syndromes)
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provided by the TREC organizers for each topic. These
typically include diseases which may affect the eligi-
bility of a patient in a trial, or the efficacy of certain
targeted treatments.

To account for the requirement that retrieved documents
have a focus on targeted treatment and precision medicine,
we considered to additional “hidden” aspects of each topic.

5. Precision Medicine Aspect: This aspect indicates
that retrieved documents must fall within the domain
of precision medicine to be considered relevant; and

6. Treatment Aspect: This aspect indicates that re-
trieved documents must have a focus on treatment,
and cannot be simple observational studies. To repre-
sent this aspect, we relied on the information encoded
in the PMDG. Specifically, the treatment aspect is rep-
resented as a 2-tuple including (1) drugs targeting any
gene/mutation in the topic, (2) any drugs that any
gene/mutation in the topic confers resistance against.

Together, these six aspects are used to represent the diverse
information needs expressed by each topic.

3.4 Topic Expansion

To account for the complexity of medical language in scien-
tific articles and clinical trials, we incorporate query expan-
sion techniques to expand (1) the medical problems within
the disease and other aspects of the topic, (2) each genetic
variant, and (3) any drugs in the treatment aspect of the
topic.

Expanding theDisease andOtherAspects. To account for
the role of synonymy in scientific articles and clinical trials,
we incorporate two forms of query expansion: (a) we identify
synonyms for each medical problem using UMLS and (2) we
discover hyponyms using the Systematized Nomenclature
of Medicine – Clinical Terms (SNOMED CT)[6].

Expanding the Genetic Variations. Because genetic infor-
mation can be described in a variety of ways, we expand
each gene itself so as to include gene synonyms using the
Precision Medicine Drug Graph (PMDG). We expand the
mutation type to include basic synonyms. Finally, we expand
the locus of each mutation by (1) expanding the amino acids
to their three-letter abbreviations and (2) adding the protein
identifier “p.” commonly used to indicate mutation loci in
the literature.

Expanding Drugs. We expand drugs to include both brand
names as well as generic names by using the PMDG. Specifi-
cally, we follow all synonym relations originating from the
nodes corresponding to any drug in the treatment aspect,
and use those nodes as synonyms for the drug.

3.5 Document Retrieval

The role of the document retrieval step is to produce a ranked
list of documents – scientific articles or clinical trials – rel-
evant to a given topic. We considered two strategies for
document retrieval:

• Aspect Retrieval: to prevent any single aspect from
having too large of an impact on the score of a doc-
ument, in the aspect retrieval strategy, we cast each
aspect of the topic as a separate, independent query
and obtain a separate ranked list of documents for each
aspect; and

• Joint Retrieval: in the joint retrieval strategy, we cast
each aspect of the topic as a clause in a single disjunc-
tive Boolean query, obtaining a single ranked list of
documents for the entire topic.

Both strategies rely on Apache Lucene2 (version 6.6.0). It
should be noted that the way in which each aspect was
represented as a query (or clause) depends on whether the
system is configured for Task A (scientific articles) or Task
B (clinical trials).

prevention, prophylaxis, prognosis,
outcome, survival, treatment,
therapy, personalized

Table 1. Lexicon of words indicating treatment.

amplification inhibitor | antagonist |
suppressor | antisense |
blocker

duplication

translocation

deletion agonist | activator | inducer |

potentiator | stimulatorinactivation
Table 2. Lexicon of drug roles targeting each type of genetic
mutation.

3.5.1 Retrieving Scientific Articles (Task A)

When retrieving scientific articles for a given topic, we en-
coded the disease aspect as an additive disjunctive Boolean
query with a clause representing the surface form of the
disease as indicated in the topic as well as additional clauses
representing each expansion. By contrast, the genetic as-
pect was represented as special type of disjunctive Boolean
query in which the score of a document was determined as
the maximum score obtained for any clause in the query
(rather than the total). When encoding the genetic aspect,
we considered up to three clauses corresponding to (1) the
2https://lucene.apache.org/core/
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gene and its expansions, (2) the type of mutation and its
expansions, and (3) the locus (if provided) and its expansions
(if any). To ensure that scientific articles satisfy the treat-
ment aspect of the topic, we produced an additive disjunctive
Boolean query in containing clauses encoding (a) the lexicon
indicated in Table 1, (b) the patterns indicated in Table 2,
(c) any drugs targeting the specific mutation and type of
tumor indicated by the topic, and (d) any drugs known to be
ineffective for the specific mutation. Finally, we address the
precision medicine aspect by reducing the score of articles
that focus on science rather than medicine and increasing
the score of articles that appear that relate to clinical tri-
als and studies involving humans. Specifically, we penalize
the score of articles which (1) contain cell, biochem, chem,
molecular, cytogenetics, pathology, or ⋆pathology in
the title of the journal, (2) mention the terms cell, cell line, or
cell cycle in the abstract or title of the article, and (3) have a
MeSH term of “Cell Line, Tumor”. To favor articles reporting
the results of clinical studies, we increase the score of articles
that have a MeSH term of “Human”, or include any of the
patterns indicated in Table 3. We observed that, in general,
scientific articles do not refer to the demographics or co-
morbidities of patients (an exception to this would be in the
case of tumors occurring only in men or women- such as
prostate or cervical cancer). Consequently, when searching
scientific articles, we chose to ignore the demographic and
other aspects of the topic.

phase 1, phase 2, phase 3
phase I, phase II, phase III
trial, randomized, patient

Table 3. Lexicon of words indicating medical trials.

3.5.2 Retrieving Clinical Trials (Task B)

We observed that clinical trials often focused on general
diseases rather than specific types of cancer. For example,
when manually browsing ClinicalTrials.gov, we found that
many clinical trials study any type of “solid tumor” rather
than the specific type(s) provided in the topics evaluated in
the Precision Medicine track. Consequently, when retriev-
ing clinical trials for a given topic, we encoded the disease
aspect as a disjunctive Boolean query with clauses repre-
senting (1) the surface form of the disease as indicated in
the topic, (2) each expansion of the disease, as well as the
phrases (3) “solid tumor” and (4) “solid neoplasm”. When
searching clinical trials, the genetic and treatment aspects
were represented in the same way as when searching sci-
entific articles. The demographic aspect was represented
as a conjunctive Boolean query with three clauses ensuring
(1) the minimum eligible age for the trial was <= the age
of the patient in the topic, (2) the maximum eligible age for

the trial was >= the age of the patient in the topic, and (3)
the gender of the patient in the topic matched the eligible
genders of the trial. To encode the other aspect of the topic,
we constructed a disjunctive Boolean query containing each
disease and its expansions, and penalized the score of clinical
trials which matched this query in their Exclusion Criteria
field, and slightly increased the score of clinical trials which
matched this query in their Inclusion Criteria field. Finally,
the precision medicine aspect was encoded as a disjunctive
Boolean query favoring clinical trials which have at least one
intervention of type “DRUG” or “GENETIC”, and/or which
include the term “Phase” in their Brief Title field.

3.6 Aspect Fusion

When documents are retrieved using the Aspect Retrieval
strategy, it is necessary to combine the ranked list of docu-
ments obtained for each aspect to produce a single ranked
list of documents relevant to the topic. This is accomplished
using a technique known as rank fusion or answer fusion.
Rank fusion is a process for combining the ranked list result-
ing from multiple searches to produce a single ranked list of
results. While a number of different methods for rank fusion
have been published, they predominantly rely on combin-
ing the different relevance scores associated with the same
document in different ranked lists. In our system, the scores
produced when searching for each aspect can vary by several
orders of magnitude, making score-based rank fusion tech-
niques difficult to apply. Thus, we rely on a method known
as Reciprocal Rank Fusion[5] (RRF). Rather than combining
the different scores associated with a single document, RRF
combines the reciprocal rank of the document in each ranked
list. Formally, given a set of D documents to be ranked, and
a set of rankings R, we determine the new score of each
document d ∈ D as:

RRF-Score(d ∈ D) =
∑
r ∈R

1
k + r (d) (1)

where r (d) is the rank of document d in ranking r , and k is a
parameter intended to reduce the impact of low ranks on the
score (in our experiments, we used k = 60 as recommended
by the original authors). Thus, the role of the aspect fusion
step is to combine the ranked list of documents obtained for
each aspect of the topic using Equation 1 to produce a single
ranked list of documents for the topic.

3.7 Similarity Fusion

It has been widely shown that for many machine learn-
ing evaluations, the top performing systems often combine
a large variety of models. We were interested in learning
whether this behavior was true for information retrieval
problems as well. Thus, the role of the similarity fusion step
entailed two steps: (1) the document retrieval process was
repeated using a number of different similarity measures
(or relevance models), and (2) the resultant ranked lists of
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Task A Task B

System (Run) infNDCG P@10 R-Prec MAP P@5 P@10 P@15

Run 1: UTDHLTJQ 44.63 61.72 28.97 26.93 42.86 37.50 37.14
Run 2: UTDHLTAF 44.84 62.07 28.66 25.56 45.00 40.00 37.62

Run 3: UTDHLTFF 45.93 61.72 29.87 24.85 40.00 41.43 37.48
Run 4: UTDHLTSF 44.68 59.66 29.14 25.76 42.14 37.86 36.43
Run 5: UTDHLTSQ 17.84 21.38 10.49 13.99 27.86 24.29 23.57

Table 4. Average performance across each topic for TREC PM.

documents were combined to produce a single ranked list.
As with aspect fusion, we relied on reciprocal rank fusion
(RRF) to combine the ranked list of documents retrieved for
each similarity measure. In our experiments, we considered
eight similarity measures: Base Model 25[12] (BM25) , TF-
IDF, Divergence from Randomness (DFR)[2], Information-
based Similarity[4], Dirichlet-smoothed Language Model
Similarity[13], Jelinek-Mercer-smoothed Language Model
Similarity[13], Axiomatic Similarity[7], and Divergence from
Independence[10].

4 Overview of Runs

We submitted four runs relying on different configurations
of our system as well as a fifth baseline run (as previously
shown in Figure 2):

• Run 1: UTDHLTJQ This run relied on the Joint Re-
trieval strategy and did not incorporate Aspect Fusion
or Similarity Fusion.

• Run 2: UTDHLTAF This run relied on the Aspect Re-
trieval strategy and incorporated Aspect Fusion with-
out Similarity Fusion.

• Run 3: UTDHLTFF This run relied on the Aspect Re-
trieval strategy and incorporated both Aspect Fusion
and Similarity Fusion.

• Run 4: UTDHLTSF This run relied on the Joint Re-
trieval strategy and incorporated Similarity Fusion
without Aspect Fusion.

• Run 5: UTDHLTSQ This run used a very simple rule-
based search strategy considering only the disease and
genes of the topic.

5 Results

Table 4 presents the average performance of each of our runs
for both tasks. For Task A, we report the inferred NDCG
(infNDCG), Precision at 10 (P@10), and R-Precision (R-Prec).
For Task B, we report the Mean Average Precision (MAP),
Precision at 5 (P@5), Precision at 10 (P@10), and Precision at
15 (P@15). In general, the best performance was obtained by
Runs 2 and 3 which both incorporated Aspect Retrieval and
Aspect Fusion. For Task A, Run 3 obtained slightly higher

performance than Run 2 according to two metrics, suggest-
ing that Similarity Fusion improved the quality of scientific
articles retrieved by the system. By contrast, for Task B, Run
2 obtained slightly higher performance than Run 3 suggest-
ing that considering multiple similarity measures provided
no advantage to the system when ranking clinical trials.
In addition to average results, we present the inferred

NDCG and Precision at 5 scores obtained by each run as well
as the maximum and median scores obtained by any run
submitted by any team for each topic. Figure 4a presents the
inferred NDCG scores for Task A, while Figure 4b presents
the Precision at 5 scores for Task B. It can be seen that per-
formance of each run varies significantly between topics. For
example, our simple baseline run, UTDHLTSQ, obtains the
highest performance for Topic 7 in Task A, despite perform-
ing poorly over-all.

6 Conclusion

In this paper, we described our system designed for the TREC
2017 Precision Medicine track. For both tasks, We submitted
five runs corresponding to alternative configurations of our
system. Our system incorporates an aspect-based retrieval
paradigm wherein each of the four structured components
is considered as an aspect, along with two “hidden” aspects
encoding the need for retrieved documents to be within the
domain of precision medicine and to have a focus on treat-
ment. To this end, we construct knowledge graph encoding
the relationship between genes, mutations, and drugs. Our
experiments reveal that the aspect-based approach leads to
improved quality of retrieved scientific articles and clinical
trials.
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